Module 1: Nonparametric Preliminaries

Selecting Smoothing
Parameters
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Smoothing Parameter
" JEE
m In both ridge and lasso regression, we saw that thepg@me;ua_r

A controlled the solution
Often, can straightforwardly equate with effective degrees of freedom

d

m Which A (= estimator) should we choose??? Linea? smodtD s
Wont 600A pre&ié*'“"“s W el L)
T
ok ’

ot o4

ooooooooooooo




Two Goals

@\nodel Selection: estimating the performance of models in order to
select the best one
o E.g., choosing A
f

@\nodel Assessment: having chosen a final model, estimate its
prediction error (generalization error) on new data
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Focus on Model Selection

m Which estimator/smoothing parameter should we choose?

VALIDATION

m Recall metrics for assessing the performance of an estimator...
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Measuring Predictive Performance
" JE
= Assume estimate f,,(+) based on training data A
R Coed =

m The generalization error provides a measure of
predictive performance

GE(fx) = By [L(Y, fa(X)]
= ,t" C\Xcg
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Measuring Predictive Performance

= Assume%; loss|] {-F(N+E # £5€):0 var(e):pt K

m Averaging over repeat tralnlng sets Y, =Y, ..., Y,we get
the predictive risk at é
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» Recall MSE[[,(x)] = bias(f,(2))? + var(f,(z))
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Measuring Predictive Performance
" JEE
s an MSE be

m Finally, let’'s average over covariates x (“Lmq_ wnoid o )

Ol Integrated MSE \S\[’]SE ( ﬁ\ (x\) ?(XB AX
Summary VRN all inPrts

DAverageMSE H”'*A (orlo 25t
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m Note: Fvg pred. risk = O' +avg MSE"'\ o’
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I 1 "\\ o \e
Bias-Variance Tradeoff @ u et

oM oy
" S

m Minimizing risk = balancing bias and variance

inC. N\odzl CIM()‘IX\’C‘/ - )
o?f\mai solution for vnoclrzl selecon tusk

m Note: f(x) is unknown, so cannot actually compute MSE
——————
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Focus on Model Selection
= JEEE

m Which estimator/smoothing parameter should we choose?

TRAIN VALIDATION ""&“" h
n m

m We saw that minimizing (average) prediction error can be © f SN
equated with minimizing (average) MSE | | ceining &7

5T et rty

m With a validation set, we can estimate the prediction error
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In Practice...
"

= Minimizing risk = balancing bias and variance ¢, 0@%’"
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Low Bias

| High Bias
High Variance

Low Variance

Prediction Error
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From Hastie, Tibshirani, Friedman
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Data Scarce Approximations
" JEE
m Often, we do not have enough data to form suitably sized
training and validation sets

What is a good training/test split? Sensitivity?
Typically want to use as much data for training as possible

m Rely on other approximations using ]n-S‘fMP(& data
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m Goal: Minimize average MSE

% Z(f(%’) - fﬁ\(%))Ql

=1

min F
A

m Solution: Use tralnlng error
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In Practice...
" S

m Minimizing risk = balancing bias and variance

o High Bias Low Bias

Low Variance High Variance

Prediction Error
0.
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Model Complexity (df) VA" ,\",‘3 %L‘k S
From Hastie, Tibshirani, Friedman
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Approx 2: Cross Validation
" JEE—

m Goal: Minimize average MSE
n

min %Zu(m — PMa))?

m Solution: Mimic heldout data using *training* data

m Leave-one-out (LOO) cross validation (CV) algorithm:
Estimate fit using all but " data point s',’j — "™ olos. y-{
Predict ™ observation *

Repeat for all i

cVN) = L s (.- £ (%))

Repeat for all values of A
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Approx 2: Cross Validation
" JEEE
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m For linear smoothers o

