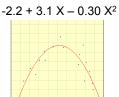


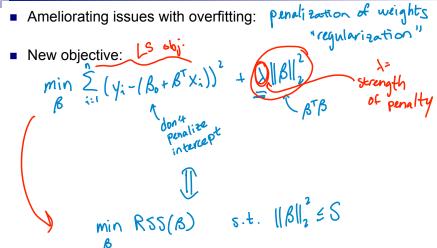
Regularization in Linear Regression

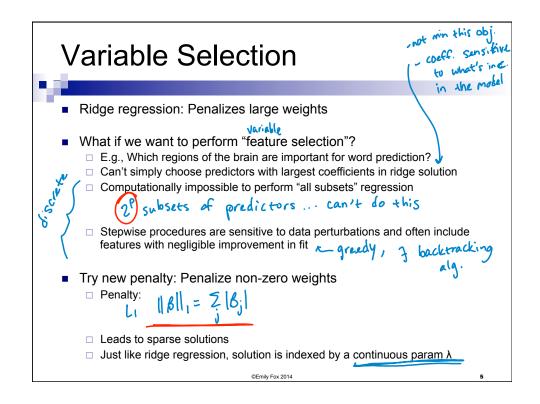


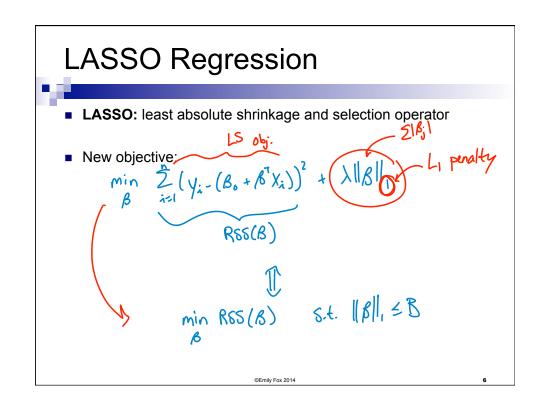
 Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights □ "Shrinkage" method

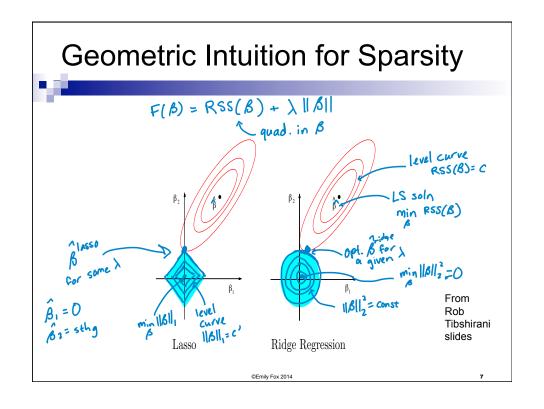
©Emily Fox 2014

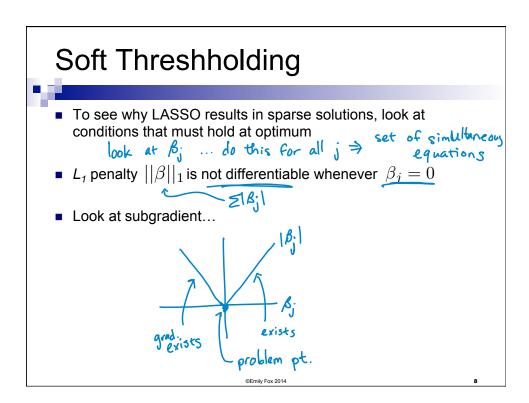
Ridge Regression











Subgradients of Convex Functions

Gradients lower bound convex functions:



$$\frac{F(y)-f(y)}{y-x} \geq \nabla F(x)$$

$$=) F(y) \geq F(x) + \nabla F(x) (y-x)$$

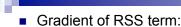
- Gradients are unique at x if function differentiable at x
- Subgradients: Generalize gradients to non-differentiable points:
 - ☐ Any plane that lower bounds function:

For 18:1: Ve [-1,1] Vedf(x) subgrad. if f(y)zf(x)+v(y-x)

©Emily Fox 2014

Soft Threshholding

 $\nabla_{\mathcal{B}_{1}}(RSS(\mathcal{B}) + \lambda || \mathcal{B} ||_{1}) = 0$



$$\frac{\partial}{\partial \beta_{j}} RSS(\beta) = \alpha_{j} \beta_{j} - C_{j}^{k}$$

$$\frac{\partial}{\partial \beta_{j}} RSS(\beta) = \alpha_{j} \beta_{j} - C_{j}^{k}$$

