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Curse of Dimensionality
" J
m To maintain a fixed level of accuracy for a given nonparametric
estimator, the sample size must increase exponentially in d

m SetMSE =5 c d/b, “
N A~ (?/ ]670

m Why? Using data in local nbhd
In high dim, few points in any nbhd

m Consider example with n uniformly
distributed points in [-1,1]¢
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Natural Thin Plate Splines
"
mm Z{yl xlt)_,}2 +AJ(f) - \)u\(hf\a
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= Solution: Unique minimizer is the natural thinplate spline with

knots at the x;
m Proof: See Green and Silverman (1994) and Duchon (1977)

m Similar propertles‘and intuition as in 1d: lat
AsA0, 4ol tkw(oackc; an 'mer?""‘
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Tensor Product Splines
" JEE

m We use.this tensor product basis
@ haj(z1)hok(22)
to model f(x) P v \
ok Jikl?
Lz 2, i.\ ’
'a’,\ \('
m This formulation extends (in
theory) to any dimension d

= Note that as the dimension of |

the basis grows exponentially
with the input dimension d

From Hastie, Tibshirani, Friedman b90k
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Generalized Additive Models
= JE

m Both for computational reasons and added interpretability,
models that assume an additive structure are very popular

m Assuming a GLM framework: l/['\ 'k A +f()()

ou(w) = ek g ("\*'"*@o\ () 4}4(;;\;[\
= Is this model identifiable? \; can Shitt & an& 5\'\‘\%

’\“’ Compensale o qexactly

me
B Consheain 2,0 b5 w hmqk\

m Can model '.lsmg any smoother
€$\L§ pine 'kélne\ \’ 2 change

(moduﬁ\ el
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GAM Example G g(M: X7
" JE
m Consider using a penalized regression spline of order p; with L;
knots for each cov%rlate x

Ei Bt *i "J‘“‘ i] £iG4)
[ Penallzatlon is applled to the spline coeff|C|ents b,
7 u3h

A

A

Comments:

m The GAM is very interpretable
fi(x) is not influenced by the other f,(x)
Can plot f; to straightforwardly see the relationship between x; and y

= Will see that this also leads to computational efficiencies
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Backfitting
" S

m To begin, assume a standard (non-GLM) regression setting
m For concreteness, consider . (4 L
' 5 - d - 2 il 2\ S Tt
mll\ Z L‘{L'p( 4 W) ('):\
byl & -
= Resultis an additive cubic spline model with knots at the

unique values of x;

For X full column rank, can show that solution is unigue. Otherwise, linear
part of f,(x)) is not uniquely determined

3 (2 f5 k) 0)

m Here, clearly & = \1

= How do we think about fitting the other parameters??
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Backfitting
"

m Backfitting is an iterative fitting procedure

m Since f(x) is additive, if we condition on the fit of all other
components fi(x), j # i, then we know how to fit fi(x;)

m |terate the estimation procedure until convergence
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Backfitting Algorithm
" S

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: & = o 31 v, f; = 0,Vi, j.
2.Cycle: j=1,2,...,p,...,1,2,....p, ...,
fi = Sil{yi—a=> @)},

ktj
N

fi « fj—%ij(wij)
i=1

until the functions fj change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book
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Review of GLMs
"

m Mean parameters are a linear combination of inputs, passed
through a possibly nonlinear function

m Assume a distribution in the exponential family , ~ Focuws oN \
O e e
y0(x) — b(0(z) Lorm

plo | o) = exp [P 4y, o)

A |
\ disparsion N ponct. wet £

Using theory of exponential families,
AWN:E[Y | 2] = b (06) .
var(Y | z) = ¢° b"(O("’) = 0'2\&




Review of GLMS w0 =eo [0 0
" JE
m Mean parameters are a linear combination of inputs, passed
through a possibly nonlinear function

m A parametric GLM assumes

(u(x) = pa
)/
““1\\‘\ an
With a canonical link function,

0(z) = g(p(x))

The link function is assumed to be invertible

Ik g"( 8(9)

Examples oy | 0) = exp [P0 OO 4 oy, 00|
" JEE
= Linear regression 9;;9(’("A wlo)
o &
logp(ys | xi,8,0%) = =5 =3 (; + log(2m0 ))
N/
0;: ;l; z Ig’TX«: CC\/;IDJ)

