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Curse of Dimensionality 

 To maintain a fixed level of accuracy for a given nonparametric 

estimator, the sample size must increase exponentially in d 

 Set MSE = δ 

 

 Why?  Using data in local nbhd 

 In high dim, few points in any nbhd 

 

 Consider example with n uniformly 

distributed points in [-1,1]d 

 d=1: 

 d=10 

 

 
Figure from Yoshua Bengio’s website 
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Natural Thin Plate Splines 

 Solution: Unique minimizer is the natural thin plate spline with 

knots at the xij 

 Proof: See Green and Silverman (1994) and Duchon (1977) 

 

 Similar properties and intuition as in 1d: 

 As λ0,  

 

 As λ∞, 
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Tensor Product Splines 

 We use this tensor product basis  

 

 

to model f(x) 

 

 

 This formulation extends (in  

theory) to any dimension d 

 Note that as the dimension of  

the basis grows exponentially  

with the input dimension d 

From Hastie, Tibshirani, Friedman book 
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Generalized Additive Models 

 Both for computational reasons and added interpretability, 

models that assume an additive structure are very popular 

 Assuming a GLM framework: 

 

 

 Is this model identifiable?   

 

 

 

 Can model fj(xj) using any smoother  
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GAM Example 

 Consider using a penalized regression spline of order pj with Lj 

knots for each covariate xj 

 

 

 Penalization is applied to the spline coefficients bj 

 

 

 

Comments: 

 The GAM is very interpretable 

 fi(xi) is not influenced by the other fj(xj) 

 Can plot fj to straightforwardly see the relationship between xi and y 

 Will see that this also leads to computational efficiencies 
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Backfitting 

 To begin, assume a standard (non-GLM) regression setting 

 

 For concreteness, consider  

 

 

 Result is an additive cubic spline model with knots at the 

unique values of xij  

 For X full column rank, can show that solution is unique.  Otherwise, linear 

part of fj(xj) is not uniquely determined 

 

 Here, clearly 

 

 How do we think about fitting the other parameters?? 
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Backfitting 

 Backfitting is an iterative fitting procedure 

 

 Since f(x) is additive, if we condition on the fit of all other 

components fj(xj), j ≠ i, then we know how to fit fi(xi) 

 

 

 

 Iterate the estimation procedure until convergence 
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Backfitting Algorithm 

From Hastie, Tibshirani, Friedman book 
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Review of GLMs 

 Mean parameters are a linear combination of inputs, passed 

through a possibly nonlinear function 

 

 Assume a distribution in the exponential family 

 

 

 

 

 

 Using theory of exponential families, 
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Review of GLMs 

 Mean parameters are a linear combination of inputs, passed 

through a possibly nonlinear function 

 

 A parametric GLM assumes  

 

 

 

 With a canonical link function, 

 

 

 The link function is assumed to be invertible 

Examples 

 Linear regression 
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Examples 

 Binomial regression 

 

 

 

ML Estimation 

 Maximize the log-likelihood 

 

 

 

 

 

 

 No closed-form solution, so use iterative methods  

 2nd order methods like IRLS require Hessian 
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ML Estimation 

 IRLS Newton updates: 

 

 

 

 

 

 

Nonparametrics + GLMs 

 Consider a more general form  

 

 

 Can consider many forms for f(x) that we have studied in this 

course, e.g. 

