Module 4: Coping with Multiple Predictors

Multidimensional Splines (Continued...)

STAT/BIOSTAT 527, University of Washington
Emily Fox

May 8 ${ }^{\text {th }}, 2014$

Curse of Dimensionality

- To maintain a fixed level of accuracy for a given nonparametric estimator, the sample size must increase exponentially in d
- Set MSE $=\delta$

- Why? Using data in local nbhd
\square In high dim, few points in any nbhd
- Consider example with n uniformly distributed points in $[-1,1]^{\text {d }}$
$\square d=1$: in $[>0.1,0.1] \sim n \times\left(\frac{1}{10}\right)$
$\square \mathrm{d}=10$
in $[-0.1,0.1]$
$\sim n \times\left(\frac{1}{10}\right)^{10}$
$=1 \quad 000,0 p 0,0 / 9$ gigure from Yoshua Bengio's website

Natural Thin Plate Splines

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \quad \text { bending } \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- Solution: Unique minimizer is the natural thin plate spline with knots at the $x_{i j}$
- Proof: See Green and Silverman (1994) and Duchon (1977)
- Similar properties and intuition as in 1d:
\square As $\lambda \rightarrow 0$, Sol'n approaches an interpolator
\square As $\lambda \rightarrow \infty, L S$ plane (no $2^{\text {nd }}$ derivative)

Tensor Product Splines

- We use this tensor product basis

$$
g_{j k}(x)=h_{1 j}\left(x_{1}\right) h_{2 k}\left(x_{2}\right)
$$

to model $f(x)$

$$
f(x)=\sum_{j=1}^{\operatorname{del}_{1} f(x)} \sum_{k=1}^{\mu_{2}} \theta_{j k} g_{i k}(x)
$$

- This formulation extends (in theory) to any dimension d
- Note that as the dimension of the basis grows exponentially with the input dimension d

Generalized Additive Models

- Both for computational reasons and added interpretability, models that assume an additive structure are very popular
- Assuming a GLM framework: $L M: y=\alpha+f_{1}\left(x_{1}\right)$

$$
\begin{array}{lr}
g(\mu(x))=\alpha+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right) & +f_{2}\left(x_{2}\right)+\ldots \\
\text { s this model identifiable? } & +f_{d}(x d)
\end{array}
$$

- Is this model identifiable?

$$
\text { to compensate } \rightarrow \text { can shift } \alpha \text { and shift }
$$

- Can model f $f\left(x_{j}\right)$ using any smoother

$$
\text { many choices! spline, kernel } \text { methodise.) }
$$

$$
(\text { module } 2)
$$

GAM Example

- Consider using a penalized regression spline of order p_{j} with L_{j} knots for each covariate x_{j}

- Penalization is applied to the spline coefficients b_{j}

$$
\sum_{j=1}^{d} \lambda_{j} \sum_{\ell=1}^{L_{j}} b_{j \ell}^{2}
$$

Comments:

- The GAM is very interpretable
$\square f_{i}\left(x_{i}\right)$ is not influenced by the other $f_{j}\left(x_{j}\right)$
\square Can plot f_{j} to straightforwardly see the relationship between x_{i} and y
- Will see that this also leads to computational efficiencies

Backfitting

- To begin, assume a standard (non-GLM) regression setting

$$
y=f(x)+\varepsilon
$$

- For concreteness, consider

$$
\begin{gathered}
y=f(x)+\varepsilon \\
\min \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j=1}^{d} f_{j}\left(x_{i j}\right)\right)^{2}+\sum_{j=1}^{d} \lambda_{j}\left(f_{j}^{\prime \prime}\left(t_{j}\right)^{2} d t_{j}\right.
\end{gathered}
$$

- Result is an additive cubic spline model with knots at the unique values of $x_{i j}$
\square For X full column rank, can show that solution is unique. Otherwise, linear part of $f_{j}\left(x_{j}\right)$ is not uniquely determined
- Here, clearly $\hat{\alpha}=\bar{Y} \quad\left(\sum_{i} f_{j}\left(x_{i j}\right)=0\right)$

■ How do we think about fitting the other parameters??