9
bley= %
7' ~
)= o [0) = B = M) )
Y 2
W= = vorly:)=0 b=

————Te h . S ——




Examples ol ) = exp [ OED 1y )
" JEE
m Binomial regression oz “b(® C

) s 13 )

+ mlog(l — ;) + log

T
logp(yi | z:,B,0%) = y; log (1

%

0(,{): loj ;_ﬁ_(’-;)?*) &b— =\ i\. 9[_1)3 6(#(\:2)
o) { - lb(j 1( !
\)(Mx\) - m |06(|¢L ) ) ‘ - 'MT:_)
L-ﬁ[\() ; (\() - ‘0 M[K)
M[‘( b (b )' T Q@@ /M—P 6)’;\70()

/—.

i
(
{
Var(‘j)= b’ (9(\(\): m T (1-T (Y\> i %(t); \b% =~

ML ESt|mat|0n p(y | z) = exp M

" S birf 3
m Maximize the log-likelihood ‘—/

5
log p(y1s -,y | B) = ZVO ) | fpnst

de;  de; do; yu
dB; — db; dB; Z / =0

A=l

+e(y,0?)

m No closed-form solution, so use iterative methods
2" order methods like IRLS require Hessian

R s dpiy dpn,
H=-—XTSX  §=dig(l... 500




ML Estimation s -ee 2200 10

o2
" JE
m |RLS Newton updates: ]tuﬁc\v,\y R w,,‘.a]k’ui L3

Bt-i-l == (XTStX)_lXTStZt
2 =0+ S, (y — pue)

=g HX
6, — X4, pe =g (XBt)

Nonparametrics + GLMs
" JEE

yQ(x) _ b(@(a:)) + c(y,aZ)

p(y | v) = exp

m Consider a more general form

9(u(x)) = f(z) 0(x) = g(p(z))
?(CV' = ,STX
m Can consider many forms for f(x) that we have studied in this
course, e.g.
Smoothing splines 7
Penalized regression splines
Local regression (kernel methods)

/




GAMSs and Logistic Regression
" JE

m A generalized additive logistic regression model has the form

m The functions f,, ..., f; can be estimated using a backfitting
algorithm, too
m First, recall IRLS algorithm for *parametric* logistic regression

2= XML Wy —p)

BV arg mﬁin(z —XB)TW(z - Xp)
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GAMs and Logistic Regression
" JE

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.

1. Compute starting values: & = log[y/(1 — §)], where § = ave(y;), the
sample proportion of ones, and set f; = 0 Vj.

2. Define i = a+3; fi(ziy) and p; = 1/[1 + exp(—;)].
Iterate:

(a) Construct the working target variable

(b) Construct weights w; = p;(1 — p;)
(c) Fit an additive model to the targets z; with weights w;, us-
ing a weighted backfitting algorithm. This gives new estimates
&, fj, Vi
3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

From Hastie, Tibshirani, Friedman book
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GAM Logistic Example
" S

m Example: predicting spam
m Data from UCI repository

m Response variable: email or spam

m 57 predictors:
48 quantitative — percentage of words in email that match a give word such

EET » o

as “business”, “address”, “internet’,...

6 quantitative — percentage of characters in the email that match a given
character (; ,[!$#)

The average length of uninterrupted capital letters: CAPAVE

The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT

©Emily Fox 2014 19

GAM Logistic Example
"

m Test set of 1536 emails
m Training set: n=3065

u
f(over)
f(remove)

f(internet)

nnnnn
our over  remove internet

m Use a GAM with a cubic
smoothing spline
Each with 4 dof ?

f(tree)
f(business)

F(vp)

f(np1)

nnnnnnn

o 2 4 6 10 o s
free business hp hpl

m Estimated functions
for significant predictors
Note large discontinuity

f(george)
s o
F(1999)
f(xe)
f(edu)

woos

george 1999 re edu

near 0 for many
m Test error of 6.6% 2 2 g g
From Hastie, Tibshirani, Friedman book " 5 .0 "o T e s b sme tomo o
ch! ch$ CAPMAX CAPTOT
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Other GAM formulations
~ S

m Semiparametric models:

g(p) =

m ANOVA decompositions:

fz) =

Choice of:
Maximum order of interaction
Which terms to include
What representation

m Tradeoff between full model and decomposed model

©Emily Fox 2014 21

Connection with Thin Plate Splines

m Recall formulation that lead to natural thin plate splines:

min Z{yi — f(z)}* + A (f)

