

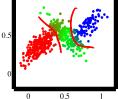
#### Mixture Models for Classification



- Can use mixture models as a generative classifier in the unsupervised setting
- EM algorithm = iteratively:
  - ☐ Estimate responsibilities given parameter estimates 0.

$$\hat{r}_{ik} = \frac{\hat{\pi}_k N(x_i, \hat{\mu}_k, \hat{\Sigma}_k)}{\sum_{\ell} \hat{\pi}_{\ell} N(x_i, \hat{\mu}_{\ell}, \hat{\Sigma}_{\ell})}$$

□ Maximize parameters given responsibilities



For classification, threshold the estimated responsibilities

$$\square$$
 E.g.,  $\hat{g}(x_i) = \arg\max_k \hat{r}_{ik}$ 

Note: allows non-linear boundaries as in QDA

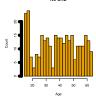
@F--il- F-- 0044

7

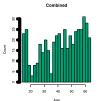




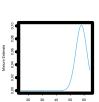
- Binary response = CHD (coronary heart disease)
- Predictor = systolic blood pressure age

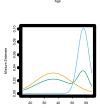












From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

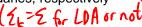
#### What you need to know



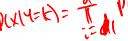
Discriminative vs. Generative classifiers



- LDA and QDA assume Gaussian class-conditional densities
  - □ Results in linear and quadratic decision boundaries, respectively



- KDE for classification
  - □ Challenging in areas with little data or in high dimensions
  - $\hfill \square$  Estimating class-conditionals is not optimizing classification objective
- Naïve Bayes assumes factored form



□ Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach

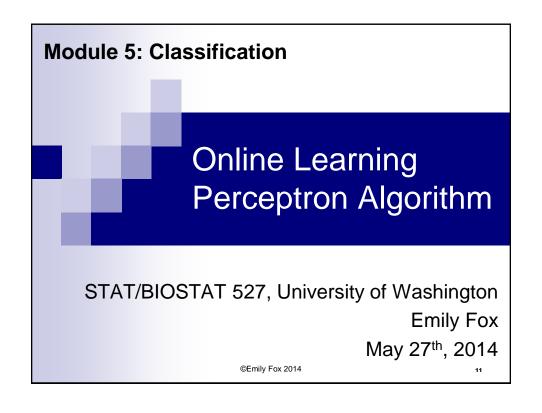
©Emily Fox 2014

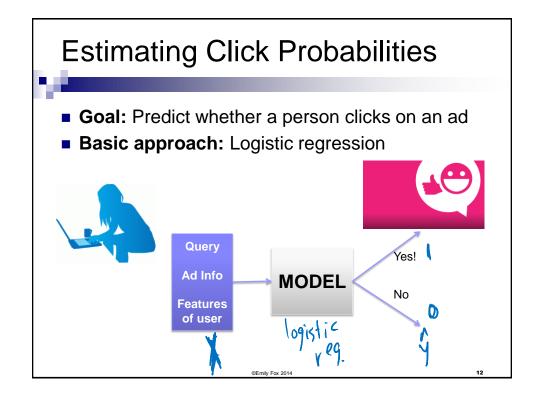
# Readings

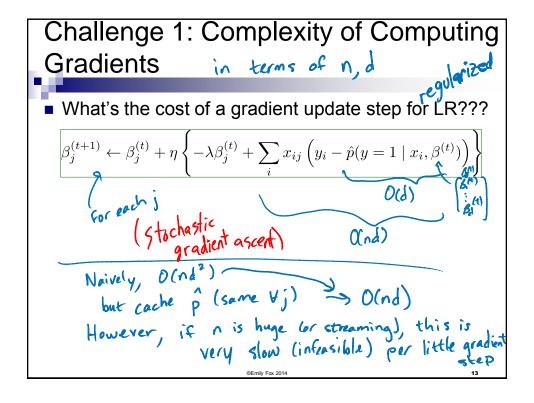


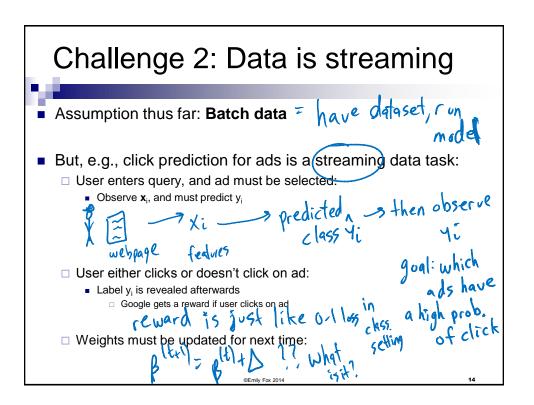
Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8

