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Curse of Dimensionality
" J
m To maintain a fixed level of accuracy for a given nonparametric
estimator, the sample size must increase exponentially in d

m SetMSE =5 c d/b, “
N A~ (?/ ]670

m Why? Using data in local nbhd
In high dim, few points in any nbhd

m Consider example with n uniformly
distributed points in [-1,1]¢

d=1: in [»0.4,6.17) ~nt lo\ ’
d=10 - < “ 6 B ...y 3dimen sions:
.\ 0., 0 - ! " ) > I()(Jll;m:iri ,,,,,, !

) £ ’ ) \—3 D X y

\\)
~ l\*(|

- '\//;W“ﬂgure from Yoshua Bengio’s website
s \°

» éEm ily Fox 2014

2




Natural Thin Plate Splines
"
mm Z{yl xlt)_,}2 +AJ(f) - \)u\(hf\a

iR 1
NG R T W

= Solution: Unique minimizer is the natural thinplate spline with

knots at the x;
m Proof: See Green and Silverman (1994) and Duchon (1977)

m Similar propertles‘and intuition as in 1d: lat
AsA0, 4ol tkw(oackc; an 'mer?""‘

0 eri a‘l’lv\
e LG e 0 T e
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Tensor Product Splines
" JEE

m We use.this tensor product basis
@ haj(z1)hok(22)
t \AL
to model f(x) B 3 \
H«\v% 03k i
” 'a’,\ \("\
m This formulation extends (in
theory) to any dimension d

= Note that as the dimension of |

the basis grows exponentially
with the input dimension d

From Hastie, Tibshirani, Friedman b90k
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Generalized Additive Models
= JEE

m Both for computational reasons and added interpretability, - Ar‘}?“‘)
models that assume an additive structure are very pop

m Assuming a GLM framework: 9T A +

g(p(x)) = oA L ‘C‘ (7((\1‘4—%* ()()\
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GAM Example GLN: g(m:XTR
" JAE

m Consider using a penalized regression spline of order p; with L;
knots for each cov%rlate x

Ei ?Jk*k*i"at“‘ i] £iG4)

[ Penallzatlon is applled to the spline coefficients b
7 0

Comments: A (‘l‘) v \{)
L] 5AM is very interpretable ‘
The GAM is ver r LJ NG \,'

fi(x) is not influenced by the other f,(x)
Can plotif/to straightforwardly see the relationship between x; and y

= Will see that this also leads to computational efficiencies

A
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Backfitting () \j)o .
" JE

m To begin, assume a standard (non-GLM) regression setting

=0 €

W, \2
m For concreteness, conS|der . (L)\ (H,'
win 5 (4 ZQ \”LZ\“SF' l
Foofd A

m Resultis an‘ additive cubic spline model with knots at the
unique values of x;

For X full column rank can show that solution is unlgue Otherwise, linear
part of f,(x)) is not uniquely determined

3 (44l k)=2)

m Here, clearly & = \1

= How do we think about fitting the other parameters??
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BaCkﬁtUng \1 T A+ {l{x,\h.w‘,(m%
" JEE

m Backfitting is an iterative fitting procedure

£ (0

m Since f(x) is additive, if we condition on the fit of all other
components fi(x), j # i, then we know how to fit fi(x;)

\W\/w{’!’i oL - Z L )(Q L ()(l,\ t€

d
m |terate the estimation procedur til convergence

T3 oufn(ek

U5k \ike asse ﬁ_]c e
A Coordinate 4 Fiv ,%ﬁ"
) dee® G
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Backfitting Algorithm
" S

Algorithm 9.1 The Backfitting Algorithm for Additive Models.
1
e N ;o S, .
1. Initialize: & = * Y1 Vi [ =0,Vi4, 5. ll\\k _C S

2.Cycle:j:®2... L2, Q“(\""\\ (651\0‘
v m linl) kcmd
63( . f] — S |:{yz Q_ka Lik }1 ) (G0 )(\\e’(
ﬁ(‘\ = 4 o0t
St

) 1
fi < fJ_NE:fJ ij) \
en
W*—'V\UW\fCﬂrO\‘

until the functions fj change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book
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Review of GLMs | fitl \1\110( "f“
" S f

m Mean parameters are a linear combination of inp
through a possibly nonlinear function

m Assume a distribution in the ex onentlal family , ~ |Foevs o \
O T e | camonic
y0(z) — b(0(x borm

plo | o) = exp |2 )~ Hotr) D ety

AL
\ disparsion N odet. wet £

Using theory of exponential families,
AN:E[Y |z] = b (6W)
var(Y | o) = g% b (pl) 2