= [ o () () o

m There exists a J(f) such that the solution has the form

m However, it is more natural to just assume this form and apply

d
T = I+ ot f) =3 / £ ()2t
j=1

©Emily Fox 2014 22
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What you need to know
" JE

m Nothing is conceptually hard about multivariate x

m In practice, nonparametric methods struggle from curse of
dimensionality

m Options considered:
Thin plate splines
Tensor product splines
Generalized additive models
Combinations (to model some interaction terms)

Readings
" A
m Wakefield — 12.1-12.3
m Hastie, Tibshirani, Friedman — 5.7, 9.1
m Wasserman — 4.5, 5.12

©Emily Fox 2014 24
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Nadaraya-Watson Estimator

" Fa) = i1 Ka(@o, zi)us

m Example: _,J—I_ Z?:l K,\(sco,:ci)
Boxcar kernel > loeal avays

Epanechnikov

Gaussian 1:,1?] C,J

ooy gl
Wit
uch less than chOice of A
Nearest-NeighborKernel " Epanechnikov Kernel

m Often, choice of kernel matters
M
G ¥ V&S
— e

From Hastie,
Tibshirani,
Friedman
book
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Local Linear Regression
" JEE

m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

m Reinterpretation:
A 2
£ - ﬂf"‘m\'\ Z(Y,;—a\
'

a -

A6 Y

A 2 2
_ M:I)Z WL(X)( ;\’0‘) X \Q
£0) - arg " 7 N ,ﬁd‘<0‘é}£w -

’CDLoPSX From Hastie, Tibshirani, Friedman book

\LK\%)

A w. %) s
'_5 gb(s = Z/)—\Lt
Swilx)

m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares

©Emily Fox 2014 27

Local Linear Regression
" JEE

m Consider locally weighted linear regression instead
= Local linear model around fixed target X, :

ﬁogo + /glxo - X,)

m Minimize:

2
MiNn Z K, (X, ¥<) (\/;- Boxy - (S.k(&'xo\B

Iy,

m Return: 4

?(X,) = 20,(0 &— Q\t AC X

(
Nokg - nox CQ\A'« volent ko C]k&?nﬁ a local onstant.

m Fit a new local polynomial for every target x,

©Emily Fox 2014 28
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Local Polynomial Regression
" S

m Consider local polynomial of degree d centered about x,
2
Pxo (x, B(Bo) - ﬂo{. X ﬂ“‘o(x’)(p)‘r@ (x"xo\ *ee

2.
. * By (y- xD\A

Minimize: min > K0, 2:) (Yi — Py (3 Bay))?
0 ;-1

M A (\/" )(x,, AX,BT \'Jxo ( \//’ Xx,]f)
% '\\[u_x.w,.» ng’,‘;)

‘. Xn"Xv T (Xﬂ"yd)l

Equivalently:

n A
Return: ﬂmi Bax, ,
Bias only has components of degree d+1 and higher

©Emily Fox 2014 29

Local Polynomial Regression
" JEE

m Rules of thumb:
Local linear fit helps at boundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and i ses variance

Local quadratic fit helps most for ¢ curvature in the interior

Asymptotic analysis >
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression

©Emily Fox 2014 30
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Local Polynomial Regression
" S

m Kernel smoothing and local regression extend straightforwardly
to the multivariate x scenario

n
rginz K\ (0, 2:) (i — Puy (5 Bay))
O =1
Need d-dimensional kernel

Nadaraya-Watson kernel smoother fits locally constant model
Local linear regression fits local hyperplane via weighted LS

m Challenges:
Defining kernel
Curse of dimensionality

©Emily Fox 2014 31

Example Univariate Kernels
" JE

m Gaussian K(z) = B

N WL

I _
%6
[

m Epanechnikov K(m) _ 2(1 _ x)QI(x)

(Sl

" Treube K(x) = g (1 = o)1 (@)
1
m Boxcar K(z) = 5[(33)
: s | // '\\\ — e
. ) \

3 -2 -1 0 1 2 3
From Hastie, Tibshirani, Friedman book

©Emily Fox 2014 32
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Multivariate Kernels
= JEE

m Many choices, even more than in 1d

m Examples:
Radial basis kernels

K)\(Ll'o,a?) =

E.g., radial Epanechnikov, tricube, squared exponential (Gaussian)