Backfitting

- Backfitting is an iterative fitting procedure
- Since $f(x)$ is additive, if we condition on the fit of all other components $f_{j}\left(x_{j}\right), j \neq i$, then we know how to fit $f_{i}\left(x_{i}\right)$
- Iterate the estimation procedure until convergence

Backfitting Algorithm

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: $\hat{\alpha}=\frac{1}{N} \sum_{1}^{N} y_{i}, \hat{f}_{j} \equiv 0, \forall i, j$.
2. Cycle: $j=1,2, \ldots, p, \ldots, 1,2, \ldots, p, \ldots$,

$$
\begin{aligned}
& \hat{f}_{j} \leftarrow \mathcal{S}_{j}\left[\left\{y_{i}-\hat{\alpha}-\sum_{k \neq j} \hat{f}_{k}\left(x_{i k}\right)\right\}_{1}^{N}\right] \\
& \hat{f}_{j} \leftarrow \hat{f}_{j}-\frac{1}{N} \sum_{i=1}^{N} \hat{f}_{j}\left(x_{i j}\right)
\end{aligned}
$$

until the functions \hat{f}_{j} change less than a prespecified threshold.

From Haste, Tibshirani, Friedman book

Review of GLMs

- Mean parameters are a linear combination of inputs, passed through a possibly nonlinear function

$$
\begin{aligned}
& \text { - Assume a distribution in the exponential family Focus on } \\
& \begin{array}{l}
\swarrow^{\text {natural para log-partition Focus on }} \text { canonical } \\
\text { can }
\end{array}
\end{aligned}
$$

\square Using theory of exponential families,

$$
\begin{aligned}
\mu(x)=E[Y \mid x] & =b^{\prime}(\theta(x)) \\
\operatorname{var}(Y \mid x) & =\sigma^{2} b^{\prime \prime}(\theta(x)) \stackrel{\Delta}{=} \sigma^{2} V_{x}
\end{aligned}
$$

- Mean parameters are a linear combination of inputs, passed through a possibly nonlinear function
- A parametric GLM assumes

$$
\begin{aligned}
& q(\mu(x))=\beta^{T} x \\
& \text { "link fen" }
\end{aligned}
$$

\square With a canonical link function,

$$
\theta(x)=g(\mu(x))
$$

The link function is assumed to be invertible

$$
\mu(x)=g^{-1}(\theta(x))
$$

Examples
 $$
p(y \mid x)=\exp \left[\frac{y \theta(x)-b(\theta(x))}{\sigma^{2}}+c\left(y, \sigma^{2}\right)\right]
$$

- Linear regression

$$
\begin{aligned}
& \begin{array}{l}
\text { Linear regression } \\
\log p\left(y_{i} \mid x_{i}, \beta, \sigma^{2}\right)=\frac{y_{i} \tilde{\mu}_{i}-\frac{\tilde{\mu}_{i}^{2}}{2}}{\sigma^{2}}-\frac{1}{2}\left(\frac{y_{i}^{2}}{\sigma^{2}}+\log \left(2 \pi \sigma^{2}\right)\right)
\end{array} \\
& \theta_{i}=\tilde{\mu}_{i}=\beta^{\top} x_{i} \\
& C\left(y_{i} \sigma^{2}\right) \\
& b\left(\theta_{0}\right)=\frac{\theta(x)}{2} \\
& M(x)=b^{\prime}(\theta(x))=\forall(x)=\tilde{M}(x) \\
& b^{\prime \prime}(\theta)=1 \Rightarrow \operatorname{var}\left(y_{i}\right)=\sigma^{2} b^{\prime \prime}(\theta)=\sigma^{2} \\
& \Rightarrow g(\cdot I() \\
& g(t)=t \underset{\substack{\mid \text { dentist } \\
\text { link } \\
\text { font }}}{\substack{\text { and }}}
\end{aligned}
$$

Examples
 $$
p(y \mid x)=\exp \left[\frac{y \theta(x)-b(\theta(x))}{\sigma^{2}}+c\left(y, \sigma^{2}\right)\right]
$$

