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Task 1: Regression

" JE——
= Assume a sample (¥, )., ()(.\,Yn>
m Model:  v.. £(x.)as . Ele)-0 ‘

,L wnknpown

4.
what £ SL'D_‘;lJ
m Task involves estimatingthe function f T vser

s wmnator ol

m Goals of nonparametric approach:
Make few assumptions about f

Use a large number of parameters, but constrained in some way
to avoid overfitting the data

Complexity can grow with the sample size
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Parametric Regression
" JEE

m Parametric inference assumes parametric form for f(x)

ey F(X)z/ST%
~ £0) s :mlex:tl by param. ﬁ

m Advantages: N
Efficient estimation ¢~ ¢ 4. |S est. &£ £ S,
Concise summarization \eads to an est. f’n of £

= What is the right parametric form for f(x)?

S‘I\O\A\A “t &(ﬁaﬂg¢ u.)/ samp\z S':%&?
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Model Complexity
" JEE
m How complex of a function should we choose?

To increase flexibility, using many parameters is attractive

— Reduce bias

However, wide prediction intervals...

V\u& (léhsd- tonkeins A \::31.[ oamv. P i nfo

Leads to wild predictions
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Example: Polynomial Regression

m For added flexibility, allow for high order polynomial, right?
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XEE| e

kl \n LIAS
Select points by clicking on the graph or press Example /
@ FitYtoX \bud Var

C FitXtoY

Degree of polynomiall

calculate | View Polynomial | Reset|
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Example: Polynomial Regression
" JEEE

m For added flexibility, allow for high order polynomial, right?
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Measuring Predictive Performance
* JE——
m Having chosen a model, how do we assess its
performance? r\wc'l\ ome ke w0 Chis qucsﬁon ;
Live

m Assume estimate fn() based on training data’y, ..., y,
A Q@

m The generalization error provides a measure of
predictive performance

GE(f) = By.x [L(Y, fu(X))]
r . R cved \f“.mﬂ‘lﬂta
. ( GE. AN Kre”
5,\“1\3:;? of this A:ﬂ& fob:- x oV

s & loins- bor w o
t”é( DCC
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Measuring Predictive Performance
a AssumelL, loss | @Y E0N1E # £9€):0 vorle):o*
" [ Averagin_g over r.epegt[aining sets Y, =Y, ..., Y,we get
({v;ﬁ the predictive ﬂf’f oq:(sx o N ‘))LJ
Ey-vy, [(y* _fn(g*))z} _ Emj” A£6) ¥ E6Y £
o 0

/\ & ot QCU‘ of et
’d.sx kre “‘) V;,’m"t?ﬂ *_ f(x*)}
[ (p-GlaV)s €y ereelf) g ? - 6001)
z E\{" - "'\" /V*/ €Y,‘£ (X

) ?W); 67-9( V[SE ('% (xae)) )
K “QIQJM‘-UL ;;ror"

m Recall MSE[f,(x)] = bias(f,(2))? + var(f,(z))
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Measuring Predictive Performance
" JEE
s an MSE be

m Finally, let’'s average over covariates x (“Lmq_ wnoid o )

Ol Integrated MSE \S\[’]SE ( ﬁ\ (x\) ?(XB AX
Summary VRN all inPrts

DAverageMSE H”'*A (orlo 25t

L2 el 1) Yo P b

m Note: avg. pred. risk = O' + avg. MSE"'\ o’
\ g

L 156y, (USRS S

" R_ training data
pew gbs. at X

©Emily Fox 2014

I 1 "\\ o \e
Bias-Variance Tradeoff @ u et

oM oy
" NN

m Minimizing risk = balancing bias and variance

)
© (:.l;\ wnc. Model compleity —
Q -
tﬂ‘“ ’ \ pptimal solution for model sdection tasle
m Note: f(x) is unknown, so cannot actually compute MSE
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In Practice...
S

m Minimizing risk = balancing bias and variance

N High Bias Low Bias

- Low Variance High Variance . oNn
o . o r 2 Jrae
" L VP g€
. ¢
5 0
S 'M&‘-i‘.tj
—preol S5
3 / on &)
d:.kk
o s w0 s ow s o w AV OV
Model Complexity (df) VA",\",‘j %C&S

