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fMRI Prediction Subtask
= JEEE

m Goal: Predict semantic features from fMRI image




Regularization in Linear Regression
" JEE
m Overfitting usually leads to very large parameter choices, e.g.:
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m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Ridge Regression
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Variable Selection ", st SR
* JEE——

m Ridge regression: Penalizes large weights
varahly
m What if we want to perform “feature selection™?
o1 E.g., Which regions of the brain are important for word prediction?
1 Can’t simply choose predictors with largest coefficients in ridge solution
‘;‘,Lv i Cotationally impossible to perform “all subsets” regression

\Gé’ su\OSLts of ‘bru,(fc tors ... Can’t do «his
1 Stepwise procedures are sensitive to data perturbations and often include
features with negligible improvement in fit , Q"‘"A‘l , ’)j ha&kf’“‘k‘y
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m Try new penalty: Penalize non-zero weights

O Penallfy:: l‘ﬁ“[: 2‘)\6"\

01 Leads to sparse solutions

0 Just like ridge regression, solution is indexed by a continuous Earam A
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LASSO Regression
" JEE—
m LASSO: least absolute shrinkage and selection operator
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Geometric Intuition for Sparsity
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Ridge Regression

©Emily Fox 2014 7

Soft Threshholding
" JEE
m To see why LASSO results in sparse solutions, look at
condltlooo':s t‘rlat }g;us’f 4r~10cl{cll) a.;\ O;Etl?ol:ma.‘[ i set oﬁ: qq‘:::tr:aui
m L, penalty ||/3||1is not differentiable whenever (3; =0
18\

m Look at subgradient...
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Subgradients of Convex Functions
" S

m  Gradients lower bound convex functions:
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m Gradients are unigue at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
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Soft Threshholding

* JEE——
m Set subgradient = 0: ajfj—cg—A  B; <0

aﬁjF(ﬂ)Z{ [—ci—A—ci+A B;=0
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m The value of ¢; = 221:5(113'— B af ) constrains B;

i=1
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Soft Threshholding
" S
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Coordinate Descent
= JEE

= Given a function F(ﬁ)
Want to find minimum 6" EPANT) F{ﬁ)
[

m Often, hard to find minimum for all coordinates, but easy for one coordinate
[_J o')‘hm'l?.aﬁ on P’OL'CM ... ‘)“S“f s0 UlA for ‘the {“50

'S ‘:(5‘/'“/ BP)

m Coordinate descent: A
while not converae
p‘ck coord. J

ﬁ — min F(ﬂ\/ ,lg‘]“,b ng"‘ ’gFB
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= How do we pick a coordinate?
Ro\wA obin ra.néom\kﬂ smal‘f‘

m When does this converge to optlmum'? L I
e 5&(01\3 y OWX , Separa "7
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence

Pick a coordinate j at random ( )
= Set: (c; + Na; < —A lcU
=0 0 gelan = sign &)

(cj—)\)/aj Cj>>\
= Where: C}/‘bé

61_22 J4j)

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
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LASSO Example po s

Term Least Squares  Ridge Lasso

ﬁo Intercept 2.465 2452 2.468
b lcavol 0.680  0.420 0.533 From
. Rob
. . 1
B, 1luweight 0.263  0.238 0.169 Tibshirani
age —0.141 —0.046 slides
1bph 0.210  0.162 0.002
i 0305 0227 0004 ) "F
svi . . . the mojb\
lcp —-0.288  0.000 .
gleason —0.021 0.040 (5?“/
ﬁa pgg4b 0.267  0.133
f
Sparsistency

m Typical Statistical|Consistency Analysis:

Holding mo i fixed, as number of samples (n) goes to
infinity, estimated parameter goes to true parameter
7

n » !
9’9 9&,({«& param oS n e
m Here we want to examine p >> n domains

m Let both model size p and sample size n go to infinity!
Hard case:

n ay’ows S'ow‘y relefive to P
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Sparsistency

m Rescale LASSO objective by n:
min L Rss(8) « 2, 2 (8]
[ J

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):

Under some constraints on the design matrix X, if we solve the LASSO
regression using

M L

n
Then for some ¢,>0, the following holds with at least probability

2
|-Y exe (-c, aAn\ — | -
The LASSO problem has a unique solution withvsupport contained

within the true support S ( 8'**%*) & S(&

Ifjerglég*) B;| > caAy, for some c,>0, then S(B) = S(6%)
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Comments
" JEE
m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B()\k) from B(/\,C_l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If n > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO

(Zou & Hastie 2005)
Elastic net is hybrid between LASSO and ridge regression

[y-xell” xgwﬂ £ ) 18017

wlns}
(still wme is5uss, butc other

©Emily Fox 2014 21

10



Fused LASSO

"
m  Might want coefficients of neighboring
voxels to be similar

Aisam( fclions of ;meo(’mhcz_
= How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO

Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
Penalty: {._ .
! - =171
Ly-Xall, + 22141+ 3 2 |- A mal
J Gret e
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A Bayesian Formulation
" S

m Consider a model with likelihood

i B~ N(Bo +278,0%) )
and prior
Bj ~ Lap(5;; A) >
where L ) — A B
ap(ﬁja ) = 56 ?(Aj: 03:0
m Forlarge A asterior
ore praked aroand O - Frnode

m LASSO solution is equivalent to the mode of the posterior
= Note: posterior mode # posterior mean in this case
ary given Posterior su.m‘olz is not $parse,
but wll ke P‘M(.‘%C& lilee ia ('\&32—-

= There is no closgd-form for the posterior. Rely on approx. methods.
5(’iv.c+ ] % ff-Ors as  alternate
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Reading
= JEE
m Hastie, Tibshirani, Friedman: 3.4, 3.8.6
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What you should know

" JEE
m LASSO objective

m Geometric intuition for differences between ridge and LASSO solns
m How LASSO performs soft threshholding

m  Shooting algorithm

m |dea of sparsistency

m Ways in which other L1 and L1-Lp objectives can be encoded
Elastic net
Fused LASSO
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