Module 5: Classification

Kernelized Perceptron:
Kernels, again!

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 29, 2014

©Emily Fox 2014

m Data linearly sep‘))arable, if there exists

avector § 8% | B87(=

amargin - § 0
m Such that Il P&g oard ('of uuﬁy ov More
Crom ﬂ‘v' X =0

Ve o Yt pt vy

‘/{ 2 ﬂ” ‘ \(t Z-% ©Em“y;i)m m loo*( .Yt\» ﬁ




Perceptron Analysis: Linearly Separable Case
" JE

m Theorem [Block, Novikoff]:
Given a sequence of labeled examples: (X(/ \/\ 3/ ,()(,«/ Y")

g xrmples heed e e 18 pner rondom
Each covariate vector has bounded norm:
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m Then the number of mistakes made by the online perceptron on this
sequence is bounded by
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Beyond Linearly Separable Case
" JEE

m Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's +
done for ever! + - =
= Even if you see infinite data
+ +
m However, real world not linearly separable -
Can’t expect never to make mistakes again Toe + - -

Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What if the data are not linearly separable?
=
Use features of features

. _ of features of features....
- Y
+ o+ * ' - = Qb(ilf) y R — F
+a . + _ - :

Feature space can get really large really quickly!,

Higher Order Polynomials
" JEE

4 terms — (p—l—d—l) _ (p+d-1)!

p ~ pl(d—1)!

d — covariate dimension

o p — degree of polynomial
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3 4 s & 7 ) ) 10 grows fast!
number of input dimensions p=6,d=100

about 1.6 billion terms
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Perceptron Revisited
" JEE

= Given weight vector B®, predict point x by:

Mistake at time t: Bt & BO +y, x,

Thus, write weight vector in terms of mistaken data points only:
Let M® be time steps up to t when mistakes were made:

Prediction rule now:

When using high dimensional features:
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Dot-Product of Polynomials
" J
¢(u) . ¢(’U) — polynomials of degree exactly p
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The Kernel Trick Again:

Kernelized Perceptron
" JEE
m Every time you make a mistake, remember (X,Y,)

m Kernelized perceptron prediction for x:

sign(ﬁ(t) ~o(x)) = Z yi(o(z;) - o(z))

ieM @)

= Z yik(z;, )
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. . Change of notation:
4Going Infinite... rhi(x)ﬂj(x)

/

" JEE
. . . loas >
m Nonparametric Gaussian regression: Fens
Would like to let the number of “features” M > «

m Prior: p(B]0,a ) .
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m Gaussian process models replace explicit bagis function
representation with a direct specification in terms of a
positive-definite-kernel function
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Mercer Kernel Functions
"

a Prddictans are of the form — rw:* .
T m v
p(f) = N(f |0, 33%) = N (F10, L)
P
| Ny
where the Gram matrix K is defined as
Kl.? = K(Y;,X'): (y*\T (x) A‘ Y\
J ~ ) M
k"'\i\jc 96 ¢‘\/

m Kisa MerggF[ Ishe[nel if the Gram matrix is positive definite for
any nand any Xy, ..., X,
o less]
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Polynomial kernels

" JEE
m All monomials of degree d in O(d) operations:
é(u) - ¢(v) = (u - v)? = polynomials of degree exactly p

m How about all monomials of degree up to p?
Solution 0:

Better solution:




Common Kernels
" JE
m Polynomials of degree exactly d
K(u,v) = (u-v)?
m Polynomials of degree up to d
K(u,v)=(u-v+1)¢
m Gaussian (squared exponential) kernel
K(u,v) = exp (_H‘;;;’H)
m Sigmoid 7
K(u,v) =tanh(qu-v 4+ v)

What you need to know
" JE
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized perceptron
m Derive polynomial kernel
m Common kernels
m |n online learning, report averaged weights at the end
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Linear classifiers — Which line is better?
= S
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Pick the one with the largest margin!
" S

S
Il “confidence” = y;(5 - x; + Bo)
g
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Maximize the margin
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But there are many planes...
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Review: Normal to a plane
- _Q = x;
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A Convention: Normalized margin — 3
Canonical hyperplanes  z, =z, + \——

18]l

margin 2)/
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Margin maximization using
_ canonical hxgerplanes
: Unnormalized m%{ Y

problem: 0
yi(B -z + Bo) >, Vi€ {1,...,n}

- Normalized Problem:

Margin 2Y

: 2
min
min |53

yl(ﬂxl—i—ﬁo) > 1,VZ € {1,,?1}
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Support vector machines (SVMSs)

: 2
min
min |53

yi(B -+ Bo) > 1,¥i € {1,...,n}

m Solve efficiently by many methods,

e.g.,
quadratic programming (QP)
= Well-studied solution algorithms

Stochastic gradient descent

m Hyperplane defined by support
vectors

What if the data are not linearly

. segarable?

Use features of features

.t _ of features of features....
+ T -
+ & * =- =
, -
+ + - -
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What if the data are still not linearly

separable? . )
- min 18112

yi(B-x; +Bo) > 1,Vie{l,...,n}

+ + - m [fdata are not linearly separable, some
& = 2 points don’t satisfy margin constraint:
+ -
+ o+ + =
+ - - m How bad is the violation?
* o4 -
+ = -
o

m Tradeoff margin violation with ||B||:

SVMs for Non-Linearly Separable meet

my friend the Perceptron...
" J

m Perceptron was minimizing the hinge loss:

(=yi(B -2+ Bo)),

1

n
1=

m  SVMs minimizes the regularized hinge loss!!

18113+ C> (1 —yi(B- 2 + Bo))

=1
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Stochastic Gradient Descent for SVMs
"

m Perceptron minimization: m  SVMs minimization:
> (—wi(B - i+ o)), 18113+ C (1= wi(B- i+ Bo))
i=1 i=1

m  SGD for Perceptron: m SGD for SVMs:

B g 4 [yt(ﬁ(t) “my) < 0] Yiy

Side note: What’s the difference between

_ .SVMs and Iogistic regression?

SVM: Logistic regression:
n 1
. 2 _ .
5260 1511 +CZ; (=98 - @i+ o)) p(Y =1]z,f)= 1 + e~ (B-z+po)
= Log loss:

—logp(Y =1]z,8) =log (1 + e—(ﬁ'ﬁH-Bo))
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Mixture Model Example

Training Error: 0.270
Test Error: 0.288
Bayes Error:  0.210

Training Error: 0.26 -~
Test Error: 0.30
Bayes Error:  0.21

C' = 10000

C =0.01

From Hastie, Tibshirani, Friedman book

29
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Mixture Model Example - Kernels

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

et

e

Training Error: 0.160 e .
TestError:  0.218 Rt it i
Bayes Error:  0.210 e

From Hastie, Tibshirani, Friedman book
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