 Smoothing splines 

 Penalized regression splines 

 Local regression (kernel methods) 

 … 



9 

GAMs and Logistic Regression 

 A generalized additive logistic regression model has the form 

 

 

 

 The functions f1,…, fd can be estimated using a backfitting 

algorithm, too 

 First, recall IRLS algorithm for *parametric* logistic regression 
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GAMs and Logistic Regression 

From Hastie, Tibshirani, Friedman book 
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GAM Logistic Example 

 Example: predicting spam 

 

 Data from UCI repository  

 

 Response variable: email  or  spam 

 57 predictors: 

 48 quantitative – percentage of words in email that match a give word such 

as “business”, “address”, “internet”,… 

 6 quantitative – percentage of characters in the email that match a given 

character ( ; , [ ! $ # ) 

 The average length of uninterrupted capital letters: CAPAVE 

 The length of the longest uninterrupted sequence of capital letters: CAPMAX 

 The sum of the length of uninterrupted sequences of capital letters: CAPTOT 
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GAM Logistic Example 

 Test set of 1536 emails 

 Training set: n=3065 

 

 Use a GAM with a cubic 

smoothing spline  

 Each with 4 dof 

 

 Estimated functions 

for significant predictors 

 Note large discontinuity 

near 0 for many 

 

 Test error of 6.6% 

From Hastie, Tibshirani, Friedman book 
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Other GAM formulations 

 Semiparametric models: 

 

 

 

 ANOVA decompositions: 

 

 

 

Choice of: 

 Maximum order of interaction 

 Which terms to include 

 What representation 

 

 Tradeoff between full model and decomposed model 
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Connection with Thin Plate Splines 

 Recall formulation that lead to natural thin plate splines:  

 

 

 

 

 

 There exists a J(f) such that the solution has the form 

 

 

 However, it is more natural to just assume this form and apply 
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What you need to know 

 Nothing is conceptually hard about multivariate x 

 

 In practice, nonparametric methods struggle from curse of 

dimensionality 

 

 Options considered: 

 Thin plate splines 

 Tensor product splines 

 Generalized additive models 

 Combinations (to model some interaction terms) 
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Readings 

 Wakefield – 12.1-12.3 

 Hastie, Tibshirani, Friedman – 5.7, 9.1 

 Wasserman – 4.5, 5.12 
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Nadaraya-Watson Estimator 

©Emily Fox 2014 26 

 Example: 

 Boxcar kernel   

 Epanechnikov 

 Gaussian 

 

 Often, choice of kernel matters much less than choice of λ 

 

 

From Hastie, 

Tibshirani, 

Friedman 

book 
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Local Linear Regression 
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 Locally weighted averages can be badly biased at the 
boundaries because of asymmetries in the kernel 

 

 Reinterpretation: 

 

 

 

 

 

 
 

 

 

 Equivalent to the Nadaraya-Watson estimator 

 Locally constant estimator obtained from weighted least squares 
 

 

From Hastie, Tibshirani, Friedman book 

Local Linear Regression 

©Emily Fox 2014 28 

 Consider locally weighted linear regression instead 

 Local linear model around fixed target x0 :  

 

 

 Minimize: 

 

 

 

 Return: 

 

 

 Fit a new local polynomial for every target x0  
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Local Polynomial Regression 
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 Consider local polynomial of degree d centered about x0 

 

 

 

 Minimize: 

 

 Equivalently: 

 

 

 

 Return: 

 Bias only has components of degree d+1 and higher 

 

 

Local Polynomial Regression 
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 Rules of thumb: 

 Local linear fit helps at boundaries with minimum increase in variance 

 Local quadratic fit doesn’t help at boundaries and increases variance 

 Local quadratic fit helps most for capturing curvature in the interior 

 Asymptotic analysis  

local polynomials of odd degree dominate those of even degree 

(MSE dominated by boundary effects) 

 

 Recommended default choice: local linear regression 
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Local Polynomial Regression 
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 Kernel smoothing and local regression extend straightforwardly 
to the multivariate x scenario 

 

 
 

 Need d-dimensional kernel 

 

 

 Nadaraya-Watson kernel smoother fits locally constant model 

 Local linear regression fits local hyperplane via weighted LS 

 … 

 

 Challenges: 

 Defining kernel 

 Curse of dimensionality 

 

Example Univariate Kernels 
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 Gaussian 

 

 Epanechnikov 

 

 Tricube 

 