- Binomial regression

$$
\begin{aligned}
& \log p\left(y_{i} \mid x_{i}, \beta, \sigma^{2}\right)=y_{i} \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)+m \log \left(1-\pi_{i}\right)+\log \binom{m}{y_{i}} \\
& N \delta^{2}=1 \\
& \theta(x)=\log \frac{\pi(x)}{1-\pi(x)} \\
& b(\theta(x))=m \log \left(1+e^{\theta(x)}\right) \quad: \quad i \quad \log _{\frac{\frac{\mu(x)}{m}}{1-\frac{\mu(x)}{m}} \text { d }}^{1} \\
& M(x)=b^{\prime}(\theta(x))=\frac{m}{1+e^{\theta(x)}} e^{\theta(x)}=m \pi(x)^{1}, \quad=\log \frac{M(x)}{m-M(x)} \\
& \operatorname{var}(y)=b^{\prime \prime}(\theta(x))=m \pi(x)(1-\pi(x)) \\
& g(t)=\log \frac{t}{m-t}
\end{aligned}
$$

ML EStimation $p(y \mid x)=\exp \left[\frac{y \theta(x)-b(\theta(x))}{\sigma^{2}}+c\left(y, \sigma^{2}\right)\right]$

- Maximize the log-likelihood

$$
\theta_{i}=\beta^{\top} x_{i}
$$

$$
\begin{aligned}
& \log p\left(y_{1}, \ldots, y_{n} \mid \beta\right)=\sum_{i=1}^{n} \frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{\sigma^{2}}+\text { const } \\
& \frac{d \ell_{i}}{d \beta_{j}}=\frac{d \ell_{i}}{d \theta_{i}} \frac{d \theta_{i}}{d \beta_{j}}=\sum_{i=1}^{n} \frac{y_{i}-b^{\prime}\left(\theta_{n}\right)}{\sigma^{2}} \frac{d \theta_{i}}{d B_{j}} x_{i j}=0
\end{aligned}
$$

- No closed-form solution, so use iterative methods
$\square 2^{\text {nd }}$ order methods like IRLS require Hessian

$$
H=-\frac{1}{\sigma^{2}} X^{T} S X \quad S=\operatorname{diag}\left(\frac{d \mu_{1}}{d \theta_{1}}, \ldots, \frac{d \mu_{n}}{d \theta_{n}}\right)
$$

ML Estimation $\quad p(y \mid x)=\exp \left[\frac{[p(x)-b(x)]}{\sigma^{2}}+c\left(y, \sigma^{2}\right]\right]$

- IRLS Newton updates: iteratively re weighted LS

$$
\begin{aligned}
& \beta_{t+1}=\left(X^{T} S_{t} X\right)^{-1} X^{T} S_{t} z_{t} \\
& z_{t}=\theta_{t}+S_{t}^{-1}\left(y-\mu_{t}\right) \\
& \theta_{t}=X \beta_{t} \quad \mu_{t}=g^{-1}\left(X \beta_{t}\right)
\end{aligned}
$$

Nonparametrics + GLMs

$$
p(y \mid x)=\exp \left[\frac{y \theta(x)-b(\theta(x))}{\sigma^{2}}+c\left(y, \sigma^{2}\right)\right]
$$

- Consider a more general form

$$
\begin{array}{rlr}
g(\mu(x)) & =f(x) \quad \theta(x)=g(\mu(x)) \\
\text { prev. } & =\beta^{\top} X &
\end{array}
$$

- Can consider many forms for $f(x)$ that we have studied in this course, e.g.
\square Smoothing splines
\square Penalized regression splines
Local regression (kernel methods)

GAMs and Logistic Regression

- A generalized additive logistic regression model has the form
- The functions f_{1}, \ldots, f_{d} can be estimated using a backfitting algorithm, too
- First, recall IRLS algorithm for *parametric* logistic regression

$$
z=X \beta^{\mathrm{old}}+W^{-1}(y-p)
$$

$$
\beta^{\text {new }} \leftarrow \arg \min _{\beta}(z-X \beta)^{T} W(z-X \beta)
$$