©Emily Fox 2014

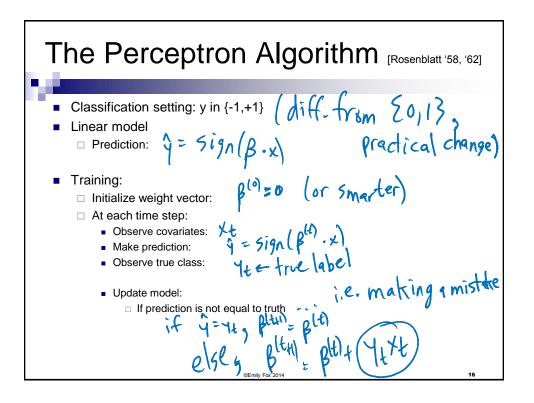


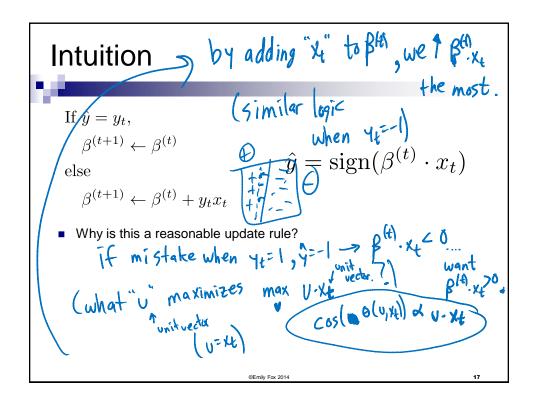






| Online Learning Problem                                                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                            |  |  |
| At each time step t:                                                                                                                                       |  |  |
| □ Observe features (covariates) of data point:                                                                                                             |  |  |
| Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen details beyond scope of course                                        |  |  |
| □ Make a prediction:  • Note: many models are possible, we focus on linear models $\beta(t) + \xi \beta(t) \times t = 0$ • Click'                          |  |  |
| □ Observe true label:                                                                                                                                      |  |  |
| Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version Details beyond scope of course    Clicked |  |  |
| □ Update model:                                                                                                                                            |  |  |
| Bly - Blt) & WHAT!                                                                                                                                         |  |  |

