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Overview of Classification So Far
= JE

m Supervised methods

Generative Discriminative

m Objectives:

m Unsupervised methods (generative)
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Density as Mixture of Gaussians
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Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian
Our actual observations
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Clustering our Observations
" JE
m Imagine we have an assignment of each x; to a Gaussian

m Introduce latent cluster ¢
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Clustering our Observations
" JEE

m We must infer the cluster assignments from the observations

m Posterior probabilities of
assignments to each cluster
*given* model parameters:
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Mixture Models for Classification
= JEE

m Can use mixture models as a generative classifier in the
unsupervised setting
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m EM algorithm = iteratively: SR 2
Estimate responsibilities given parameter estimates 0s] g f
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Maximize parameters given responsibilities

m For classification, threshold the estimated responsibilities
Eg. g(z;) = arg mkax Tik

m Note: allows non-linear boundaries as in QDA
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Example: Heart Disease Data
" JE

m Binary response = CHD (coronary heart disease)

m Predictor = systolic blood pressure

No CHD CHD Combined
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From Hastie, Tibshirani, Friedman book
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What you need to know
" JE

m Discriminative vs. Generative classifiers

LDA and QDA assume Gaussian class-conditional densities
Results in linear and quadratic decision boundaries, respectively

KDE for classification
Challenging in areas with little data or in high dimensions
Estimating class-conditionals is not optimizing classification objective

Naive Bayes assumes factored form
Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach
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Readings
= JEE
m Hastie, Tibshirani, Friedman — 4.3, 4.4.5, 6.6.2-6.6.3, 6.8
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Estimating Click Probabilities

" JEE
m Goal: Predict whether a person clicks on an ad
m Basic approach: Logistic regression

m

Yes!

Features
of user

No




Challenge 1: Complexity of Computing

Gradients  in kums of 0, d
" JE
m What's the cost of a gradient update step for LR???
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Challenge 2: Data is streaming
" JEE

m Assumption thus far: Batch data

m But, e.g., click prediction for ads is a streaming data task:

User enters query, and ad must be selected:
= Observe x;, and must predict y;

User either clicks or doesn’t click on ad:

= Labely, is revealed afterwards
Google gets a reward if user clicks on ad

Weights must be updated for next time:

©Emily Fox 2014 14




Online Learning Problem
" JEE
m At each time step t:
Observe features (covariates) of data point:

= Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course

Make a prediction:

= Note: many models are possible, we focus on linear models

Observe true label:

= Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version... Details
beyond scope of course

Update model:
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The Perceptron Algorithm gesensit e, sz
"

m Classification setting: y in {-1,+1}
m Linear model
Prediction:

m Training:
Initialize weight vector:
At each time step:
= Observe covariates:
= Make prediction:
= Observe true class:

Update model:
If prediction is not equal to truth
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Intuition
= JEE

If yA — yta
5(t+1) « ﬁ(t) A . (t)
else Yy = Slgn(ﬁ ’ xt)

B 8 4y,

m  Why is this a reasonable update rule?
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Which weight vector to report?
" J

Practical problem for all online learning methods

Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???

Last one?
Random
Average

Voting + more advanced
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Choice can make a huge difference!!
" S
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Mistake Bounds
" JEE
m Algorithm “pays” every time it makes a mistake:

m How many mistakes is it going to make?
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Linear Separability: More formally, Using Margin
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m Data linearly separable, if there exists
a vector
a margin

m Such that
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Perceptron Analysis: Linearly Separable Case
" J
m Theorem [Block, Novikoff]:
Given a sequence of labeled examples:

Each covariate vector has bounded norm:

If dataset is linearly separable:

m  Then the number of mistakes made by the online perceptron on this
sequence is bounded by
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Perceptron Proof for Linearly Separable case
" JEE
m Every time we make a mistake, we get y closer to B*:
Mistake at time t: B0 = BO +y, x,

Taking dot product with B*:
Thus after m mistakes:

= Similarly, norm of B doesn’t grow too fast:
1BV = I8V + 24, (8D - ) + [[a ||

Thus, after m mistakes:

m Putting all together:
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Beyond Linearly Separable Case
" JE

m Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's +
done for ever! + -
= Even if you see infinite data
+ &+ =
m However, real world not linearly separable -
Can’t expect never to make mistakes again Toe + - -

Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What is the Perceptron Doing???
" JE
m When we discussed logistic regression:
Started from maximizing conditional log-likelihood

m When we discussed the perceptron:
Started from description of an algorithm

m What is the perceptron optimizing????

Perceptron Prediction: Margin of
Confidence
" SN
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Hinge Loss
" JEE
m Perceptron prediction:

m Makes a mistake when:

m Hinge loss (same as maximizing the margin used by SVMs)
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m Given a dataset:

m  Minimize average hinge loss:

m How do we compute the gradient?
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Minimizing Hinge Loss in Batch Setting
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:

fly) 2 Ppo vkl y-¥)

m Gradients are unigue at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function: ¢ N
Ve JF) subgradient
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Subgradient of Hinge
" JEE

m Hinge loss:

m Subgradient of hinge loss:
If yi(B.x) > 0:
Ify; (B.x) <O

If y; (B.x) =0t
In one line:
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Subgradient Descent for Hinge Minimization
" JEE

m Given data: (331, yl), ceey (xn, yn)

= Want to minimize:
n

1 & 1
n 25(5,%) 0 Z(—yi(ﬁ $Ti))+
=1 1=1
m Subgradient descent works the same as gradient descent:
But if there are multiple subgradients at a point, just pick (any) one:

Perceptron Revisited
" JEE

m Perceptron update:

B(HU — ﬁ(t) +1 {yt(ﬁ(” cxy) < 0] Yt Ty

m Batch hinge minimization update:

B ¢ g® g S {1 (8 - 1) < 0] g}
=1

m Difference?
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What you need to know
N

Notion of online learning

Perceptron algorithm

Mistake bounds and proof

In online learning, report averaged weights at the end
Perceptron is optimizing hinge loss

Subgradients and hinge loss

(Sub)gradient decent for hinge objective
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