 Boxcar 

From Hastie, Tibshirani, Friedman book 
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Multivariate Kernels 
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 Many choices, even more than in 1d 

 

 Examples: 

 Radial basis kernels 

 

 

 

 

E.g., radial Epanechnikov, tricube, squared exponential (Gaussian) 

 

 

 

Multivariate Kernels 
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 Many choices, even more than in 1d 

 

 Examples: 

 Product kernels 

 

 

 

 

 Choices: 

 Form 

 Kernel(s) 

 Bandwidth(s) 
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Motivating Local Linear Regression 
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 Nadaraya-Watson smoothing can be applied to multivariate x 

 However, boundary issues are even worse in higher dimensions 

 Messy to correct for boundary even in 2d (esp. for irregular boundaries) 

 Fraction of points close to the boundary increases with dimension 

 

 Local polynomial regression corrects boundary errors up to 

desired order  

From Hastie, 

Tibshirani, 

Friedman 

book 

Local Linear Regression 
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 Assume a RBF kernel  
 

 For each target location x0, goal is to minimize 
 

 

 

 Equivalently, 

 

 

 

 

 

 

 Solution: 

 Return: 
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Local Linear Example 
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 Astronomical study 

 Response = velocity measurements on a galaxy 

 Predictors = two positions 

 Note the unusual star-shaped design  very irregular boundary 

 Must interpolate over regions with very few observations near boundary 

From Hastie, Tibshirani, Friedman book 

Motivating Local Polynomial 
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 One way to think about motivating local polynomials is as follow 

 Consider 2d example for simplicity 

 For a suitably smooth function f(x) = f(x1,x2), we can approximate 

it for values x=[x1,x2] in a nbhd of x0=[x01,x02] as 

 

 

 

 

 Suggests the use of a local polynomial: 

 

 

 

 Then,  
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Scaling to High Dimensions 
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 Local regression becomes less useful in dimensions greater 

than 2 or 3 

 Impossible to maintain localness (low bias) and large sample size (low 

variance) without the total sample size increasing exponentially in d 

 

 Again, curse of dimensionality 

 Sparsity of data 

 Points concentrate at boundaries 

 

 Visualization of the fitted function is also hard in high 

dimensions, and visualization is often a key goal in smoothing 

 

Boundary Effects 
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 Everything is far away in high dimensions 

 

 Consider n data points uniformly distributed in a d-dimensional 

unit ball 

 

 Example task: Consider nearest neighbor estimate at origin 

 

 Median distance to closest data point is 

 For n=500 and d=10, distance ≈ 0.52 

 Closest point is likely more than ½ way to the boundary 

 

 

 Prediction is harder near the edges of the sample boundary 
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Boundary Effects II 
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 Another way to think of this effect is in terms of volume 

 

 We want to compute the fraction of volume that lies between 

radius R = 1 − ε and R = 1  

 

 The volume of a sphere is proportional to 

 

 The volume fraction is therefore:  

 

 

 

 Most of the volume of a sphere is concentrated in a thin shell 

near the surface  

Structured Local Regression 

©Emily Fox 2014 42 

 As we have seen before, when faced with data scarcity relative 

to model complexity, assume structure 

 

 Structured kernels 

 Place more or less importance on certain dimensions (or combinations 

thereof) by modifying the kernel 

 

 Structured regression functions 

 Just as with splines, decompose the target regression function 

 E.g., ANOVA decompositions and fit low-dim terms with local regression 
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Structured Kernels 
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 In many scenarios, RBF or spherical kernels are considered 

 

 Places equal weight on all dimensions of x 

 Typically, standardize data so all dimensions have unit variance 
 

 More generally, can consider structured kernels 

 

 

 

 

 Choices for A 

 Diagonal   

 Low rank  

 General 

Projection Pursuit Regression 
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 To help deal with high-dimensional regression, consider 

 

 

 

 

