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fMRI Prediction Subtask
= JEE

m Goal: Predict semantic features from fMRI image




Regularization in Linear Regression
" JEEE———

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X-0.30 X2 -1.1+4,700,910.7 X £8,585,638.4 X2 + ...
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m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Ridge Regression
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Variable Selection . at. S8
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m Ridge regression: Penalizes large weights
varably
m What if we want to perform “feature selection™?
E.g., Which regions of the brain are important for word prediction?
& Can’t simply choose predictors with largest coefficients in ridge solution
v Computationally impossible to perform “all subsets” regression
& 9? subsees oF ‘aru,(fc tors ... can’t do this

%

Stepwise procedures are sensitive to data perturbations and often include
features with negligible improvement in fit , ‘1""'&] , ’)j ha&kf’“&‘?

l-\':)'

m Try new penalty: Penalize non-zero weights

Penallfy:: “ﬁ“l - 2‘)‘6‘,\

Leads to sparse solutions

Just like ridge regression, solution is indexed by a continuous Earam A
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LASSO Regression
" JEE

m LASSO: least absolute shrinkage and selection operator

m New objective:
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Geometric Intuition for Sparsity

From
Rob
Tibshirani

Lasso Ridge Regression slides
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Soft Threshholding
" JEE—
m To see why LASSO results in sparse solutions, look at
conditions that must hold at optimum

= L, penalty ||(]|1is not differentiable whenever 3; =0

m Look at subgradient...
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Subgradients of Convex Functions
" O

m Gradients lower bound convex functions:

m Gradients are unique at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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Soft Threshholding

= JEEE
m Gradient of RSS term:

m Subgradient of full objective:
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Soft Threshholding

® JE—
m Set subgradient = 0: ajfj—ci=X  B; <0
85]}7‘(5): [*Cj*)y*Cj‘F)\} ﬁJ:O
CLij-Cj—F)\ 5j>0

N
m Thevalue of ¢; =2 z%(y' — B ;2" ;) constrains B;
=1
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Soft Threshholding
" J

(Cj + )\)/G;j ¢ < —A

Bj = 0 cj € [—)\, )\]
(cj—)\)/aj Cj>)\

/ From
Ck Kevin Murphy
/ textbook

ooooooooooooo




Coordinate Descent
= JEE

m Given a function F
Want to find minimum

m Often, hard to find minimum for all coordinates, but easy for one coordinate

m Coordinate descent:

= How do we pick a coordinate?
m  When does this converge to optimum?
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
Pick a coordinate j at random

= Set: ) (Cj + )\)/(Lj ¢ < -2
,Bj = 0 Cj € [—)\, )\]
(cj—A)/aj Cj>>\
= Where:

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
" JEE
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
" S
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LASSO Example
"

Term Least Squares  Ridge Lasso

Intercept 2.465 2.452  2.468
lcavol 0.680  0.420 0.533 From
lweight 0.263  0.238 0.169 %g‘;hirani
age —0.141 —0.046 slides
1bph 0.210  0.162 0.002
svi 0.305  0.227  0.094
lcp —0.288  0.000
gleason —0.021  0.040
pgg4b 0.267  0.133
Sparsistency

“
m Typical Statistical Consistency Analysis:

Holding model size (p) fixed, as number of samples (n) goes to
infinity, estimated parameter goes to true parameter

m Here we want to examine p >> n domains

m Let both model size p and sample size n go to infinity!
Hard case: n= klog p
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Sparsistency
* JEE—

m Rescale LASSO objective by n:

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
Under some constraints on the design matrix X, if we solve the LASSO
regression using

Then for some ¢,>0, the following holds with at least probability

The LASSO problem has a unique solution with support contained
within the true support
B;| > caAy, for some c,>0, then S(B) = S(6%)

If min
JES(B)
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Comments
= JEEE

m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B(Ak) from B(/\k_l)
= warm-start strategy
See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If n > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO

(Zou & Hastie 2005)
Elastic net is hybrid between LASSO and ridge regression
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Fused LASSO

Might want coefficients of neighboring
voxels to be similar

How to modify LASSO penalty to account for this?

Graph-guided fused LASSO

Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
Penalty:

©Emily Fox 2014 22

A Bayesian Formulation
“

Consider a model with likelihood
T 2
yi | B~ N(Bo+x; B,07)

and prior
Bj ~ Lap(Bj; A)
where A
Lap(8;; A) = e %]
For large A

LASSO solution is equivalent to the mode of the posterior
Note: posterior mode # posterior mean in this case

There is no closed-form for the posterior. Rely on approx. methods.
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Reading
= JEE
m Hastie, Tibshirani, Friedman: 3.4, 3.8.6
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What you should know

" JEE
m LASSO objective

m Geometric intuition for differences between ridge and LASSO solns
m How LASSO performs soft threshholding

m  Shooting algorithm

m |dea of sparsistency

m Ways in which other L1 and L1-Lp objectives can be encoded
Elastic net
Fused LASSO
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