GAMs and Logistic Regression

```
Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.
    1. Compute starting values: \hat{\alpha}=\operatorname{log}[\overline{y}/(1-\overline{y})]\mathrm{ , where }\overline{y}=\mathrm{ ave (}\mp@subsup{y}{i}{})\mathrm{ , the}\
        sample proportion of ones, and set }\mp@subsup{\hat{f}}{j}{}\equiv0\forallj\mathrm{ .
    2. Define }\mp@subsup{\hat{\eta}}{i}{}=\hat{\alpha}+\mp@subsup{\sum}{j}{}\mp@subsup{\hat{f}}{j}{}(\mp@subsup{x}{ij}{})\mathrm{ and }\mp@subsup{\hat{p}}{i}{}=1/[1+\operatorname{exp}(-\mp@subsup{\hat{\eta}}{i}{})]\mathrm{ .
        Iterate:
(a) Construct the working target variable
\[
z_{i}=\hat{\eta}_{i}+\frac{\left(y_{i}-\hat{p}_{i}\right)}{\hat{p}_{i}\left(1-\hat{p}_{i}\right)} .
\]
(b) Construct weights \(w_{i}=\hat{p}_{i}\left(1-\hat{p}_{i}\right)\)
(c) Fit an additive model to the targets \(z_{i}\) with weights \(w_{i}\), using a weighted backfitting algorithm. This gives new estimates \(\hat{\alpha}, \hat{f}_{j}, \forall j\)
3. Continue step 2. until the change in the functions falls below a prespecified threshold.
```


GAM Logistic Example

- Example: predicting spam
- Data from UCI repository
- Response variable: email or spam
- 57 predictors:
$\square 48$ quantitative - percentage of words in email that match a give word such as "business", "address", "internet",...
$\square 6$ quantitative - percentage of characters in the email that match a given character (; , [!\$ \#)
\square The average length of uninterrupted capital letters: CAPAVE
\square The length of the longest uninterrupted sequence of capital letters: CAPMAX
\square The sum of the length of uninterrupted sequences of capital letters: CAPTOT

GAM Logistic Example

- Test set of 1536 emails
- Training set: $\mathrm{n}=3065$

- Use a GAM with a cubic smoothing spline
\square Each with 4 dof
 ${ }^{\text {hpl }}$
- Estimated functions for significant predictors
\square Note large discontinuity near 0 for many
- Test error of 6.6\%

From Hastie, Tibshirani, Friedman book

Other GAM formulations

- Semiparametric models:

$$
g(\mu)=
$$

- ANOVA decompositions:
$f(x)=$
Choice of:
\square Maximum order of interaction
\square Which terms to include
\square What representation
- Tradeoff between full model and decomposed model

Connection with Thin Plate Splines

- Recall formulation that lead to natural thin plate splines:

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- There exists a $J(f)$ such that the solution has the form
- However, it is more natural to just assume this form and apply

$$
J(f)=J\left(f_{1}+f_{2}+\cdots+f_{d}\right)=\sum_{\substack{\text { ©Emily Fox 2014 }}}^{d} \int f_{j}^{\prime \prime}\left(t_{j}\right)^{2} d t_{j}
$$

What you need to know

- Nothing is conceptually hard about multivariate x
- In practice, nonparametric methods struggle from curse of dimensionality
- Options considered:
\square Thin plate splines
\square Tensor product splines
\square Generalized additive models
\square Combinations (to model some interaction terms)

Readings

- Wakefield - 12.1-12.3
- Hastie, Tibshirani, Friedman - 5.7, 9.1
- Wasserman - 4.5, 5.12

Module 4: Coping with Multiple Predictors

Multidimensional Kernel Methods

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 8 ${ }^{\text {th }}, 2014$

Nadaraya-Watson Estimator

- Example:

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}
$$

\square Boxcar kernel \rightarrow local avgs
\square Epanechnikov
\square Gaussian typical

- Often, choice of kernel matters much less than choice of λ

Local Linear Regression

- Locally weighted averages can be badly biased at the boundaries because of asymmetries in the kernel
- Reinterpretation:

$$
\begin{aligned}
\hat{f} & =\arg _{a} \min ^{\sum} \sum\left(y_{i}-a\right)^{2} \\
& \rightarrow \hat{f}=\bar{Y} \\
\hat{f}(x) & =\underset{a}{\arg } \min _{a} \sum w_{i}(x)\left(y_{i}-a\right)^{2} \\
& \Rightarrow \hat{f}(x)=\frac{\sum w_{i}(x) y_{i}}{\sum w_{i}(x)}
\end{aligned}
$$

