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Module 1: Nonparametric Preliminaries 

Task 1: Regression 

n  Assume a sample  
n  Model: 
 
 

n  Task involves estimating the function f 

n  Goals of nonparametric approach: 
¨  Make few assumptions about f 
¨  Use a large number of parameters, but constrained in some way 

to avoid overfitting the data 
¨  Complexity can grow with the sample size 

©Emily Fox 2014 2 



2 

n  Parametric inference assumes parametric form for 

n  Advantages: 
¨  Efficient estimation 
¨  Concise summarization 

n  What is the right parametric form for          ?  
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f(x)

f(x)

Parametric Regression 

Model Complexity 

n  How complex of a function should we choose?  

¨  To increase flexibility, using many parameters is attractive 

¨  However, wide prediction intervals… 

¨  Leads to wild predictions 
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Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 
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Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 
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Measuring Predictive Performance 

n  Having chosen a model, how do we assess its 
performance? 

n  Assume estimate           based on training data y1,…, yn  

n  The generalization error provides a measure of 
predictive performance 
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f̂n(·)

GE(f̂n) = EY,X

h
L(Y, f̂n(X))

i

Measuring Predictive Performance 

n  Assume L2 loss 
n  Averaging over repeat training sets Yn = Y1,…, Yn we get 

the predictive risk at x* 

 
 

n  Recall  
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EY ⇤,Yn

h
(Y ⇤ � f̂n(x

⇤))2
i
=

MSE[f̂n(x)] = bias(f̂n(x))
2 + var(f̂n(x))
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Measuring Predictive Performance 

n  Finally, let’s average over covariates x 

¨  Integrated MSE 

 
¨  Average MSE 

n  Note:    avg. pred. risk =        + avg. MSE 
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Bias-Variance Tradeoff 

n  Minimizing risk = balancing bias and variance 

n  Note: f(x) is unknown, so cannot actually compute MSE 
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In Practice… 

n  Minimizing risk = balancing bias and variance 
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220 7. Model Assessment and Selection
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

From Hastie, Tibshirani, Friedman 

n  Often framed as learning functions with a complexity penalty 
¨  Regular behavior in small neighborhoods of the input 
¨  E.g., locally linear or low-order polynomial…estimator results from 

averaging over these local fits 

n  Choice of neighborhood = strength of constraint 
¨  Large neighborhood can lead to linear fit (very restrictive) whereas small 

neighborhoods can lead to interpolation (no restriction) 
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More on Nonparam Regression 
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n  Different restrictions lead to different nonparametric approaches 
¨  Roughness penalty à splines 
¨  Weighting data locally à kernel methods 
¨  Etc. 

n  Each method has associated smoothing or complexity param 
¨  Magnitude of penalty 
¨  Width of kernel (defining “local”) 
¨  Number of basis functions 
¨  … 

n  Bias-variance tradeoff 

n  Will explore methods for choosing smoothing parameters 
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More on Nonparam Regression 

n  Wakefield: 10.3-10.4 
n  Hastie, Tibshirani, Friedman: 7.1-7.3 
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Reading 
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n  What to report when data-generating mechanism is: 
¨  Known (optimal prediction) 
¨  Unknown and constrained to a specified model + loss fcn 

n  Example loss functions for 
¨  Continuous RVs 
¨  General RVs 

n  Goals of parametric vs. nonparametric methods 

n  Bias-variance tradeoff 

n  Measures of performance of estimators 
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What you should know 
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fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Linear Regression – review  
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n  Model: 

n  Design matrix: 

 

n  Rewrite in matrix form: 
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Least Squares 
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n  Least squares estimation: 
¨  Minimize residual sum of squares 

¨  Take gradient and set = 0 

n  In Gaussian case, LS est. = maximum likelihood est. 

3.2 Linear Regression Models and Least Squares 45
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.
How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with

each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XTX
is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XTX)−1XTy. (3.6)

Fitted Values 
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n  Fitted values 

 

n  Number of parameters 

 
n  For any x, we can write 
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Linear Smoothers 
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n  Definition: 
          of      is a linear smoother if, for each x, there exists 
 
 
    such that 
 
n  Matrix form 

¨  Fitted values 

¨  Smoothing or “hat” matrix 

n  Effective degrees of freedom:   

f̂n f
`(x) = (`1(x), . . . , `n(x))

T

Linear Smoothers 
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n  Note 1:  
 
A linear smoother does not imply that           is linear in x 

n  Note 2: 
 
If               for all i, then                    for all x    

f(x)

Yi = c f̂n(x) = c
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 

25 ©Emily Fox 2014 

Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 
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Ridge Regression 

©Emily Fox 2014 27 

n  New objective: 

 
¨  Reformulate: 

 
¨  Set gradient = 0 

n  Linear smoother!! 

�̂

ridge = argmin
�

nX

i=1

(yi � (�0 + �

T
xi))

2 + �||�||22

Ridge Regression 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 

 

�̂

ridge = argmin
�

nX

i=1

(yi � (�0 + �

T
xi))

2 + �||�||22
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Shrinkage Properties 

©Emily Fox 2014 29 

 
n  If orthogonal covariates 

n  Effective degrees of freedom:   

 

XTX = I

�̂ridge = (XTX + �I)�1XT y

Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 

©Emily Fox 2014 30 

From  
Kevin Murphy 
textbook 



16 

A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior  
 
n  For large λ 

 
n  The posterior is 

yi | � ⇠ N(�0 + x

T
i �,�

2)

� ⇠ N

✓
0,

�2

�
Ip

◆

� | y ⇠ N
⇣
�̂ridge,�2(XTX + �I)�1XTX�2(XTX + �I)�1

⌘

Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 

LASSO Solutions 

n  The LASSO solution is nonlinear in y…not a linear smoother 
¨  Degrees of freedom cannot be computed as before 
¨  Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011) 
¨  Standard errors via the bootstrap 

n  Efficient algorithms exist for solving 
¨  Will return to this next lecture 
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Geometric Intuition for Sparsity 
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4

Picture of Lasso and Ridge regression

β̂ β̂2
. .β

1

β 2

β
1

β

Lasso Ridge Regression

From  
Rob 
Tibshirani 
slides 

n  Hastie, Tibshirani, Friedman: 3.2 (up to 3.2.3), 3.4 
n  Wasserman: 5.2 
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Reading 
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n  Linear regression 
¨  Least squares solution 
¨  Fitted values 

n  Definition of a linear smoother 

n  Ridge objective 
¨  L2 penalized regression solution 

n  LASSO objective 

n  Intuition for differences between ridge and LASSO solutions 
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What you should know 


