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Curse of Dimensionality 

 To maintain a fixed level of accuracy for a given nonparametric 

estimator, the sample size must increase exponentially in d 

 Set MSE = δ 

 

 Why?  Using data in local nbhd 

 In high dim, few points in any nbhd 

 

 Consider example with n uniformly 

distributed points in [-1,1]d 

 d=1: 

 d=10 

 

 
Figure from Yoshua Bengio’s website 
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Natural Thin Plate Splines 

 Solution: Unique minimizer is the natural thin plate spline with 

knots at the xij 

 Proof: See Green and Silverman (1994) and Duchon (1977) 

 

 Similar properties and intuition as in 1d: 

 As λ0,  

 

 As λ∞, 
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Tensor Product Splines 

 We use this tensor product basis  

 

 

to model f(x) 

 

 

 This formulation extends (in  

theory) to any dimension d 

 Note that as the dimension of  

the basis grows exponentially  

with the input dimension d 

From Hastie, Tibshirani, Friedman book 
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Generalized Additive Models 

 Both for computational reasons and added interpretability, 

models that assume an additive structure are very popular 

 Assuming a GLM framework: 

 

 

 Is this model identifiable?   

 

 

 

 Can model fj(xj) using any smoother  
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GAM Example 

 Consider using a penalized regression spline of order pj with Lj 

knots for each covariate xj 

 

 

 Penalization is applied to the spline coefficients bj 

 

 

 

Comments: 

 The GAM is very interpretable 

 fi(xi) is not influenced by the other fj(xj) 

 Can plot fj to straightforwardly see the relationship between xi and y 

 Will see that this also leads to computational efficiencies 
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Backfitting 

 To begin, assume a standard (non-GLM) regression setting 

 

 For concreteness, consider  

 

 

 Result is an additive cubic spline model with knots at the 

unique values of xij  

 For X full column rank, can show that solution is unique.  Otherwise, linear 

part of fj(xj) is not uniquely determined 

 

 Here, clearly 

 

 How do we think about fitting the other parameters?? 
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Backfitting 

 Backfitting is an iterative fitting procedure 

 

 Since f(x) is additive, if we condition on the fit of all other 

components fj(xj), j ≠ i, then we know how to fit fi(xi) 

 

 

 

 Iterate the estimation procedure until convergence 
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Backfitting Algorithm 

From Hastie, Tibshirani, Friedman book 
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Review of GLMs 

 Mean parameters are a linear combination of inputs, passed 

through a possibly nonlinear function 

 

 Assume a distribution in the exponential family 

 

 

 

 

 

 Using theory of exponential families, 
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Review of GLMs 

 Mean parameters are a linear combination of inputs, passed 

through a possibly nonlinear function 

 

 A parametric GLM assumes  

 

 

 

 With a canonical link function, 

 

 

 The link function is assumed to be invertible 

Examples 

 Linear regression 
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Examples 

 Binomial regression 

 

 

 

ML Estimation 

 Maximize the log-likelihood 

 

 

 

 

 

 

 No closed-form solution, so use iterative methods  

 2nd order methods like IRLS require Hessian 
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ML Estimation 

 IRLS Newton updates: 

 

 

 

 

 

 

Nonparametrics + GLMs 

 Consider a more general form  

 

 

 Can consider many forms for f(x) that we have studied in this 

course, e.g. 

 Smoothing splines 

 Penalized regression splines 

 Local regression (kernel methods) 

 … 
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GAMs and Logistic Regression 

 A generalized additive logistic regression model has the form 

 

 

 

 The functions f1,…, fd can be estimated using a backfitting 

algorithm, too 

 First, recall IRLS algorithm for *parametric* logistic regression 
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GAMs and Logistic Regression 

From Hastie, Tibshirani, Friedman book 
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GAM Logistic Example 

 Example: predicting spam 

 

 Data from UCI repository  

 

 Response variable: email  or  spam 

 57 predictors: 

 48 quantitative – percentage of words in email that match a give word such 

as “business”, “address”, “internet”,… 

 6 quantitative – percentage of characters in the email that match a given 

character ( ; , [ ! $ # ) 

 The average length of uninterrupted capital letters: CAPAVE 

 The length of the longest uninterrupted sequence of capital letters: CAPMAX 

 The sum of the length of uninterrupted sequences of capital letters: CAPTOT 
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GAM Logistic Example 

 Test set of 1536 emails 

 Training set: n=3065 

 

 Use a GAM with a cubic 

smoothing spline  

 Each with 4 dof 

 

 Estimated functions 

for significant predictors 

 Note large discontinuity 

near 0 for many 

 

 Test error of 6.6% 

From Hastie, Tibshirani, Friedman book 
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Other GAM formulations 

 Semiparametric models: 

 

 

 

 ANOVA decompositions: 

 

 

 

Choice of: 

 Maximum order of interaction 

 Which terms to include 

 What representation 

 

 Tradeoff between full model and decomposed model 
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Connection with Thin Plate Splines 

 Recall formulation that lead to natural thin plate splines:  

 

 

 

 

 

 There exists a J(f) such that the solution has the form 

 