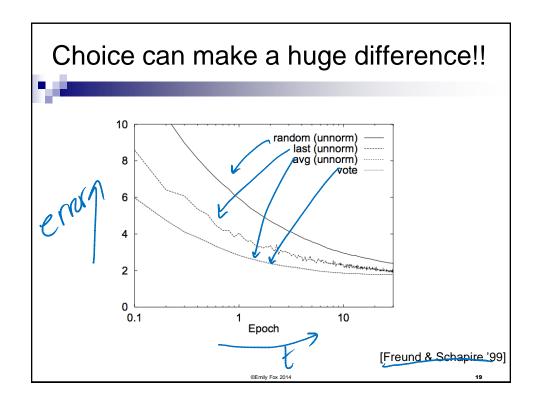


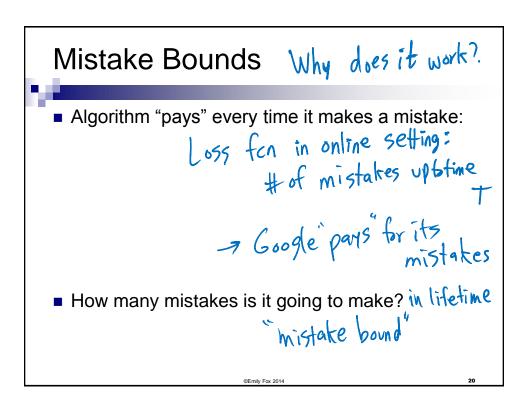


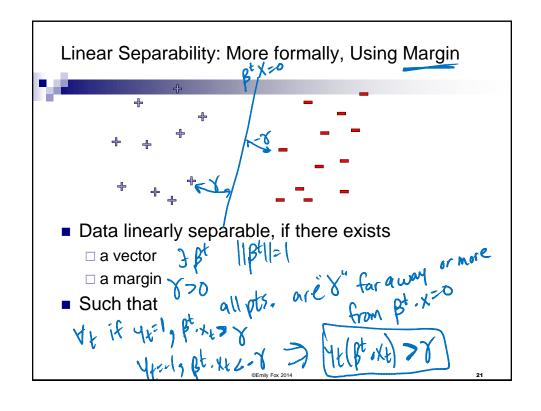
## Which weight vector to report?

- Ŋ
  - Practical problem for all online learning methods
  - Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
  - Last one? B(+)?, no, noisy blc influenced by last mistake.
  - Random Blrand) NO
  - Average B= TZBK (easy to maintain)
  - Voting + more advanced

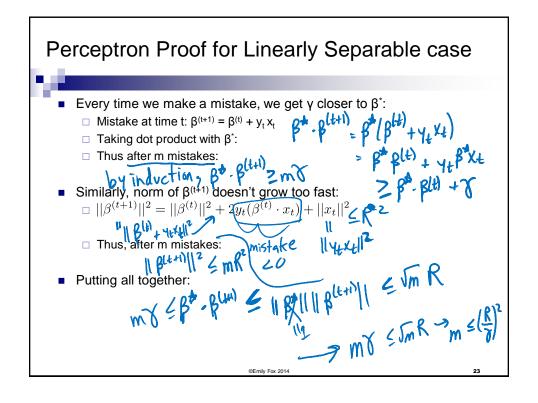
ily Fox 2014

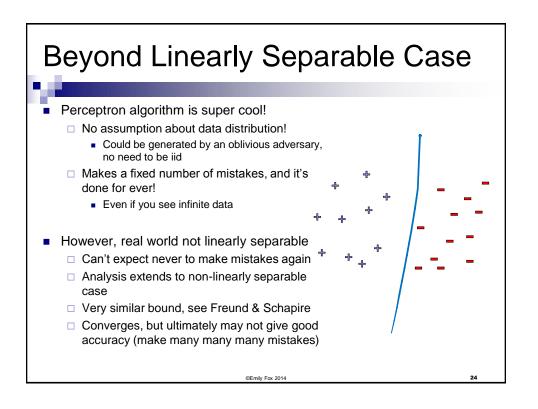






| P | erceptron Analysis: Linearly Separable Case                                                                                                                                                              |    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | Theorem [Block, Novikoff]:  Given a sequence of labeled examples: (X, Y) (X, Yn)  Examples held not be iid or randim  If dataset is linearly separable:  At (Bxxx) > Y > Y > Y > Y > Y > Y > Y > Y > Y > | IS |
|   | ©Emily Fox 2014                                                                                                                                                                                          | 22 |





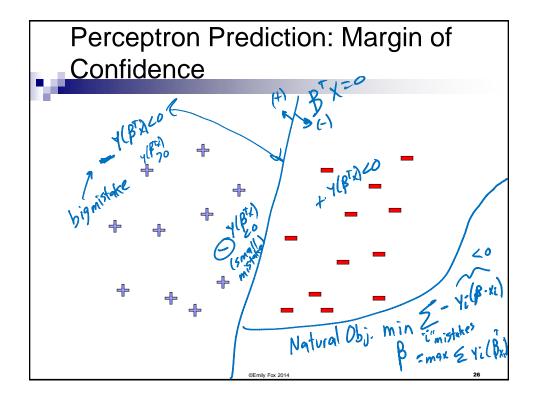
### What is the Perceptron Doing???