From Hastie, Tibshirani, Friedman
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More on Nonparam Regression
S

m Often framed as learning functions with a complexity penalty
Regular behavior in small neighborhoods of the input

E.g., locally linear or low-order polynomial...estimator results from
averaging over these local fits

m Choice of neighborhood = strength of constraint

Large neighborhood can lead to linear fit (very restrictive) whereas small
neighborhoods can lead to interpolation (no restriction)

/t\.\/\,
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More on Nonparam Regression
* JEE—

m Different restrictions lead to different nonparametric approaches
Roughness penalty > splines
Weighting data locally > kernel methods
Etc.

m Each method has associated smoothing or complexity param
Magnitude of penalty
Width of kernel (defining “local”)
Number of basis functions

m Bias-variance tradeoff

m Will explore methods for choosing smoothing parameters
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Reading
" JEE
m Wakefield: 10.3-10.4
m Hastie, Tibshirani, Friedman: 7.1-7.3
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What you should know
* JEE

m  What to report when data-generating mechanism is:
Known (optimal prediction)
Unknown and constrained to a specified model + loss fcn

Example loss functions for
Continuous RVs
General RVs

Goals of parametric vs. nonparametric methods

Bias-variance tradeoff

m Measures of performance of estimators
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fMRI Prediction Subtask
= JEEE

m Goal: Predict semantic features from fMRI image

[ H"
) ) Y“l
Features —_>
\: %o | Y
Vm‘ds Sm'ﬂf‘c ‘rlﬂ"l w2s

G €Y . Examine euesy eutpeet dim ind

pssumption

Linear Regression — review

p ;:‘,m/f\
N
N E[e:)20, V()=

)(;\‘ =\ Sor 'mwap‘t

= Model: y; = Z_ﬂJ)Q x €
pioY
b= )(‘b v Ex
‘\ ('S‘l "lﬂt’sT
m Design matrix:
Yoo Yoo - Kp
m Rewrite in matrix form:

[Lloy: Nbee
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Least Squares
" JEEE
m Least squares estimation:
1 Minimize residual sum of squares

o oryrin (Y- X8)"(y-y8): Z (i~ 24 )

wrg

%Rss(b) =1 BT (XA - 8T yTy + (onst. ; ReS(4)
[ Take gradient and set =0

U, 4R55(8) (xX)B- X"y =0
2 5= (yxY! XT/v

m In Gaussian case, LS est. = maximum likelihood est.

Fitted Values £ (x 'y
" JEEE
[ Fitt(id values s "o T
b XBT = Ly LR

.
{ Uhat modtrt
b ‘lﬂ\'m'mg \ocg

¥
Il krACL ek

m Number of parameters AT
. 1w(X()'K)
p= tr (L) (19
—_— = e (o) X)) =¥ e

m For any x, we can write

£ = LTy = 2 LW

Tyt XT
where  £{c)= 4 (¥ X) . miin
Ll LAY from < JM%.
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Linear Smoothers
" JE
n DAefinition:
fn of f is a linear smoother if, for each x, there exists

E(x) = ({ (:C), N ,fn(:t))T wrdh él;(x)S’
such that En(’(): 2(1()‘) Ji

|
S0
m Matrix form N / Qg,(m
Fitted values  { L P
> \/ ke
Smoothing or “hat” matrix . < (%

m Effective degrees of freedom: |\) z tdl.) \
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Linear Smoothers
= JEEE
m Note 1:

A linear smoother does not imply that f () is linear in x

m Note 2:
If Y; = c for all i, then fn(x) = ¢ forall x %1}.("3’\
be ¢

n

C '(h
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fMRI Prediction Subtask
= JEE

m Goal: Predict semantic features from fMRI image
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Regularization in Linear Regression
" JEEE———

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X-0.30 X2 -1.1+4,700,910.7 X £8,585,638.4 X2 + ...