Review of GLMS s s = e [0 4 .
" JE
m Mean parameters are a linear combination of inputs, passed
through a possibly nonlinear function

m A parametric GLM assume Q L*\

g(u(w =p'
““1\\‘\ an,’

With a canonical link function,

0(z) = g(p(x))

The link function is assumed to be invertible

Ik g"( 8(9)

Examples oy | 0) = exp [P0 OO 4 oy, 00|
" JEE
= Linear regression 9;;9(’("A wlo)
o &
logp(y: | 2i,8,0%) = — 35— — 5 (; + log(2m0 ))
N/
0:: Mz AX; CC\/;IDJ)

9
bley= %
7' ~
)= o [0) = B = M) )
Y 2
W= = vorly:)=0 b=

————Te h . S ——




SR LE N b

Exanuﬂesf ‘mwruﬂﬂﬂi@ﬁﬂ@m}
" - — ) g =674 ey
m Binomial regression oz 3(\ _b(®) e

+ mlog(l — ;) + log

T o—
- /—\,\./\ -
2
log p(y; | zi, B,0°) = y;log (1 ) ( 1)

%

0(,{): loj ;_ﬁ_(’-;)?*) /\b— =\ i\. 9{1)3 6(#(\:2)
o) { - lb(j /;( !
\)[Mx\) - m |06(|“' ) ) ‘ - 'MT:_)
L-ﬁ[\() ; (\() - ‘0 M[K)
M[‘( b (b )' T Q@@ ’M—P 6)’;\70()

/—.

i
(
{
Var(‘j)= b’ (th\): m T (1-T (‘4\> i %(t); \b% =~

ML ESt|mat|0n p(y | z) = exp M

" S birf 3
m Maximize the log-likelihood ‘—/

5
log p(y1s -,y | B) = ZVO ) | fpnst

de;  de; do; yu
dB; — db; dB; Z / =0

A=l

+e(y,0?)

m No closed-form solution, so use iterative methods
2" order methods like IRLS require Hessian

dp dpon,
S = dla(de1 ’d&n)




ML Estimation s -ee 2200 10

o2

= |IRLS Newton updates: ]L’UA’C\W\\/ ] w,,‘.ajktii L3
)Cx\\ Yook on

= (X", X)7 X" Sy

Zt—9t+5 (y [it) (ﬁlAUK\

Nonparametrics + GLMs
" JEE

yé?(x) _ b(@(a:)) + c(y,aZ)

ply | ) = exp {

m Consider a more general form
9(u(x)) = f(x) 0(x) = g(p(z))
?(CV' .\
m Can consider many forms for f(x) that we have studied in this
course, e.g.

Smoothing splines 7

Penalized regression splines

Local regression (kernel methods)

/




GAMSs and Logistic Regression
" JEE

m A generalized additive logistic regression model has the form

403 D 0 = bl £

m The functions f,, ..., f; can be estimated using a backfitting
algorithm, too

m First, recall IRLS algorithm for Egrgmﬂ:j_lggwgmsion
y = 601(?1 W—l(y _p) ?(, Qk)( \%
T ok
¢ ¥ u((u\\ WQ‘S\\ 7
new (L
BV« arg mm(z - XB)TW(,Z - Xp)
W
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GAMs and Logistic Regression
" JEE

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.

1. Compute starting values: & = log[y/(1 — 7)],where § = ave(y;), the

sample proportion of ones, and set fj =0 V]\

A '\"'\\({ g |C‘X
/2. Define ,7|70¢+Z fi(ziy) and p; = 1/[1 + exp(—;)].
Iterate: 9\ -
v fr

(M (a) Construct the working target variable
o ) o
z =1 + - li;ﬁ
(2 7 K w
&1\§ ) Construct weights w; = p;(1 — p;) L\\kt‘\ \

(c ) Fit an additive model to the targets z; with weights w;, us-
x&‘ ing a weighted backfitting algorithm. This gives new estimates
\—-\_’-——/_.

