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Overview of Classification So Far
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Density as Mixture of Gaussians

3

m ()w\:,fr"\’
. . . . . c sk
m Approximate density with a mixture of Gaussians J‘S\

PP y W) |
Mixture of 3 Gaussians &’ '1,,\“51 ok,

m, /ﬁ/&l) =

Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian
Our actual observations

0 0.5 1
%abeled
by true cluster assignments

C. Bishop,Pattern Recognition & Machine Learning




Clustering our Observations
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m Imagine we have an assignment of each x; to a Gaussian
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Clustering our Observations
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m We must infer the cluster assignments from the observations

m Posterior probabilities of
assignments to each cluster

*given* modgl parameters:
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Mixture Models for Classification
= JEE

m Can use mixture models as a generative classifier in the
unsupervised setting

m EM algorithm = iteratively:
Estimateem\%itites given parameter estimates 05
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m For classification, threshold the estimated responsibilities
Eg. g(z;) = arg max Tik —

m Note: allows non-linear boundaries as in QDA
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Example: Heart Disease Data
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m Binary response = CHD (coronary heart disease)

m Predictor =<systolie-bleed-pressure- 472’
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What you need to know
" JEE

m Discriminative vs. Generative classifiers k k\

I\

LDA and QDA assume Gaussian class-conditional densities
Results in linear and quadratic decision boundaries, respectively {\

({k;i ‘Gr LDA 6rno

KDE for classification
Challenging in areas with little data or in high dimensions
Estimating class-conditionals is not optimizing classificatign objective
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Naive Bayes assumes factored form
Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach
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Readings
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m Hastie, Tibshirani, Friedman — 4.3, 4.4.5, 6.6.2-6.6.3, 6.8
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Estimating Click Probabilities
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m Goal: Predict whether a person clicks on an ad
m Basic approach: Logistic regression
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Challenge 1: Complexity of Computing

Gradients  in kums of 0 d =
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m What's the cost of a gradient update step for LR???
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Challenge 2: Data is streaming
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m Assumption thus far: Batch data = km,@ O“l’hsd,f"'\
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m But, e.g., click prediction for ads is a data task:
User enters query, and ad must be selectetk:

= Observe x;, and must predict y;
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Online Learning Problem
" I

m At each time step t:
Observe features (covariates) of data point:

= Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course

veé- vec
i Y
Make a predlctlon

Note: many models are possible, we foc ear m « &)v >b
' em iﬁmho 0_/, “ ik \\F X

Observe true lab
= Note: other observal t nmod Is are possible, e.g., we dol t observe the ;b el directly, but only a

beyond scope of cou % (/ \C -C A
K { ’
A%
Update model: ) no ‘\’ \l ¢

)
%W\\ -~ %Q 4 Z>(9) a_ \NHﬁT :

The Perceptron Algorithm gesensit e, sz

o
= Classification setting: y in {-1,+1} (Ai q’, ‘Q&M 20) {}

= Linear model .
Prediction: ’\.\' 9 t?n {ﬁ 'X\ ?r@\CJ[[Cq\ C '\96)

m Training: (6
Initialize weight vector: P 130 (of S'V\R('(‘e’:)

At each time step:
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Which weight vector to report?
" JEE

m Practical problem for all online learning methods

m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???
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Choice can make a huge difference!!
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Mistake Bounds Wy dues it work?
" J
m Algorithm “pays” every time it makes a mistake:
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Linear Separability: More formaIIy, Using Margin
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Perceptron Analysis: Linearly Separable Case
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m Theorem [Block, Novikoff]: \
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Perceptron Proof for Linearly Separable case
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m Every time we make a mistake, we get y close\r to B™: )
Mistake at time t: B0 = O +y,x, ok plt+ [+
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Beyond Linearly Separable Case
" JEE

m Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's +
done for ever! + -
= Even if you see infinite data
+ 4 =
m However, real world not linearly separable - =
Can’t expect never to make mistakes again Toe - -

Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What is the Perceptron Doing???
" JE
m When we discussed logistic regression:
Started from maximizing conditional log-likelihood

Max V(‘H/

m When we discussed the perceptron: F
Started from description of an algorithm

(I Lens

m What is the perceptron optimizing???? 5
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Perceptron Prediction: Margin of
Confidence
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Hinge Loss

= Perceptron prediction: 4 U"\ ()QTA

m Makes a mistake when: Tl\7° (
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m Hinge loss (same as maximizing the margin used by SVMs)
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Minimizing Hinge Loss in Batch Setting

m Given a dataset: (xl 1\1 [yh ’\1’\\

m  Minimize average hinge loss:
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:
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m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function: ¢ N
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bty) 260 + ¥ (y-x)

29

Subgradient of Hinge

"
m Hinge loss: X

m Subgradient of hinge loss:
If y(B.x)>0: =0
If y, (B.x) <0: J=-X
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Subgradient Descent for Hinge Minimization
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m Given data: (331, yl), ceey (asn, yn)
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Perceptron Revisited
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= Perceptron update: “67 SUbﬁf‘?d
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What you need to know
" JE

= Notion of online learning

m Perceptron algorithm

= Mistake bounds and proof Uf/\éﬂlf\‘l 5CP°T0\ Ueb
= In online learning, report averaged.weights at the end
m Perceptron is optimizing hinge loss
m Subgradients and hinge loss
m @b)gradient decent for hinge objective
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