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Kernelized Perceptron: 

Kernels, again! 
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Linear Separability: More formally, Using Margin  

 Data linearly separable, if there exists 

 a vector 

 a margin  

 Such that 
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Perceptron Analysis: Linearly Separable Case 

 Theorem [Block, Novikoff]:  

 Given a sequence of labeled examples: 

 

 Each covariate vector has bounded norm: 

 

 If dataset is linearly separable: 

 

 

 Then the number of mistakes made by the online perceptron on this 

sequence is bounded by 
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Beyond Linearly Separable Case 

 Perceptron algorithm is super cool! 

 No assumption about data distribution!  

 Could be generated by an oblivious adversary, 

no need to be iid 

 Makes a fixed number of mistakes, and it’s 

done for ever! 

 Even if you see infinite data 

 

 However, real world not linearly separable 

 Can’t expect never to make mistakes again 

 Analysis extends to non-linearly separable 

case 

 Very similar bound, see Freund & Schapire  

 Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What if the data are not linearly separable? 

Use features of features  

of features of features…. 

Feature space can get really large really quickly! 
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Higher Order Polynomials 

number of input dimensions 
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d – covariate dimension 

p – degree of polynomial 

grows fast! 

p = 6, d = 100 

about 1.6 billion terms 
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Perceptron Revisited 

 Given weight vector β(t), predict point x by: 

 

 

 Mistake at time t: β(t+1)  β(t) + yt
 xt 

 

  Thus, write weight vector in terms of mistaken data points only: 

 Let M(t) be time steps up to t when mistakes were made: 

 

 

 Prediction rule now: 

 

 

 When using high dimensional features: 
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Dot-Product of Polynomials 

polynomials of degree exactly p 
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The Kernel Trick Again:  

Kernelized Perceptron  

 Every time you make a mistake, remember (xt,yt) 

 

 

 Kernelized perceptron prediction for x: 
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Going Infinite… 
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 Nonparametric Gaussian regression: 

Would like to let the number of “features” M  ∞ 

 

 Prior: 

 

 

 Predictions:  

 

 

 

 Gaussian process models replace explicit basis function 

representation with a direct specification in terms of a  

positive definite kernel function  

 

 

 

 

Change of notation: 
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Mercer Kernel Functions 
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 Predictions are of the form 

 

 

 

where the Gram matrix K is defined as 

 

 

 K is a Mercer kernel if the Gram matrix is positive definite for 

any n and any x1, …, xn 
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Polynomial kernels 

 All monomials of degree d in O(d) operations: 

 

 

 How about all monomials of degree up to p? 

 Solution 0:  

 

 Better solution: 

polynomials of degree exactly p 
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Common Kernels 

 Polynomials of degree exactly d 
 

 

 Polynomials of degree up to d 
 

 

 Gaussian (squared exponential) kernel 
 

 

 Sigmoid 
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What you need to know 

 Notion of online learning 

 Perceptron algorithm 

 Mistake bounds and proofs 

 The kernel trick 

 Kernelized perceptron 

 Derive polynomial kernel 

 Common kernels 

 In online learning, report averaged weights at the end 
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Support Vector 

Machines 
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Linear classifiers – Which line is better? 
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Pick the one with the largest margin! 
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Maximize the margin 
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But there are many planes… 
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Review: Normal to a plane 
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x- 
x+ 

A Convention: Normalized margin – 

Canonical hyperplanes 
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Margin maximization using 

canonical hyperplanes 

Unnormalized  

problem: 

Normalized Problem:  
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Support vector machines (SVMs) 

 Solve efficiently by many methods, 

e.g., 

 quadratic programming (QP) 

 Well-studied solution algorithms 

 Stochastic gradient descent  

 

 Hyperplane defined by support 

vectors 
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What if the data are not linearly 

separable? 

Use features of features  

of features of features…. 



13 

©Emily Fox 2014 25 

What if the data are still not linearly 

separable? 

 If data are not linearly separable, some 

points don’t satisfy margin constraint: 

 

 

 How bad is the violation? 

 

 

 Tradeoff margin violation with ||β||: 

 

 

 

SVMs for Non-Linearly Separable meet 

my friend the Perceptron…  

 Perceptron was minimizing the hinge loss: 

 

 

 

 

 

 SVMs minimizes the regularized hinge loss!!  
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Stochastic Gradient Descent for SVMs 

 Perceptron minimization: 

 

 

 SGD for Perceptron: 

 

 

 

 

 

 

 

 

 

 

 SVMs minimization: 

 

 

 SGD for SVMs: 
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Side note: What’s the difference between 

SVMs and logistic regression? 

SVM: Logistic regression: 

Log loss: 
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Mixture Model Example 

From Hastie, Tibshirani, Friedman book 
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Mixture Model Example - Kernels 

From Hastie, Tibshirani, Friedman book 