@, fJ vy

0) \ 3. Continue step 2. until the change in the functions falls below a pre-
Q) ‘& prLlﬁLd threshold.

\l\

d k\/u)\ From Hastie, Tibshirani, Friedman book
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GAM Logistic Example
" S

m Example: predicting spam

m Data from UCI repository

\

m Response variable: email or spam

m 57 predictors:
48 quantitative — percentage of words in email that match a give word such

EET » o

as “business”, “address”, “internet’,...

6 quantitative — percentage of characters in the email that match a given
character (; ,[!$#)

The average length of uninterrupted capital letters: CAPAVE

The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT

©Emily Fox 2014 19

GAM Logistic Example
"

m Test set of 1536 emails
m Training set: n=3065

u
f(over)
f(remove)

f(internet)

nnnnn
our over  remove internet

m Use a GAM with a chi(Ee( .
smoothing spline me”™" =
Each with 4 dof c .
ke ()7
m Estimated functions
for significant predictors
Note large discontinuity

f(business)
f(np)
f(np1)

nnnnnnn

10 0o s
free business hp hpl

f(george)
s o
F(1999)
f(xe)
f(edu)

woos

george 1999 re edu

near 0 for many
m Test error of 6.6% 2 2 g g
From Hastie, Tibshirani, Friedman book " 5 .0 "o T e s b sme tomo o
ch! ch$ CAPMAX CAPTOT
©Emily Fox 2014 20
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Other GAM formulations
- E— (ofline eke)

= Semiparametric models: ( Nnon- para mefric

g9(n) = X’r? FA + (D 5 medther
T(jnear MotM

m ANOVA decompositions:
(o Fcls i\:\rl‘.,
f@) = A4 %\f.(xk\* ;ch Y

\ Tinteractions
Choice of: m«}nd(tch "
Maximum order of interaction \ e N\M
om
Which terms to include ’w\ﬁ‘i\of/ ‘Q(}‘“Y"\’ Nqﬁ* 7 Q«qd:\s

What representati ider.
at representation y Y\iy\eﬁ |(<€(nc\$‘ er’C, [IV\

m Tradeoff between full model and decomposed model

©Emily Fox 2014

Connection with Thin Plate Splines
" JEE

m Recall formulation that lead to natural thin plate splines:

min Z{yi — f(@)}? + AJ(f)

1= [ L) 2 (5 () e
m There exists a J(f) such that the solution has the form
Clye L) 4o {464\

m However, it is more natural to just assume this form and apply

d
Jf)=J(fr+ fot -+ fa) = Z/f}/(tj)zdtj
j=1

11



What you need to know
" JE

m Nothing is conceptually hard about multivariate x

—

m In practice, nonparametric methods struggle from curse of

dimensionality —_
m Options considered:
Thin plate splines 7/ A 6y [/\/\O{c
Tensor product splines
Generalized additive models (U§C H\e, qb()\/e\

Combinations (to model some interaction terms)

Readings
* A
m Wakefield — 12.1-12.3
m Hastie, Tibshirani, Friedman — 5.7, 9.1
m Wasserman — 4.5, 5.12

©Emily Fox 2014 24
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Module 4: Coping with Multiple Predictors

Multidimensional Kernel
Methods

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 8", 2014
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Nadaraya-Watson Estimator

" Fa) = i1 Ka(@o, zi)us

m Example: _,J—I_ Z?:l K,\(sco,:ci)
Boxcar kernel > loeal avays

Epanechnikov

Gaussian 1:,1?] C,J

ooy gl
Wit
uch less than chOice of A
Nearest-NeighborKernel " Epanechnikov Kernel

m Often, choice of kernel matters
M
G ¥ V&S
— e

From Hastie,
Tibshirani,
Friedman
book
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Local Linear Regression
" JEE

m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

m Reinterpretation:
A 2
£ - ﬂf"‘m\'\ Z(Y,;—a\
'

a -

A6 Y

A 2 2
_ M:I)Z WL(X)( ;\’0‘) X \Q
£0) - arg " 7 N ,ﬁd‘<0‘é}£w -

’CDLoPSX From Hastie, Tibshirani, Friedman book

\LK\%)

A w. %) s
'_5 gb(s = Z/)—\Lt
Swilx)

m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares

©Emily Fox 2014 27

Local Linear Regression
" JEE

m Consider locally weighted linear regression instead
= Local linear model around fixed target X, :

ﬁogo + /glxo - X,)

m Minimize:

2
MiNn Z K, (X, ¥<) (\/;- Boxy - (S.k(&'xo\B

Iy,

m Return: 4

?(X,) = 20,(0 &— Q\t AC X

(
Nokg - nox CQ\A'« volent ko C]k&?nﬁ a local onstant.