©Emily Fox 2014 33

Multivariate Kernels
= JEE

m Many choices, even more than in 1d

m Examples:
Product kernels

K>\1,>\2 (xovx) =

m Choices:
Form
Kernel(s)
Bandwidth(s)

©Emily Fox 2014 34

17



Motivating Local Linear Regression
" JE
m Nadaraya-Watson smoothing can be applied to multivariate x

m However, boundary issues are even worse in higher dimensions
Messy to correct for boundary even in 2d (esp. for irregular boundaries)
Fraction of points close to the boundary increases with dimension

m Local polynomial regression corrects boundary errors up to
desired order

N-W Kernel at Boundary

From Hastie,
Tibshirani,
Friedman

book

©Emily Fox 2014 35

Local Linear Regression
" JEE

m Assume a RBF kernel
m For each target location x,, goal is to minimize

n d 2
%ﬂn > Kx(xo, ) (yz- — Bozo = > Biao (ij — xoj'))
O =1 Jj=1

m Equivalently,

m Solution: f,, = (X;WmoXmo)_lXxTonoy
m Return:

©Emily Fox 2014 36
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Local Linear Example
" I

m Astronomical study

Response = velocity measurements on a galaxy
Predictors = two positions

m Note the unusual star-shaped design - very irregular boundary
Must interpolate over regions with very few observations near boundary

Velocity

Sou!h-r\k

—

East-West East-West
From Hastie, Tibshirani, Friedman book
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Motivating Local Polynomial
"

= One way to think about motivating local polynomials is as follow
m Consider 2d example for simplicity

m For a suitably smooth function f(x) = f(x,,X,), we can approximate
it for values x=[x,,X,] in a nbhd of X,=[Xy;,Xo,] as

0 0
f(x) = f(xo) + (21 — 51701)8‘7601 + (zg — 1702)8;;2
el 2 _ RS S el O
+ (x1 — zo1) 5 33331 + (z1 — zo1) (w2 3702)2 92010709 + (x2 — xo2) 5 895%2

m Suggests the use of a local polynomial:

n

= Then, 1%,1111 K (20, %) (Yi — Pry (73 Bay))?
1

o s
1= ©Emily Fox 2014 38
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Scaling to High Dimensions
" S

m Local regression becomes less useful in dimensions greater
than 2 or 3

Impossible to maintain localness (low bias) and large sample size (low
variance) without the total sample size increasing exponentially in d

m Again, curse of dimensionality
Sparsity of data
Points concentrate at boundaries

m Visualization of the fitted function is also hard in high
dimensions, and visualization is often a key goal in smoothing

©Emily Fox 2014 39

Boundary Effects
" JE

m Everything is far away in high dimensions

m Consider n data points uniformly distributed in a d-dimensional
unit ball

m Example task: Consider nearest neighbor estimate at origin

. o 1i/m
m Median distance to closest data point is (1 ~ 3 )
For n=500 and d=10, distance = 0.52
Closest point is likely more than %2 way to the boundary

m Prediction is harder near the edges of the sample boundary

©Emily Fox 2014 40




Boundary Effects Il
" JE

m Another way to think of this effect is in terms of volume

m We want to compute the fraction of volume that lies between
radusR=1-gcand R=1

m The volume of a sphere is proportional to

m The volume fraction is therefore:

Va(1) = Vg(1 —¢)
Va(1)

=1—(1—¢

m Most of the volume of a sphere is concentrated in a thin shell
near the surface

©Emily Fox 2014 41

Structured Local Regression
" JEE

m As we have seen before, when faced with data scarcity relative
to model complexity, assume structure

m Structured kernels

Place more or less importance on certain dimensions (or combinations
thereof) by modifying the kernel

m Structured regression functions
Just as with splines, decompose the target regression function
E.g., ANOVA decompositions and fit low-dim terms with local regression

©Emily Fox 2014 42

21



Structured Kernels

" JEE
m In many scenarios, RBF or spherical kernels are considered
m Places equal weight on all dimensions of x

