

Mixture Models for Classification

- Can use mixture models as a generative classifier in the unsupervised setting
- EM algorithm = iteratively:
 - ☐ Estimate responsibilities given parameter estimates 0.

$$\hat{r}_{ik} = \frac{\hat{\pi}_k N(x_i, \hat{\mu}_k, \hat{\Sigma}_k)}{\sum_{\ell} \hat{\pi}_{\ell} N(x_i, \hat{\mu}_{\ell}, \hat{\Sigma}_{\ell})}$$

□ Maximize parameters given responsibilities

For classification, threshold the estimated responsibilities

$$\square$$
 E.g., $\hat{g}(x_i) = \arg\max_k \hat{r}_{ik}$

Note: allows non-linear boundaries as in QDA

@F--il- F-- 0044

7

- Binary response = CHD (coronary heart disease)
- Predictor = systolic blood pressure age

From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

What you need to know

Discriminative vs. Generative classifiers

- LDA and QDA assume Gaussian class-conditional densities
 - □ Results in linear and quadratic decision boundaries, respectively

- KDE for classification
 - □ Challenging in areas with little data or in high dimensions
 - $\hfill \square$ Estimating class-conditionals is not optimizing classification objective
- Naïve Bayes assumes factored form

□ Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach

©Emily Fox 2014

Readings

Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8

©Emily Fox 2014

Online Learning Problem		
At each time step t:		
□ Observe features (covariates) of data point:		
Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen details beyond scope of course		
□ Make a prediction: • Note: many models are possible, we focus on linear models $\beta(t) + \xi \beta(t) \times t = 0$ • Click'		
□ Observe true label:		
Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version Details beyond scope of course Clicked		
□ Update model:		
Bly - Blt) & WHAT!		

Which weight vector to report?

- Ŋ
 - Practical problem for all online learning methods
 - Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
 - Last one? B(+)?, no, noisy blc influenced by last mistake.
 - Random Blrand) NO
 - Average B= TZBK (easy to maintain)
 - Voting + more advanced

ily Fox 2014

P	erceptron Analysis: Linearly Separable Case	
	Theorem [Block, Novikoff]: Given a sequence of labeled examples: (X, Y) (X, Yn) Examples held not be iid or randim If dataset is linearly separable: At (Bxxx) > Y > Y > Y > Y > Y > Y > Y > Y > Y >	IS
	©Emily Fox 2014	22

What is the Perceptron Doing???

- When we discussed logistic regression:
 - □ Started from maximizing conditional log-likelihood

max PLYIX)

- When we discussed the perceptron:
 - □ Started from description of an algorithm
- What is the perceptron optimizing???? (loss fcns)

@F--!!- F--- 0044

Subgradient Descent for Hinge Minimization

- Given data: $(x_1, y_1), \ldots, (x_n, y_n)$
- Want to minimize:

$$\frac{1}{n} \sum_{i=1}^{n} \ell(\beta, x_i) = \frac{1}{n} \sum_{i=1}^{n} (-y_i(\beta \cdot x_i))_{+}$$

Subgradient descent works the same as gradient descent: ☐ But if there are multiple subgradients at a point, just pick (any) one:

Perceptron Revisited

Perceptron update: $\beta^{(t+1)} \leftarrow \beta^{(t)} + \mathbb{I}\left[y_t(\beta^{(t)} \cdot x_t) \leq 0\right] y_t x_t$ if mistake

Batch hinge minimization update:

 $\beta^{(t+1)} \leftarrow \beta^{(t)} + \underbrace{\mathfrak{J}}_{n} \sum_{i=1}^{n} \left\{ \mathbb{I} \left[y_{i} (\beta^{(t)} \cdot x_{i}) \leq 0 \right] y_{i} x_{i} \right\}$ Step. If mistake

■ Difference? Perceptron algorithm= SGD for hinge loss Minim. Using N=1.

What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proof (linearly separable)
- In online learning, report averaged weights at the end
- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

©Emily Fox 2014