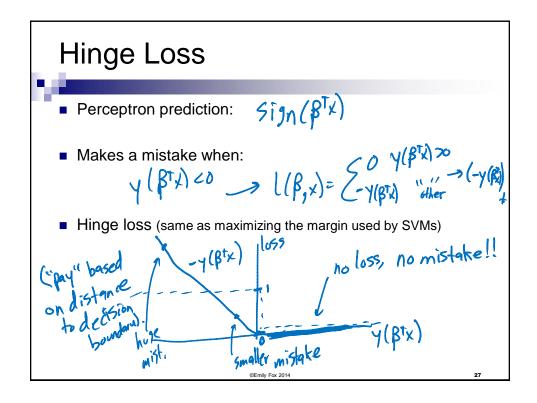
- When we discussed logistic regression:
  - □ Started from maximizing conditional log-likelihood

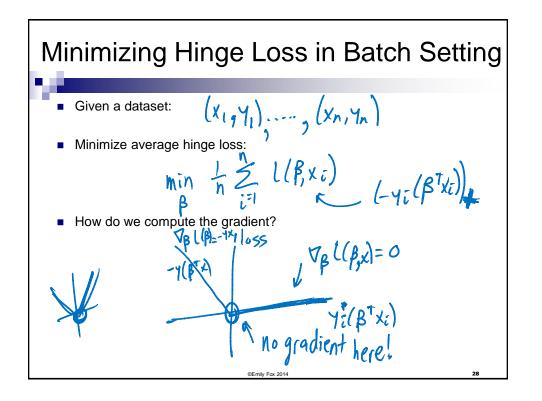
max PLYIX)

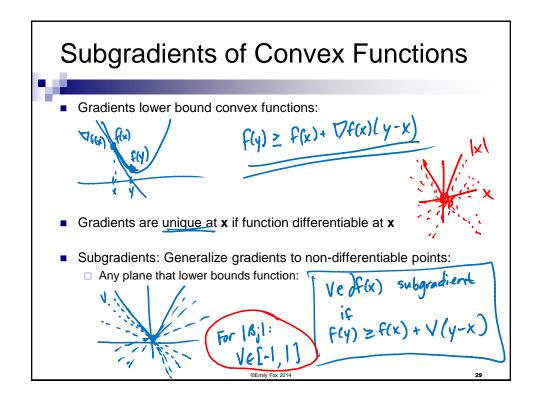
- When we discussed the perceptron:
  - □ Started from description of an algorithm
- What is the perceptron optimizing???? (loss fcns)

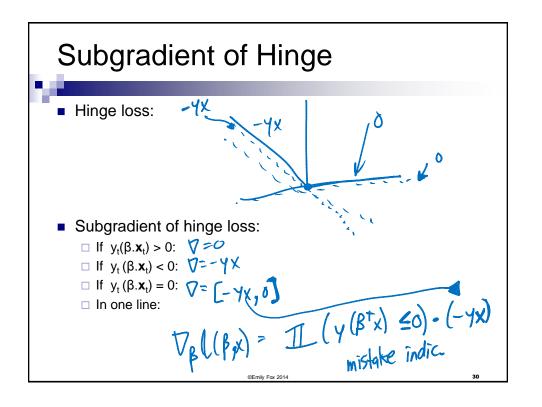
@F--!!- F--- 0044











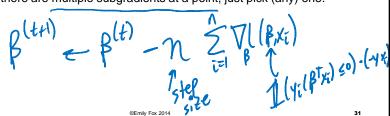
#### Subgradient Descent for Hinge Minimization



- Given data:  $(x_1, y_1), \ldots, (x_n, y_n)$
- Want to minimize:

$$\frac{1}{n} \sum_{i=1}^{n} \ell(\beta, x_i) = \frac{1}{n} \sum_{i=1}^{n} (-y_i(\beta \cdot x_i))_{+}$$

Subgradient descent works the same as gradient descent: ☐ But if there are multiple subgradients at a point, just pick (any) one:



Perceptron Revisited

Perceptron update:  $\beta^{(t+1)} \leftarrow \beta^{(t)} + \mathbb{I}\left[y_t(\beta^{(t)} \cdot x_t) \leq 0\right] y_t x_t$ if mistake

Batch hinge minimization update:

 $\beta^{(t+1)} \leftarrow \beta^{(t)} + \underbrace{\mathfrak{J}}_{n} \sum_{i=1}^{n} \left\{ \mathbb{I} \left[ y_{i} (\beta^{(t)} \cdot x_{i}) \leq 0 \right] y_{i} x_{i} \right\}$  Step. If mistake

■ Difference? Perceptron algorithm= SGD for hinge loss Minim. Using N=1.

# What you need to know



- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proof (linearly separable)
- In online learning, report averaged weights at the end
- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

©Emily Fox 2014