- . ';.
m Fit a new local polynomial for every target x,

©Emily Fox 2014 28
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Local Polynomial Regression
" S

m Consider local polynomial of degree d centered about x,
2
Pxo (x, B(Bo) - ﬂo{. X ﬂ“‘o(x’)(p)‘r@ (x"xo\ *ee

2.
. * By (y- xD\A

Minimize: min > K0, 2:) (Yi — Py (3 Bay))?
0 ;-1

M A (\/" )(x,, AX,BT \'Jxo ( \//’ Xx,]f)
% '\\[u_x.w,.» ng’,‘;)

‘. Xn"Xv T (Xﬂ"yd)l

Equivalently:

n A
Return: ﬂmi Bax, ,
Bias only has components of degree d+1 and higher

©Emily Fox 2014 29

Local Polynomial Regression
" JEE

m Rules of thumb:
Local linear fit helps at boundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and i ses variance

Local quadratic fit helps most for ¢ curvature in the interior

Asymptotic analysis >
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression

©Emily Fox 2014 30
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Local Polynomial Regression
" S

m Kernel smoothing and local regression extend straightforwardly
to the multlvarlate X scenarlqA

Iginz KA(-T07 xz)(yz - Paco (CL’; 6$0))2
O =1
Need d-dimensional kernel

S(CARER gt R (el wedh)

Nadaraya Watson kernel smoother fits locally constant model
Local linear regression fits local hyperplane via weighted LS

m Challenges:

Defining kernel
Curse of dimensionality

©Emily Fox 2014 31

Example Univariate Kernels
" JEE

m Gaussian K(z) = e 2 © ) on 0

m Epanechnikov K(m) _ 2(1 _ x)QI(x)

i 70
" Tricube K(x) = g (1 = o)1 (@)
1
m Boxcar K(z) = 5[(33)
,z; © / \ Gaussian
. )\

-3 -2 -1 0 1 2 3

From Hastie, Tibshirani, Friedman book
©Emily Fox 2014 32
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Multivariate Kernels
= JEE

m Many choices, even more than in 1d
Q\(\ u 7{' COIV\PU-\“e
= Examples: )(\ / Aﬁane MR
Radial basis kernels ’
e [ ) ad b
A(@0, @) = K >\ o5 bebre

E.g., radial Epanechnikov, tricube, squared exponenual (Gaussian)

Z?\/ K} (\LM’(\ @ 1?\ \\Kb g

Multivariate Kernels
= JEE

m Many choices, even more than in 1d

m Examples:
Product kernels ')(

Y~ XL
( 5\’ \ Kl ( —
Ky, 2, xozl): K\ ‘{ *7/

m Choices:
Form
Kernel(s)
Bandwidth(s)

17



Motivating Local Linear Regression
" JE
m Nadaraya-Watson smoothing can be applied to multivariate x

m However, boundary issues are even worse in higher dimensions
Messy to correct for boundary even in 2d (esp. for irregular boundaries)
Fraction of points close to the boundary increases with dimension

m Local polynomial regression corrects boundary errors up to
desired order

N-W Kernel at Boundary

" From Hastie,
Tibshirani,
Friedman
book
Local Linear Regression
" (l\xr‘c“
m Assume a erne \z= -
Ky (mm N — *
m For each target location x,, goal is to minimize *

n : 2 L(a
%S?Z;KA(xo,xi) (yi — Boxe — ;63'330 (s — 33’03')) W J(\
= Equivalently, y
T q\
i U/ﬁ”h \Nn(‘\-)(@ lie
%*b T(}\IG?( N (\(o\\

m Solution: 3,, = (X;FO KVmOXmo)_lX;ony
m Return: IN
)
‘Q (‘Lh\.// D©‘Elm\lll;r=uxzu14 16
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Local Linear Example
" S

m Astronomical study
Response = velocity measurements on a galaxy
Predictors = two positions

m Note the unusual star-shaped design - very irregular boundary
Must interpolate over regions with very few observations near boundary