- Equivalent to the Nadaraya-Watson estimator
- Locally constant estimator obtained from weighted least squares

Local Linear Regression

- Consider locally weighted linear regression instead
- Local linear model around fixed target x_{0} :

$$
\beta_{0 x_{0}}+\beta_{1 x_{0}}\left(x-x_{0}\right)
$$

- Minimize:

$$
\min _{\underline{\beta}_{x_{0}}} \sum_{i} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-\beta_{0 x_{0}}-\beta_{1 x_{0}}\left(x_{i}-x_{0}\right)\right)^{2}
$$

- Return:

$$
\hat{f}\left(x_{0}\right)=\hat{\beta}_{0 x_{0}} \longleftarrow \text { fit at } x_{0}
$$

Note: not equivalent to fitting a local constant!

- Fit a new local polynomial for every target x_{0}

Local Polynomial Regression

- Consider local polynomial of degree d centered about x_{0}
$P_{x_{0}}\left(x ; \beta_{x_{0}}\right)=\beta_{0 x_{0}}+\beta_{1 x_{0}}\left(x-x_{0}\right)+\frac{\beta_{2 x_{0}}}{2_{j}^{\prime}}\left(x-x_{0}\right)^{2}+\cdots$
$+\beta d x_{0}\left(x-x_{0}\right)^{2!} d$
- Minimize: $\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(\begin{array}{l}\frac{d!}{d!} \\ y_{i}\end{array}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}$
- Equivalently:

- Return: $\hat{f}\left(x_{0}\right)=\hat{\beta}_{0} x_{0} \quad\left[\begin{array}{l}\text { - } \\ \text { - } x_{n}-x_{0} \cdots \frac{\left(x_{n}-x_{0}\right)}{d!} \\ \text { - }\end{array}\right.$

Local Polynomial Regression

- Rules of thumb:
\square Local linear fit helps at boundaries with minimum increase in variance
\square Local quadratic fit doesn't help at boundaries and increases variance
\square Local quadratic fit helps most for capturing curvature in the interior
\square Asymptotic analysis \rightarrow
local polynomials of odd degree dominate those of even degree (MSE dominated by boundary effects)
\square Recommended default choice: local linear regression

Local Polynomial Regression

- Kernel smoothing and local regression extend straightforwardly to the multivariate x scenario

$$
\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}
$$Need d-dimensional kernelNadaraya-Watson kernel smoother fits locally constant modelLocal linear regression fits local hyperplane via weighted LS...

- Challenges:
\square Defining kernelCurse of dimensionality

Example Univariate Kernels

- Gaussian
$K(x)=\frac{1}{2 \pi} e^{-\frac{x}{2}}$
- Epanechnikov

$$
K(x)=\frac{3}{4}(1-x)^{2} I(x)
$$

- Tricube

$$
K(x)=\frac{70}{81}\left(1-|x|^{3}\right)^{3} I(x)
$$

- Boxcar

$$
K(x)=\frac{1}{2} I(x)
$$

Multivariate Kernels

- Many choices, even more than in 1d
- Examples:

Radial basis kernels
$K_{\lambda}\left(x_{0}, x\right)=$
E.g., radial Epanechnikov, tricube, squared exponential (Gaussian)

Multivariate Kernels

- Many choices, even more than in 1d
- Examples:
\square Product kernels
$K_{\lambda_{1}, \lambda_{2}}\left(x_{0}, x\right)=$
- Choices:
\square FormKernel(s)Bandwidth(s)

Motivating Local Linear Regression

- Nadaraya-Watson smoothing can be applied to multivariate x
- However, boundary issues are even worse in higher dimensions
\square Messy to correct for boundary even in 2d (esp. for irregular boundaries)
\square Fraction of points close to the boundary increases with dimension
- Local polynomial regression corrects boundary errors up to desired order

East-West

From Hastie,
Tibshirani,
Friedman book

Local Linear Regression

- Assume a RBF kernel
- For each target location x_{0}, goal is to minimize
$\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-\beta_{0 x_{0}}-\sum_{j=1}^{d} \beta_{j x_{0}}\left(x_{i j}-x_{0 j}\right)\right)^{2}$
- Equivalently,
- Solution: $\hat{\beta}_{x_{0}}=\left(X_{x_{0}}^{T} W_{x_{0}} X_{x_{0}}\right)^{-1} X_{x_{0}}^{T} W_{x_{0}} y$
- Return:

Local Linear Example

- Astronomical study
\square Response = velocity measurements on a galaxy
\square Predictors = two positions
- Note the unusual star-shaped design \rightarrow very irregular boundary
\square Must interpolate over regions with very few observations near boundary

East-West

East-West

Motivating Local Polynomial

- One way to think about motivating local polynomials is as follow
- Consider 2d example for simplicity
- For a suitably smooth function $f(x)=f\left(x_{1}, x_{2}\right)$, we can approximate it for values $x=\left[x_{1}, x_{2}\right]$ in a nbhd of $x_{0}=\left[x_{01}, x_{02}\right]$ as
$f(x) \approx f\left(x_{0}\right)+\left(x_{1}-x_{01}\right) \frac{\partial f}{\partial x_{01}}+\left(x_{2}-x_{02}\right) \frac{\partial f}{\partial x_{02}}$ $+\left(x_{1}-x_{01}\right)^{2} \frac{1}{2} \frac{\partial^{2} f}{\partial x_{01}^{2}}+\left(x_{1}-x_{01}\right)\left(x_{2}-x_{02}\right) \frac{1}{2} \frac{\partial^{2} f}{\partial x_{01} \partial x_{02}}+\left(x_{2}-x_{02}\right)^{2} \frac{1}{2} \frac{\partial^{2} f}{\partial x_{02}^{2}}$
- Suggests the use of a local polynomial:
- Then, $\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}$

Scaling to High Dimensions

- Local regression becomes less useful in dimensions greater than 2 or 3
\square Impossible to maintain localness (low bias) and large sample size (low variance) without the total sample size increasing exponentially in d
- Again, curse of dimensionality
\square Sparsity of data
\square Points concentrate at boundaries
- Visualization of the fitted function is also hard in high dimensions, and visualization is often a key goal in smoothing

Boundary Effects

- Everything is far away in high dimensions
- Consider n data points uniformly distributed in a d-dimensional unit ball
- Example task: Consider nearest neighbor estimate at origin
- Median distance to closest data point is $\left(1-\frac{1}{2}^{1 / n}\right)^{d}$
\square For $n=500$ and $d=10$, distance ≈ 0.52
\square Closest point is likely more than $1 / 2$ way to the boundary
- Prediction is harder near the edges of the sample boundary

Boundary Effects II

- Another way to think of this effect is in terms of volume
- We want to compute the fraction of volume that lies between radius $R=1-\varepsilon$ and $R=1$
- The volume of a sphere is proportional to
- The volume fraction is therefore:
$\frac{V_{d}(1)-V_{d}(1-\epsilon)}{V_{d}(1)}=1-(1-\epsilon)^{d}$
- Most of the volume of a sphere is concentrated in a thin shell near the surface

Structured Local Regression

- As we have seen before, when faced with data scarcity relative to model complexity, assume structure
- Structured kernels
\square Place more or less importance on certain dimensions (or combinations thereof) by modifying the kernel
- Structured regression functions
\square Just as with splines, decompose the target regression functionE.g., ANOVA decompositions and fit low-dim terms with local regression

Structured Kernels

- In many scenarios, RBF or spherical kernels are considered
- Places equal weight on all dimensions of x
\square Typically, standardize data so all dimensions have unit variance
- More generally, can consider structured kernels

$$
K_{\lambda, A}\left(x_{0}, x\right)=K\left(\frac{\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)}{\lambda}\right)
$$

- Choices for A
\square Diagonal \rightarrowLow rank \rightarrowGeneral

Projection Pursuit Regression

- To help deal with high-dimensional regression, consider

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

$\square\left\|w_{m}\right\|=1$ for $m=1, \ldots, M$

- Seek w_{m} so the model fits well

PPR Comments

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

- If M is arbitrarily large, and for appropriate choice of f_{m}, PPR can approximate any continuous function in R^{d} arbitrarily well
- Interpretation can be hard
- $M=1$ "single index model" in econometrics \rightarrow interpretable
- Goal: Seek to minimize over $\left\{f_{m}, w_{m}\right\}$

$$
\sum_{i=1}^{n}\left(y_{i}-\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x_{i}\right)\right)^{2}
$$