wr for
7%/

¢ v

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Ridge Regression
" J

m Ameliorating issues with overfitting: f”"'l'l ttion oF “’"'3“.'-5
‘(Lﬁ\/\‘w-liad:\on !
m New objectlve

mn Z(\/ B+ 8 X\\ it )“5“

-—

6 L\ N Al
oy
Y
\“/ 3
min RSS(R) st “(5“, ¢S
P
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Ridge Regression
" O v(8)

= New objective: M

Bmdge _ argmlnz 50 + ﬂsz)) + AHBH%
/

K/N\J
I Reformulate: , %S(ﬁ) s an"-"-

FB) =28 T (xX)B- BT Y Fomst oy s ff
W&»W-’
~ 13 (X X*)I)/g ﬂTX y * const -

O Setdgra%ent
ﬁrégc ()(X )‘T) Xy

m Linear smogther”

i
2

ooooooooooooo

(= ly L XDy X

Ridge Regression
" JEEE—
Solution is indexed by the regularization parameter A

Larger A "‘iﬁb\ ey

Smaller A \OV" m;b,

As A0 /gr;A'ﬁ& - ’gl—S

As A > B‘“*’J‘ -0

Bmdge _ argmlnz 0 + ﬁTq;Z)) + AHBH%
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Shrinkage Properties
* JEE—
Bm’dge _ (XTX + )\I)_lXTy

m If orthogonal covariates X7 X —

)
- p“ri}gl..
o " i/s
/5(' * = /5.) vlj
J
L +) /
‘ t

m Effective degrees of freedom:

= 4:/ L\ ’cf()( T)( >\T) X) )\-»09?9"»5
\70 2 fawel

Ridge Coefficient Path
* JEEE——
) /q,,s ssln
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—— ‘;Izason From
03| —e—pgges ) Kevin Murphy
é‘ 02l © textbook
0 ? 3
v oo szt 1,£3
—0.1F
p o
0) -0.2 : - y y \wk on
0 ' \/-\ CV 30

é/ S nc. S
m Typical approach: select A using cross validation (Q\l)
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A Bayesian Formulation

= Consider a model with likelihood ¢ E~N(o,>)
yi| B~ N(By+a]8,0%) &

o? c"
£~N<o,71p> ,sow/(o,y)
m Forlarge A

?(5) e X /\f{ﬂ) f)rior Pukut arowd B0
/‘\’ —a ) B pcnalit'-r:j R far

o
m The posterior is brom 0

and prior

By~ N (fridee o2(XTX + AD)'XTXo?(XTX + AI)_l)

Tusy v sho W(éds‘)
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Variable Selection
" JEE
m Ridge regression: Penalizes large weights

variably
m What if we want to perform “feature selection”?

E.g., Which regions of the brain are important for word prediction?

& Can’t simply choose predictors with largest coefficients in ridge solution
v Computationally impossible to perform “all subsets” regression
\'é’ 'L? Sv\osu's of ?rulu‘c(—ors ... tan’t do his

Stepwise procedures are sensitive to data perturbations and often include
features with negligible improvement in fit . q(uA\’ , ,% loo.dl.f’“'t‘?
ala.

m Try new penalty: Penalize non-zero weights

Penalljy‘/: l‘ﬁ“l - %\6"\

Leads to sparse solutions
Just like ridge regression, solution is indexed by a continuous garam A

©Emily Fox 2014 32

16



LASSO Regression
" JEE

m LASSO: least absolute shrinkage and selection operator

m New objective:

Min j(\/r(:@,*/fxﬁ)z « Mgl
ﬂ Azl
Rss(R)
T

wio Res(8) o4 Ul <%
B
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LASSO Solutions
" S

m The LASSO solution is nonlinear in y...not a linear smoother
Degrees of freedom cannot be computed as before
Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011)
Standard errors via the bootstrap

m Efficient algorithms exist for solving

Will return to this next lecture
L
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Reading

“ J
m Hastie, Tibshirani, Friedman: 3.2 (up to 3.2.3), 3.4
m Wasserman: 5.2
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What you should know
" JEE—

m Linear regression

Least squares solution
Fitted values

m Definition of a linear smoother

= Ridge objective
L2 penalized regression solution

m LASSO objective

m Intuition for differences between ridge and LASSO solutions
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