FL

77
717
]

Velocity Velocity

7
77

17

77 |
A7

Z7 77
AT

17 7=

l
l

71
H1
1
T
I
e
=

1717
i

—

East-West East-West
From Hastie, Tibshirani, Friedman book
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Motivating Local Polynomial
" JEE
m One way to think about motivating local polynomials is as follow

m Consider 2d example for simplicity
- / - -
m For a suitably smooth function f(x) = f(x,,X,), we can approximate

it for values x=[x,,X,] in a nbhd [Xo1,Xo2] @S
0 0
flz) = f(zo) + (z1 — I01)ax];1 + (zg — 51702)8;;2
el 2 ~ RS S el O
+ (z1 — zo1) 5 33331 + (1 — zo1) (22 3702)2 92010709 + (z2 — z02) 5 895%2
m Suggests the use of a local polynomial: - .
agg 3 ) ( p Y\ \/\’Vf“td'tu
Q K&j%ih’ Eo Lo \(1;\(" @ux"
™ ' A
—l .l.'.—‘ ((l’ ‘lol
= Then, féliDZKA(moami)(yi = Py (%5 ay ) [l sy, o
o =1 ©Emily Fox 2014 an 38
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Scaling to High Dimensions
" I

m Local regression becomes less useful in dimensions greater
than 2 or 3

Impossible to maintain localness (low bias) and large sample size (low
variance) without the total sample size increasing exponentially in d

m Again, curse of dir%ensionality
Sparsity of data
Points concentrate at boundaries&

m Visualization of the fitted function is also hard in high
dimensions, and visualization is often a key goal in smoothing

©Emily Fox 2014 39

Boundary Effects
" JEE

m Everything is far away in high dimensions

m Consider n data points uniformly distributed in a d-dimensional
unit ball

m Example task: Consider nearest neighbor estimate at origin

o L 1i/m
m Median distance to closest data point is (1 ~ 3 )
For n=500 and d=10, distance = 0.52
Closest point is Iikely ore than %2 way to the boundary d “ OQ 'H\Q—
af

mugt o0 qre dbechy Youndd - o
gample thap 43 art Other date po°
m Prediction is harder near the edges of the sample boundary

©Emily Fox 2014 40




Boundary Effects Il
" JE

m Another way to think of this effect is in terms of volume

m We want to compute the fraction of volume that lies between
radusR=1-gcand R=1

m The volume of a sphere is proportional to \} (*@\ O< @

m The vplume fraction js therefore:
WP R 3l

Va(1) = Va(l —¢)
V) \A —1—(1—6)‘1% ‘ C‘\\P

m Most of the volume of a sphere is concentrated in a thin shell
near the surface

©Emily Fox 2014 41
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o r¢ at e

Structured Local Regression
" JEE

m As we have seen before, when faced with data scarcity relative
to model complexity, assume structure

m Structured kernels

Place more or less importance on certain dimensions (or combinations
thereof) by modifying the kernel

m Structured regression functions
Just as with splines, decompose the target regression function
E.g., ANOVA decompositions and fit low-dim terms with local regression
———

©Emily Fox 2014 42
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Structured Kernels

m In many scenarios, RBF or spherical kernels are considered
\

m Places equal weight on all dimensions of x

O Typicalmmmmmt variance, _ ~.
0(5,\1%‘4 )

Jistan €
(x — 20)T Az — x0)> me*\'(\c

A A

m More generally, can consider structured kernels m

KA,A(Z'O,.Z‘) =K (

o iptluence
= Choices for A )gCI@“?e’)ﬁ( o N
(

k ¢
O Diagonal > /M crdas onte \q \(,
O Low rank > USQQ\I\ W Q{ﬂe b'€ Coyre

0 General < \)\/\ T Y\: ZTZ
\- U (i 7 ¥

43

any 3.