Subgradient of full objective:

$$\partial_{\beta_{j}} F(\beta) = (a_{j} \beta_{j} - c_{j}) + \lambda \partial_{\beta_{j}} ||\beta||_{1}$$

$$= \begin{cases} a_{j} \beta_{j} - c_{j} - \lambda & \beta_{j} < 0 \\ [-c_{j} - \lambda, -c_{j} + \lambda] & \beta_{j} = 0 \\ a_{j} \beta_{j} - c_{j} + \lambda & \beta_{j} > 0 \end{cases}$$

Cjd corr (xj, (-j)

relevant

Y is for

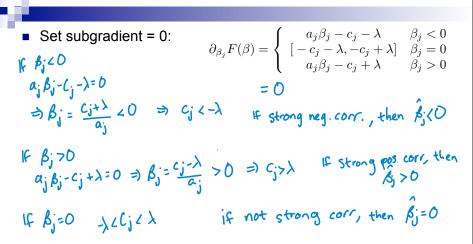
pred Y j

beyound others can

what others can

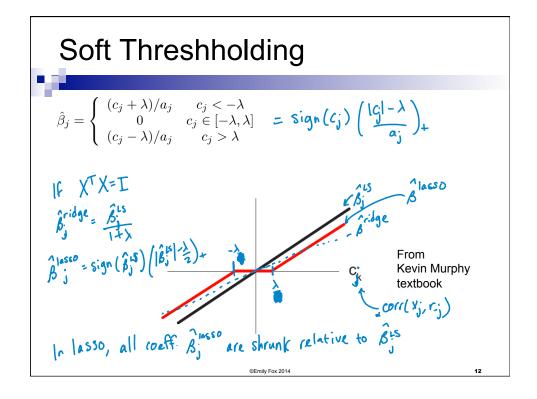
©Emily Fox 2014

Soft Threshholding

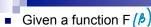


■ The value of $c_j = 2\sum_{i=1}^N x_j^{\bullet}(y_{\bullet}^{\bullet} - \beta'_{-j}x_{\bullet-j}^{\bullet})$ constrains β_j

©Emily Fox 2014



Coordinate Descent



□ Want to find minimum

$$\beta^* = \min_{\beta} F(\beta) \longrightarrow F(\beta_1, \dots, \beta_p)$$

- Often, hard to find minimum for all coordinates, but easy for one coordinate
 I-d optimization problem ... just solved for the lasso
- Coordinate descent:

How do we pick a coordinate?

When does this converge to optimum?

©Emily Fox 2014

13

Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - □ Pick a coordinate *j* at random

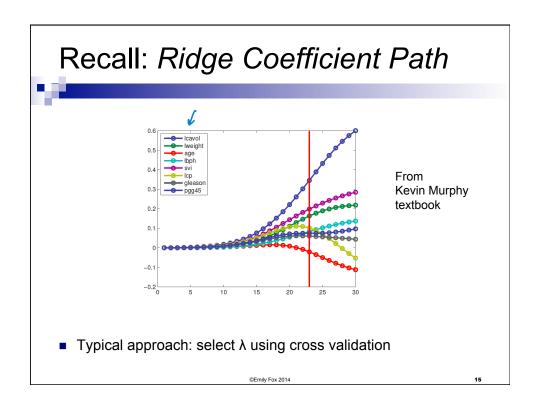
$$\hat{\beta}_{j} = \begin{cases} (c_{j} + \lambda)/a_{j} & c_{j} < -\lambda \\ 0 & c_{j} \in [-\lambda, \lambda] \\ (c_{j} - \lambda)/a_{j} & c_{j} > \lambda \end{cases} = \operatorname{sign}(c_{j}) \frac{\left(|c_{j}| - \lambda\right)_{+}}{a_{j}}$$

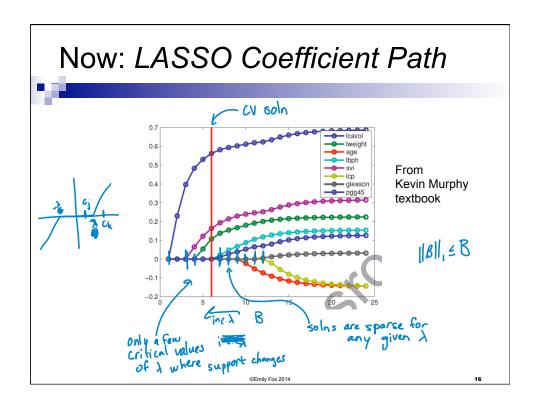
■ Where:

The image cannot be displayed. Your computer may not have enough
$$c_j=2\sum_{i=1}^N x_i^2(y_i^*-eta_{-j}'x_{-j}^*)$$

- $\hfill\Box$ For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - □ Least angle regression and shrinkage, Efron et al. 2004

©Emily Fox 2014





LASSO Example				b cv so	Ins
				1	
-	Term	Least Squares	Ridge	Lasso	
Ba	Intercept	2.465	2.452	2.468	
6.	lcavol	0.680	0.420	0.533	From
β_2	lweight	0.263	0.238	0.169	Rob Tibshirani
	age	-0.141	-0.046	6	slides
	lbph	0.210	0.162	0.002	
	svi	0.305	0.227	0.094	the model
	lcp	-0.288	0.000		ر مراجع الم
	gleason	-0.021	0.040		not in the model (sparse solns)
Be	pgg45	0.267	0.133	V	
		©Emily Fox 2014	ı		17

Typical Statistical Consistency Analysis: Holding model size (p) fixed, as number of samples (n) goes to infinity, estimated parameter goes to true parameter D* True parameter Here we want to examine p >> n domains Let both model size p and sample size n go to infinity! Hard case: n = k log p

Sparsistency

Rescale LASSO objective by n:

$$\min_{B} \frac{1}{n} RSS(B) + \lambda_n \geq |B_j|$$

- Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
 - □ Under some constraints on the design matrix *X*, if we solve the LASSO regression using

$$\lambda_n > \frac{2}{8} \sqrt{\frac{2o^2 \log p}{n}}$$

Then for some c₁>0, the following holds with at least probability

$$|-4\exp(-c_1 \wedge \lambda_n^2) \rightarrow |$$
:

- The LASSO problem has a unique solution with support contained within the true support $S(\hat{\beta}^{lasse}) \subseteq S(\hat{\beta}^*)$
- If $\min_{j \in S(\beta^*)} |\beta_j^*| > c_2 \lambda_n$ for some $c_2 > 0$, then $S(\hat{\beta}) = S(\beta^*)$

©Emily Fox 2014

20

Comments

- In general, can't solve analytically for GLM (e.g., logistic reg.)
 - $\quad \square \quad$ Gradually decrease \uplambda and use efficiency of computing $\hat{\beta}(\uplambda_k) \quad$ from $\hat{\beta}(\uplambda_{k-1})$ = warm-start strategy
 - □ See Friedman et al. 2010 for coordinate ascent + warm-starting strategy
- If n > p, but variables are correlated, ridge regression tends to have better predictive performance than LASSO (Zou & Hastie 2005)
 - □ Elastic net is hybrid between LASSO and ridge regression

$$\|y-XB\|_{2}^{2} + \lambda \sum_{j} |B_{j}| + \lambda_{2} \|B\|_{2}^{2}$$
(still some issues, but other solns)

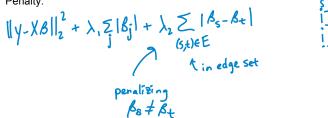
©Emily Fox 2014

Fused LASSO

Might want coefficients of neighboring voxels to be similar

discover regions of importance

- How to modify LASSO penalty to account for this?
- Graph-quided fused LASSO
 - □ Assume a 2d lattice graph connecting neighboring pixels in the fMRI image



A Bayesian Formulation

Consider a model with likelihood

 $y_i \mid \beta \sim N(\beta_0 + x_i^T \beta, \sigma^2)$ and prior

$$\beta_j \sim \operatorname{Lap}(\beta_j; \lambda)$$

where

$$\operatorname{Lap}(\beta_j; \lambda) = \frac{\lambda}{2} e^{-\lambda |\beta_j|}$$

For large λ

more peaked around O

- LASSO solution is equivalent to the *mode* of the posterior
- Note: posterior mode ≠ posterior mean in this case

any given posterior sample is not sparse, but it will be penalized like in ridge.

There is no closed-form for the posterior. Rely on approx. methods.

Reading

Hastie, Tibshirani, Friedman: 3.4, 3.8.6

©Emily Fox 2014

24

What you should know

- LASSO objective
- Geometric intuition for differences between ridge and LASSO solns
- How LASSO performs soft threshholding
- Shooting algorithm
- Idea of sparsistency
- Ways in which other L1 and L1-Lp objectives can be encoded
 - □ Elastic net
 - □ Fused LASSO

©Emily Fox 2014