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Kernelized Perceptron: 

Kernels, again! 
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Linear Separability: More formally, Using Margin  

 Data linearly separable, if there exists 

 a vector 

 a margin  

 Such that 
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Perceptron Analysis: Linearly Separable Case 

 Theorem [Block, Novikoff]:  

 Given a sequence of labeled examples: 

 

 Each covariate vector has bounded norm: 

 

 If dataset is linearly separable: 

 

 

 Then the number of mistakes made by the online perceptron on this 

sequence is bounded by 
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Beyond Linearly Separable Case 

 Perceptron algorithm is super cool! 

 No assumption about data distribution!  

 Could be generated by an oblivious adversary, 

no need to be iid 

 Makes a fixed number of mistakes, and it’s 

done for ever! 

 Even if you see infinite data 

 

 However, real world not linearly separable 

 Can’t expect never to make mistakes again 

 Analysis extends to non-linearly separable 

case 

 Very similar bound, see Freund & Schapire  

 Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What if the data are not linearly separable? 

Use features of features  

of features of features…. 

Feature space can get really large really quickly! 
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Higher Order Polynomials 

number of input dimensions 
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p=2 

p=4 

p=3 

d – covariate dimension 

p – degree of polynomial 

grows fast! 

p = 6, d = 100 

about 1.6 billion terms 
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Perceptron Revisited 

 Given weight vector β(t), predict point x by: 

 

 

 Mistake at time t: β(t+1)  β(t) + yt
 xt 

 

  Thus, write weight vector in terms of mistaken data points only: 

 Let M(t) be time steps up to t when mistakes were made: 

 

 

 Prediction rule now: 

 

 

 When using high dimensional features: 
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Dot-Product of Polynomials 

polynomials of degree exactly p 
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The Kernel Trick Again:  

Kernelized Perceptron  

 Every time you make a mistake, remember (xt,yt) 

 

 

 Kernelized perceptron prediction for x: 
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Going Infinite… 
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 Nonparametric Gaussian regression: 

Would like to let the number of “features” M  ∞ 

 

 Prior: 

 

 

 Predictions:  

 

 

 

 Gaussian process models replace explicit basis function 

representation with a direct specification in terms of a  

positive definite kernel function  

 

 

 

 

Change of notation: 
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Mercer Kernel Functions 
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 Predictions are of the form 

 

 

 

where the Gram matrix K is defined as 

 

 

 K is a Mercer kernel if the Gram matrix is positive definite for 

any n and any x1, …, xn 
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Polynomial kernels 

 All monomials of degree d in O(d) operations: 

 

 

 How about all monomials of degree up to p? 

 Solution 0:  

 

 Better solution: 

polynomials of degree exactly p 
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Common Kernels 

 Polynomials of degree exactly d 
 

 

 Polynomials of degree up to d 
 

 

 Gaussian (squared exponential) kernel 
 

 

 Sigmoid 
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What you need to know 

 Notion of online learning 

 Perceptron algorithm 

 Mistake bounds and proofs 

 The kernel trick 

 Kernelized perceptron 

 Derive polynomial kernel 

 Common kernels 

 In online learning, report averaged weights at the end 
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Support Vector 

Machines 
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Linear classifiers – Which line is better? 
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Pick the one with the largest margin! 
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Maximize the margin 
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But there are many planes… 
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Review: Normal to a plane 
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x- 
x+ 

A Convention: Normalized margin – 

Canonical hyperplanes 
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Margin maximization using 

canonical hyperplanes 

Unnormalized  

problem: 

Normalized Problem:  
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Support vector machines (SVMs) 

 Solve efficiently by many methods, 

e.g., 

 quadratic programming (QP) 

 Well-studied solution algorithms 

 Stochastic gradient descent  

 

 Hyperplane defined by support 

vectors 
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What if the data are not linearly 

separable? 

Use features of features  

of features of features…. 
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What if the data are still not linearly 

separable? 

 If data are not linearly separable, some 

points don’t satisfy margin constraint: 

 

 

 How bad is the violation? 

 

 

 Tradeoff margin violation with ||β||: 

 

 

 

SVMs for Non-Linearly Separable meet 

my friend the Perceptron…  

 Perceptron was minimizing the hinge loss: 

 

 

 

 

 

 SVMs minimizes the regularized hinge loss!!  
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Stochastic Gradient Descent for SVMs 

 Perceptron minimization: 

 

 

 SGD for Perceptron: 

 

 

 

 

 

 

 

 

 

 

 SVMs minimization: 

 

 

 SGD for SVMs: 
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Side note: What’s the difference between 

SVMs and logistic regression? 

SVM: Logistic regression: 

Log loss: 
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Mixture Model Example 

From Hastie, Tibshirani, Friedman book 

©Emily Fox 2014 30 

Mixture Model Example - Kernels 

From Hastie, Tibshirani, Friedman book 