)Yy do
n ;.nx; o 0
-1 E (B > T o

W -

R 2t disg- tlement of
M% 'M* m{y.x usu\ﬁ)\

m Warning: Curves can be very flat...Don'’t just choose and use without
thinking. Some rules of thumb (see Elements of Statistical Learning)
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Approx 2: Cross Validation

m K-fold cross validation "‘ﬂ’“"‘“"] 5, \0

TRAIN | TRAIN | YAUD- I rraN | TRAIN qaobwrly
ATION s
assiy

o ek

m Algorithm \L 0‘)'0“?
1. Fit model using data with k™ fraction removed {}\
2. Using fitted model, compute / wib K Aotk

VPl S (- PAle)

k .
zEJ'(\k) L’us %r V"l‘ \)\Df»k

>
oL L Z v, )
4. Repeat for each value of )\ using same sglit of the data
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Approx 3: Generalized CV
* JEE—
m Recall LOO ordinary CV for linear smoothers
n o 3\ T 2

=

A 1 | 3 - W
Instead fL“, - L“ = ,_{;f(L) ~ n
m Instead o use nz n

6Ly = w2 (ﬂ(x—)

n

7—
m Often very close to OCV solution
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Approx 3: Generalized CV

n

A )
GCV(A)Z%Z <yzlfn( z) {Yu/)‘)

=1

m  One motivation: Invariance to orthonormal transformations
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Approx 3: Generalized CV
"

Gevin -1y (@y f’z_(xi)f

n

(= xy*

m Using (1—2)?~1+2x

N n N .
GV = % Z‘(y;—CiLx;\) i

= Mallaw's Cp st
(e o exactly the right 5)
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Approx 4: Mallows C, Statistic
" J
m Goal: Minimize average MSE

1 ¢ ; 2] Cor \ineas montes

min £ | — = (fla) = (@)

1=1

’(}
m Solution: Approxmate directly ¢ :
e "

ave. MSE= B [(f - f)7(f - )] - L €] (v - LYY (L)
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Approx 4: Mallows C Statistic
" JEE—
avg. MSE = %E (Y - LAY)T(Y - LY)] —0® + %Wﬂ

m Estimate avg. MSE as N . w\
% 2 ¥
/\;\ RSS _ \/m (AJ1VA\ 60\&){ L , W‘;\o&‘\
L/ Js‘ ”s
0
1%

min Hollow’s Cp
Res*  _ (n-2Vh)
—

b

o—w"x
m Note: Arises from considering L, loss. Log-likelihood loss
leads to AIC. For BIC, consider Bayesian model selection
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Bayesian Model Selection
" JEE—
m Assume some M possible models

Model M,, m=1,...,M has parameters Qm and prior p(@m | Mm)
Prior over models p(M,,,)

awn AA,’(A
= Model posteri Lrhe .
p(Mm | Z) o< p(My)p(Z | Mym) O 'u&'“,,
=
O<29(Mm)/10(Z | Oy M) p(On | Myy)dO,, o B
e =

m Compare models:
i p(M | Z)  p(My)p(Z | M) >
G 1 2) T pOp )|

1 - o #5
e :::of \ w1§oc“°(

©Emily Fox 2014 22

11



Bayesian Model Selection
" JEE (
La‘)0CL*~.~

m For Bayes factor, approximate WL est- — b of Groe pRfA>
10g p(Z | Myn) ~ 10gp(Z | fins Myn) = - logn + O(1)

m Iflossis —210gp(Z | Oy, M), then equivalent to BIC
Minimizing BIC = maximizing approximated posterior

m However, in addition to being able to select the best model, in
Bayesian framework we also get the relative merit of each

o—3BIC,,
Ay —
D=1 € s BIC,

m BIC is asymptotically consistent, but AIC is not
m For finite samples, BIC tends to choose too simple models
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Reading

" JEE
m Hastie, Tibshirani, Friedman: 7.2 (again), 7.4-7.7, 7.10
m Wakefield: 10.6 (up to 10.6.4)
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What you should know...
* JEE

m Model selection vs. model assessment tasks

m Training/validation/test split

m In-sample approaches for selecting the smoothing parameters:
Training error = BAD