Typically, standardize data so all dimensions have unit variance

m More generally, can consider structured kernels

K alwo,7) = K ((x - xO)T;\él(a: — x0)>

m Choices for A
Diagonal >
Low rank ->
General

©Emily Fox 2014

43

Projection Pursuit Regression
" JEE

m To help deal with high-dimensional regression, consider

M

f(xlv'“vxd) =a+ Z fm(wz:;x)

m=1

|lwg|[=1form=1,..., M
m Seek w,, so the model fits well

Wl
oy

oy

0

.
0

)
o)
WA
K

©Emily Fox 2014
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PPR Comments
" J
M
f(mlv ce 7xd) =a+ Z fm(wglx)
m=1
m If M is arbitrarily large, and for appropriate choice of f,,, PPR
can approximate any continuous function in RY arbitrarily well
m Interpretation can be hard
m M=1 “single index model” in econometrics > interpretable
m Goal: Seek to minimize over { f,,, w,, }
2
> (1= 3 sututn)

=1

©Emily Fox 2014 45

PPR Fitting Algorithm
"

m Direction vectors w,, chosen in a forward-stagewise procedure to
minimize the fraction of unexplained variance

m Start by standardizing data to 0 mean and scale each covariate to
have the same variance

. Set & = avg(y;)
2. Initialize €, =y;,t=1,...,mn and m=20
Find the direction (unit vector) w* that minimizes
C 2ia(é = Swhay))?
Yim1 €
4. Set fon(wTx;) = S(wTa)
Setm=m+ 1and update the residuals:

€ — € — fm(w a:l)
If m=M, stop.

I(w)=1

©Emily Fox 2014 46
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PPR Fitting Algorithm Comments
" J "
flxy, ... xq) = a+ Z: fm(wk )

m Algorithm considered is a greedy forward-wise procedure

m After each step, the f’s from the previous steps can be
readjusted using backfitting

m Can lead to fewer terms, but unclear if it improves predictions
m Typically the w,,’s are not readjusted

m Choice of M can be based on a threshold in improvement of fit
or using CV

©Emily Fox 2014 47

Structured Regression Functions
" JEE

m Often, instead of structuring the kernel, it makes sense and is
simpler to structure the regression function itself

m Just as with splines, we can consider ANOVA decompositions

flz1,22,...,2p) = a—l—ij(azj) —I-kag(l‘k,xg) +...
J

k<t

or, more simply, standard GAMs

fz1,22,...,2p) = a+ij(:Uj)
J

m Can use 1d (or low-dim) local regression as the smoother for
each term and fit using backfitting algorithm

©Emily Fox 2014 48
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Kernel Density Estimation
" JEE

m Kernel methods are often used for density estimation
(actually, classical origin)

m Assume random sample X\,-», )(n ~ p A
?

. ) . . N
m Choice #1: empirical estimate? P* Z Sx‘; l ” I[N | |
m Choice #2: as before, maybe we should use an estimator A

N e BRENHOD T g
e "

n
m Choice #3: again, consider kernel weightings instead

4} - l ;
pi) = s ANUED ?agj;f\

©Emily Fox 2014 49

Kernel Density Estimation
" JEE

m Popular choice = Gaussian kernel > Gaussian KDE

A 2 ¢/\
EYANEA

g ('}3 ¥ ¢0 (x)

QW‘?"(:L‘A
pie

Density Estimate

0.0 0.005 0.010 0.015 0.020
3

¥ 1 t t 1 T
120 140 160 180 200 220

3
S L

Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book

©Emily Fox 2014 50
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Multivariate KDE
" JE
= Inld o) = %ZK,\(SCO,%)

m In RY, assuming a product kernel,

n

d
. 1
pwo) = A Z K (o), wij)

i=1 | j=1

m Typical choice = Gaussian RBF

©Emily Fox 2014 51

Multivariate KDE
" JEE
1 n d
plzo) = g Z H K, (oj, i)
m Risk grows as O(n#“+d) o

m Example: To ensure relative MSE < 0.1 at O when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d

©Emily Fox 2014 52
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Multivariate KDE Example

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels

]

pppppp
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Multivariate KDE Example

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels

©Emily Fox 2014 54
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What you need to know
" JE

m As with splines:

Nothing is conceptually hard about multivariate x

In practice, nonparametric methods struggle from curse of
dimensionality

m For multivariate kernel methods, need multivar kernel
Radial basis kernels
Product kernels
Structured kernels, including learning like projection pursuit

m Methods:
Local polynomial regression
Local polynomial regression in structured regression like GAMs
KDE

©Emily Fox 2014 55

Readings
" A
m Wakefield — 12.4-12.6
m Hastie, Tibshirani, Friedman — 6.3-6.4, 11.2
m Wasserman —5.12, 6.5

©Emily Fox 2014 56

28