 

 ||wm|| = 1 for m=1,…, M 

 Seek wm so the model fits well 
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PPR Comments 
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 If M is arbitrarily large, and for appropriate choice of fm, PPR 

can approximate any continuous function in Rd arbitrarily well 
 

 Interpretation can be hard 
 

 M=1 “single index model” in econometrics  interpretable 
 

 Goal: Seek to minimize over { fm, wm } 

 

PPR Fitting Algorithm 
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 Direction vectors wm chosen in a forward-stagewise procedure to 

minimize the fraction of unexplained variance 

 Start by standardizing data to 0 mean and scale each covariate to 

have the same variance 

 

 

 

1. Set 

2. Initialize  

3. Find the direction (unit vector) w* that minimizes 

 

 

 

4. Set 

5. Set m = m + 1 and update the residuals: 

 

      If m=M, stop.   
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PPR Fitting Algorithm Comments 
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 Algorithm considered is a greedy forward-wise procedure 
 

 After each step, the fm’s from the previous steps can be 

readjusted using backfitting 
 

 Can lead to fewer terms, but unclear if it improves predictions 
 

 Typically the wm’s are not readjusted 
 

 Choice of M can be based on a threshold in improvement of fit 

or using CV 

 

 

 

Structured Regression Functions 
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 Often, instead of structuring the kernel, it makes sense and is 

simpler to structure the regression function itself 

 

 Just as with splines, we can consider ANOVA decompositions 

 

 

 

 

or, more simply, standard GAMs 

 

 

 

 Can use 1d (or low-dim) local regression as the smoother for 

each term and fit using backfitting algorithm 
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Kernel Density Estimation 
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 Kernel methods are often used for density estimation 

(actually, classical origin) 

 

 Assume random sample 

 

 Choice #1: empirical estimate? 

 

 Choice #2: as before, maybe we should use an estimator 

 

 

 Choice #3: again, consider kernel weightings instead 

 

 

Kernel Density Estimation 
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 Popular choice = Gaussian kernel   Gaussian KDE 

 

 

 

 

 

 

 

 

 

 

 

From Hastie, Tibshirani, Friedman book 
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Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 

 

 

 

 

Multivariate KDE 
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 Risk grows as O(n-4/(4+d)) 

 Example: To ensure relative MSE < 0.1 at 0 when the density is 
a multivariate norm and optimal bandwidth is chosen 

 

 

 

 

 

 

 

 Always report confidence bands, which get wide with d 
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Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 

 

 

 

Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Figure 83: Two-dimensional est imate for the aircraft data.
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2012 J on W ak ef i el d , St a t / B i ost a t 527

Classifi cat ion and R egr ession Tr ees

If the aim is classificat ion the only changes in the algorithm

concern the criteria for split t ing nodes and pruning the t ree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj (T), defined in (112), within

(113), but this is not suitable for classificat ion.

For a node j , j = 1, ..., J , represent ing a region Rj with nj

observat ions est imate the node specific probabilit ies as

pj k =
1

nj
i :x i ∈R j

I (yi = k)

for k = 0, 1, ..., K − 1. This is simply the proport ion of class k

observat ions in node j . Any observat ions that fall into node j are

classified to class

k(j ) = arg maxk pj k ,

the majority class in node j .

452



28 

What you need to know 

 As with splines: 

 Nothing is conceptually hard about multivariate x 

 In practice, nonparametric methods struggle from curse of 

dimensionality 

 

 For multivariate kernel methods, need multivar kernel 

 Radial basis kernels 

 Product kernels 

 Structured kernels, including learning like projection pursuit 

 

 Methods: 

 Local polynomial regression 

 Local polynomial regression in structured regression like GAMs 

 KDE  
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Readings 

 Wakefield – 12.4-12.6 

 Hastie, Tibshirani, Friedman – 6.3-6.4, 11.2 

 Wasserman – 5.12, 6.5 
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