 

 However, it is more natural to just assume this form and apply 
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What you need to know 

 Nothing is conceptually hard about multivariate x 

 

 In practice, nonparametric methods struggle from curse of 

dimensionality 

 

 Options considered: 

 Thin plate splines 

 Tensor product splines 

 Generalized additive models 

 Combinations (to model some interaction terms) 
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Readings 

 Wakefield – 12.1-12.3 

 Hastie, Tibshirani, Friedman – 5.7, 9.1 

 Wasserman – 4.5, 5.12 
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Nadaraya-Watson Estimator 
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 Example: 

 Boxcar kernel   

 Epanechnikov 

 Gaussian 

 

 Often, choice of kernel matters much less than choice of λ 

 

 

From Hastie, 

Tibshirani, 

Friedman 

book 
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Local Linear Regression 
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 Locally weighted averages can be badly biased at the 
boundaries because of asymmetries in the kernel 

 

 Reinterpretation: 

 

 

 

 

 

 
 

 

 

 Equivalent to the Nadaraya-Watson estimator 

 Locally constant estimator obtained from weighted least squares 
 

 

From Hastie, Tibshirani, Friedman book 

Local Linear Regression 
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 Consider locally weighted linear regression instead 

 Local linear model around fixed target x0 :  

 

 

 Minimize: 

 

 

 

 Return: 

 

 

 Fit a new local polynomial for every target x0  

 

 

 



15 

Local Polynomial Regression 
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 Consider local polynomial of degree d centered about x0 

 

 

 

 Minimize: 

 

 Equivalently: 

 

 

 

 Return: 

 Bias only has components of degree d+1 and higher 

 

 

Local Polynomial Regression 
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 Rules of thumb: 

 Local linear fit helps at boundaries with minimum increase in variance 

 Local quadratic fit doesn’t help at boundaries and increases variance 

 Local quadratic fit helps most for capturing curvature in the interior 

 Asymptotic analysis  

local polynomials of odd degree dominate those of even degree 

(MSE dominated by boundary effects) 

 

 Recommended default choice: local linear regression 
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Local Polynomial Regression 
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 Kernel smoothing and local regression extend straightforwardly 
to the multivariate x scenario 

 

 
 

 Need d-dimensional kernel 

 

 

 Nadaraya-Watson kernel smoother fits locally constant model 

 Local linear regression fits local hyperplane via weighted LS 

 … 

 

 Challenges: 

 Defining kernel 

 Curse of dimensionality 

 

Example Univariate Kernels 
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 Gaussian 

 

 Epanechnikov 

 

 Tricube 

 

 Boxcar 

From Hastie, Tibshirani, Friedman book 
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Multivariate Kernels 
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 Many choices, even more than in 1d 

 

 Examples: 

 Radial basis kernels 

 

 

 

 

E.g., radial Epanechnikov, tricube, squared exponential (Gaussian) 

 

 

 

Multivariate Kernels 
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 Many choices, even more than in 1d 

 

 Examples: 

 Product kernels 

 

 

 

 

 Choices: 

 Form 

 Kernel(s) 

 Bandwidth(s) 
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Motivating Local Linear Regression 
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 Nadaraya-Watson smoothing can be applied to multivariate x 

 However, boundary issues are even worse in higher dimensions 

 Messy to correct for boundary even in 2d (esp. for irregular boundaries) 

 Fraction of points close to the boundary increases with dimension 

 

 Local polynomial regression corrects boundary errors up to 

desired order  

From Hastie, 

Tibshirani, 

Friedman 

book 

Local Linear Regression 
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 Assume a RBF kernel  
 

 For each target location x0, goal is to minimize 
 

 

 

 Equivalently, 

 

 

 

 

 

 

 Solution: 

 Return: 
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Local Linear Example 
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 Astronomical study 

 Response = velocity measurements on a galaxy 

 Predictors = two positions 

 Note the unusual star-shaped design  very irregular boundary 

 Must interpolate over regions with very few observations near boundary 

From Hastie, Tibshirani, Friedman book 

Motivating Local Polynomial 
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 One way to think about motivating local polynomials is as follow 

 Consider 2d example for simplicity 

 For a suitably smooth function f(x) = f(x1,x2), we can approximate 

it for values x=[x1,x2] in a nbhd of x0=[x01,x02] as 

 

 

 

 

 Suggests the use of a local polynomial: 

 

 

 

 Then,  
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Scaling to High Dimensions 
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 Local regression becomes less useful in dimensions greater 

than 2 or 3 

 Impossible to maintain localness (low bias) and large sample size (low 

variance) without the total sample size increasing exponentially in d 

 

 Again, curse of dimensionality 

 Sparsity of data 

 Points concentrate at boundaries 

 

 Visualization of the fitted function is also hard in high 

dimensions, and visualization is often a key goal in smoothing 

 

Boundary Effects 
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 Everything is far away in high dimensions 

 

 Consider n data points uniformly distributed in a d-dimensional 

unit ball 

 

 Example task: Consider nearest neighbor estimate at origin 

 