PPR Fitting Algorithm

- Direction vectors w_{m} chosen in a forward-stagewise procedure to minimize the fraction of unexplained variance
- Start by standardizing data to 0 mean and scale each covariate to have the same variance

1. Set $\hat{\alpha}=\operatorname{avg}\left(y_{i}\right)$
2. Initialize $\hat{\epsilon}_{i}=y_{i}, i=1, \ldots, n$ and $m=0$
3. Find the direction (unit vector) w^{*} that minimizes

$$
I(w)=1-\frac{\sum_{i=1}^{n}\left(\hat{\epsilon}_{i}-S\left(w^{T} x_{i}\right)\right)^{2}}{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}
$$

4. Set $\hat{f}_{m}\left(w^{* T} x_{i}\right)=S\left(w^{* T} x_{i}\right)$
5. Set $m=m+1$ and update the residuals:

$$
\hat{\epsilon}_{i} \leftarrow \hat{\epsilon}_{i}-\hat{f}_{m}\left(w^{* T} x_{i}\right)
$$

If $m=M$, stop.

PPR Fitting Algorithm Comments

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

- Algorithm considered is a greedy forward-wise procedure
- After each step, the f_{m} 's from the previous steps can be readjusted using backfitting
- Can lead to fewer terms, but unclear if it improves predictions
- Typically the w_{m} 's are not readjusted
- Choice of M can be based on a threshold in improvement of fit or using CV

Structured Regression Functions

- Often, instead of structuring the kernel, it makes sense and is simpler to structure the regression function itself
- Just as with splines, we can consider ANOVA decompositions $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)+\sum_{k<\ell} f_{k \ell}\left(x_{k}, x_{\ell}\right)+\ldots$ or, more simply, standard GAMs

$$
f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)
$$

- Can use 1d (or low-dim) local regression as the smoother for each term and fit using backfitting algorithm

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample $X_{1}, \ldots, x_{n} \stackrel{\text { id }}{\sim} P$
- Choice \#1: empirical estimate? $\hat{p}=\frac{1}{n} \sum \delta_{x_{i}}$

- Choice \#2: as before, maybe we should use an estimator

$$
\hat{P}\left(x_{0}\right)=\frac{\# x_{i} \in N \text { bond }\left(x_{0}\right)}{n \lambda \longleftarrow} \text { width of } n \text { hd }
$$

- Choice \#3: again, consider kernel weightings instead

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum K_{\lambda}\left(x_{0}, x_{i}\right) \quad \begin{gathered}
\text { parzen } \\
\text { est. }
\end{gathered}
$$

Kernel Density Estimation

- Popular choice $=$ Gaussian kernel \rightarrow Gaussian KDE

$$
\begin{aligned}
& \hat{p}=\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(x-x_{i}\right) \\
&=\left(\hat{p}_{\hat{p}} * \phi_{\lambda}\right)(x) \\
& \text { empirical } \\
& \text { dist. }
\end{aligned}
$$

From Hastie, Tibshirani, Friedman book

Multivariate KDE

- In 1d $\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)$
- In R^{d}, assuming a product kernel,

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Typical choice = Gaussian RBF

Multivariate KDE

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Risk grows as $O\left(n^{-4 /(4+d)}\right)$
- Example: To ensure relative MSE <0.1 at 0 when the density is a multivariate norm and optimal bandwidth is chosen
- Always report confidence bands, which get wide with d

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

What you need to know

- As with splines:
\square Nothing is conceptually hard about multivariate x
\square In practice, nonparametric methods struggle from curse of dimensionality

■ For multivariate kernel methods, need multivar kernel
Radial basis kernels
\square Product kernels
\square Structured kernels, including learning like projection pursuit

- Methods:
\square Local polynomial regression
\square Local polynomial regression in structured regression like GAMs

Readings

- Wakefield - 12.4-12.6
- Hastie, Tibshirani, Friedman - 6.3-6.4, 11.2
- Wasserman - 5.12, 6.5