Projection Pursuit Regression

m To help deal with high-dimensional regression, consider

/ Sdditive mede,
oo, Tgd) =+ %fm(w

T but in
o) o X o W terms
Wyl = 1 for m=1,.., M 4 dert

ot vecr [eqi&s

m Seek w,, so the model fits well

©Emily Fox 2014 44
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PPR Comments

f(a:l,...,:zzd):oz+z (wl x) \
m=1 [\N U (5“
'\

A Ppro-
m If M is arbitrarily large, and for appropriate choice of f,, P Igg{
can approximate any continuous function in RY arbitrarily well

m Interpretation can be hard
m M=1 “single index model” in econometrics > interpretable

m Goal: Seek to minimize over { f,,, w,, } \{\ )

z”; (yl — 'rnz]\i:l @(@%)) 2

©Emily Fox 2014 45

PPR Fitting Algorithm

Direction vectors w,, chosen in a forward-stagewise procedure to
minimize the fractlon of unexplained variance

m Start by standardizing data to 0 mean and scale each covariate to

have the same varlagge ..\
O\
1. Set & = avg(y;) ‘oQ'QW(« S"GV‘ J\Qr(}\\’ﬂ )’\3 do\

. a=avg(y)
2. Initialize €, =y;,t=1,...,m and m=20

Find the direction (unit vector) w* that mﬁs W\a*

@: 1— Z?ﬂ(%; S(A?Txi))z N
i=1%i

4. Set fm(@T:vz) =S

5.

(W™,

Setm=m+1and update the residuals:
f__,\/
€ < € — fm(w Tay)
If m=M, stop.

©Emily Fox 2014 46
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PPR Fitting Algorithm Comments
i M ¢ R

fn.ag) =a+ Y fm(@)

m Algorithm considered is a greedy forward-wise procedure
B —

m After each step, the f’s from the previous steps can be
readjusted using backfitting

m Can lead to fewer terms, but unclear if it improves predictions

m Typically the w,,’s are not readjusted
W

m Choice of M can be based on a threshold in improvement of fit
or using CV T

©Emily Fox 2014 47

Structured Regression Functions
" JEE

m Often, instead of structuring the kernel, it makes sense and is
simpler to structure the regression function itself

m Just as with splines, we can consider ANOVA decompositions

flz1,22,...,2p) = oc—l—ij(azj) +kag(mk,xg) +...
J

k<t

or, more simply, standard GAMs

fz1,22,...,2p) = a+ij(:Uj)
J

m Can use 1d (or low-dim) local regression as the smoother for
each term and fit using backfitting algorithm

©Emily Fox 2014 48
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Kernel Density Estimation
" JEE

m Kernel methods are often used for density estimation
(actually, classical origin)

m Assume random sample X\,-», )(n ~ p A
?

. ) . . N
m Choice #1: empirical estimate? P* Z Sx‘; l ” I[N | |
m Choice #2: as before, maybe we should use an estimator A

N e BRENHOD T g
e "

n
m Choice #3: again, consider kernel weightings instead

4} - l ;
pi) = s ANUED ?agj;f\

©Emily Fox 2014 49

Kernel Density Estimation
" JEE

m Popular choice = Gaussian kernel > Gaussian KDE

A 2 ¢/\
EYANEA

g ('}3 ¥ ¢0 (x)

QW‘?"(:L‘A
pie

Density Estimate

0.0 0.005 0.010 0.015 0.020
3

¥ 1 t t 1 T
120 140 160 180 200 220

3
S L

Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book

©Emily Fox 2014 50
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Multivariate KDE
" JE
= Inld o) = %ZK,\(SCO,%)

m In RY, assuming a product kernel,

n

d
. 1
pwo) = A Z K (o), wij)

i=1 | j=1

m Typical choice = Gaussian RBF

©Emily Fox 2014 51

Multivariate KDE
" JEE
1 n d
plzo) = g Z H K, (oj, i)
m Risk grows as O(n#“+d) o

m Example: To ensure relative MSE < 0.1 at O when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d

©Emily Fox 2014 52
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Multivariate KDE Example

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels

]

pppppp

©Emily Fox 2014 53

Multivariate KDE Example

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels

©Emily Fox 2014 54
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What you need to know
" JE

m As with splines:

Nothing is conceptually hard about multivariate x

In practice, nonparametric methods struggle from curse of
dimensionality

m For multivariate kernel methods, need multivar kernel
Radial basis kernels
Product kernels
Structured kernels, including learning like projection pursuit

m Methods:
Local polynomial regression
Local polynomial regression in structured regression like GAMs
KDE

©Emily Fox 2014 55

Readings
" A
m Wakefield — 12.4-12.6
m Hastie, Tibshirani, Friedman — 6.3-6.4, 11.2
m Wasserman —5.12, 6.5
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