 Median distance to closest data point is 

 For n=500 and d=10, distance ≈ 0.52 

 Closest point is likely more than ½ way to the boundary 

 

 

 Prediction is harder near the edges of the sample boundary 
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Boundary Effects II 
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 Another way to think of this effect is in terms of volume 

 

 We want to compute the fraction of volume that lies between 

radius R = 1 − ε and R = 1  

 

 The volume of a sphere is proportional to 

 

 The volume fraction is therefore:  

 

 

 

 Most of the volume of a sphere is concentrated in a thin shell 

near the surface  

Structured Local Regression 
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 As we have seen before, when faced with data scarcity relative 

to model complexity, assume structure 

 

 Structured kernels 

 Place more or less importance on certain dimensions (or combinations 

thereof) by modifying the kernel 

 

 Structured regression functions 

 Just as with splines, decompose the target regression function 

 E.g., ANOVA decompositions and fit low-dim terms with local regression 
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Structured Kernels 
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 In many scenarios, RBF or spherical kernels are considered 

 

 Places equal weight on all dimensions of x 

 Typically, standardize data so all dimensions have unit variance 
 

 More generally, can consider structured kernels 

 

 

 

 

 Choices for A 

 Diagonal   

 Low rank  

 General 

Projection Pursuit Regression 
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 To help deal with high-dimensional regression, consider 

 

 

 

 

 

 ||wm|| = 1 for m=1,…, M 

 Seek wm so the model fits well 
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PPR Comments 
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 If M is arbitrarily large, and for appropriate choice of fm, PPR 

can approximate any continuous function in Rd arbitrarily well 
 

 Interpretation can be hard 
 

 M=1 “single index model” in econometrics  interpretable 
 

 Goal: Seek to minimize over { fm, wm } 

 

PPR Fitting Algorithm 
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 Direction vectors wm chosen in a forward-stagewise procedure to 

minimize the fraction of unexplained variance 

 Start by standardizing data to 0 mean and scale each covariate to 

have the same variance 

 

 

 

1. Set 

2. Initialize  

3. Find the direction (unit vector) w* that minimizes 

 

 

 

4. Set 

5. Set m = m + 1 and update the residuals: 

 

      If m=M, stop.   
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PPR Fitting Algorithm Comments 
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 Algorithm considered is a greedy forward-wise procedure 
 

 After each step, the fm’s from the previous steps can be 

readjusted using backfitting 
 

 Can lead to fewer terms, but unclear if it improves predictions 
 

 Typically the wm’s are not readjusted 
 

 Choice of M can be based on a threshold in improvement of fit 

or using CV 

 

 

 

Structured Regression Functions 
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 Often, instead of structuring the kernel, it makes sense and is 

simpler to structure the regression function itself 

 

 Just as with splines, we can consider ANOVA decompositions 

 

 

 

 

or, more simply, standard GAMs 

 

 

 

 Can use 1d (or low-dim) local regression as the smoother for 

each term and fit using backfitting algorithm 
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Kernel Density Estimation 
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 Kernel methods are often used for density estimation 

(actually, classical origin) 

 

 Assume random sample 

 

 Choice #1: empirical estimate? 

 

 Choice #2: as before, maybe we should use an estimator 

 

 

 Choice #3: again, consider kernel weightings instead 

 

 

Kernel Density Estimation 
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 Popular choice = Gaussian kernel   Gaussian KDE 

 

 

 

 

 

 

 

 

 

 

 

From Hastie, Tibshirani, Friedman book 
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Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 

 

 

 

 

Multivariate KDE 
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 Risk grows as O(n-4/(4+d)) 

 Example: To ensure relative MSE < 0.1 at 0 when the density is 
a multivariate norm and optimal bandwidth is chosen 

 

 

 

 

 

 

 

 Always report confidence bands, which get wide with d 
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Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 

 

 

 

Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Figure 83: Two-dimensional est imate for the aircraft data.
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Classifi cat ion and R egr ession Tr ees

If the aim is classificat ion the only changes in the algorithm

concern the criteria for split t ing nodes and pruning the t ree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj (T), defined in (112), within

(113), but this is not suitable for classificat ion.

For a node j , j = 1, ..., J , represent ing a region Rj with nj

observat ions est imate the node specific probabilit ies as

pj k =
1

nj
i :x i ∈R j

I (yi = k)

for k = 0, 1, ..., K − 1. This is simply the proport ion of class k

observat ions in node j . Any observat ions that fall into node j are

classified to class

k(j ) = arg maxk pj k ,

the majority class in node j .

452
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What you need to know 

 As with splines: 

 Nothing is conceptually hard about multivariate x 

 In practice, nonparametric methods struggle from curse of 

dimensionality 

 

 For multivariate kernel methods, need multivar kernel 

 Radial basis kernels 

 Product kernels 

 Structured kernels, including learning like projection pursuit 

 

 Methods: 

 Local polynomial regression 

 Local polynomial regression in structured regression like GAMs 

 KDE  
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Readings 

 Wakefield – 12.4-12.6 

 Hastie, Tibshirani, Friedman – 6.3-6.4, 11.2 

 Wasserman – 5.12, 6.5 
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