Cross validation (CV)

= LOO

s K-fold
Generalized cross validation (GCV)
Mallow’s C,,

m Bayesian model selection
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Module 2: Splines and Kernel Methods

=

Spline Model Overview,

Regression Splines,
Smoothing Splines

STAT/BIOSTAT 527, University of Washington

Emily Fox
April 8t, 2014
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Moving Beyond Linearity
" SN

m So far we have assumed §tandard linear models
M/;n lly«)(ﬁll,y — F(x) g

m In the case of many predictors relative to number of observations,

we considered penalized regression to avoid overfitting

miv\ll\lv)(ﬁ”;l £ a1l
A

m Often a convenient form, and necessary to assume simple
structure to avoid overfitting in data-scarce regimes, but linear
assumption rarely holds in practice
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Moving Beyond Linearity
" S

m Consider generic functional forms (univariate x for now)

min [ly- €0}
; f

If constrained to linear forms > LS %‘V\
If arbitrary > "M:uPo\o\kor OVI-/‘C'"‘“""ﬁ
m As before, penalize complexity. Here, in terms of r:o%gggg.
m’;\ Il \/,CMIIJ t X ‘[F”(x)’ix

IFA> 0, inkerpolat®” nk
IFA> o, LS seln (line ... no 1 AUB

m Remarkable result: Explicit, finite-dimensional minimizer
"“69 nox(\*fa\ cubic sp\'me. w/ knot 8 at dats P{:S
—

Usmontding 5 p\’mc"
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Backtrack a bit...
= JEE

m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of
these transformations M

£ Lrons.
f('r): Zﬁ w “— liMV in These

m=1 gm‘g{,rmﬁi@‘s
m What transformations should we use?
hon(z) = T > |inear model
hn(2) = a2, hon(@) = i > polynomial 9.
hm(x) = I(Lm < < Um) > P:LuwiSz con Skt
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Piecewise Polynomial Fits
“ JEE

m Again, assume x univariate
ﬂ

m Polynomial fits are often good locally, but not globally

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials
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Piecewise Polynomial Fits

* JEE—
LIDAR Data Example
(a) (b)

-08 -06 -04 -02 00
1 1 1 1 1
-08 -06 -04 -02 00

2 From
Wakefi

book

1 1 1 1 1
y
08 -06 -04 -02 00

-08 -06 -04 -02 00
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Piecewise Constant/Linear Fits

m Example 1: Piecewise constant, with 3 basis functions

I (w) = T(x¢ ﬁQ/ (rot”
ha(z) = t[i'é ¥ £ 90
ha(w) = T(i»ﬁy\ 3
m Resulting model: f(z) = > Bmhm(x)

m Fit: Take mean of data in each region
ﬁm 2 Yy — data in agien
m Example 2: Piecewise linear

m Add three basis functions:

(]

hmt3 = hom () ney 2>
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Piecewise Constant
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Regression Splines — Linear

m Resulting piecewise linear model:

fla) =I(x < &)(Br + Pax) + I(& < v < &) (B2 + Bsx) + I(§2 < )(B3 + Bsx)

# of params? é

m Typically prefer continuity...
Enforce L’( il’ ) £ (3‘*)

c%;%”if)

Which;rr:;zl;e: %‘ . ﬁ; *Isg f\
By b b = byt Ay fZ

# params?
b2 =
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Continuous Piecewise Linear
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From Hastie, Tibshirani,
Friedman book
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Regression Splines — Linear

m More directly, we can use the truncated power basis /\/ y

hi(z) =1
ho(z) ==
hs(x) = (x — &)+
ha(z) = (x — &2)+
m Resulting model:
flx) = Byx B Brlx-f )
ey (- f )

y
00 02 04 06 08 10

|

/-l«3
¢

|

&

&, & -7
v v
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

|

|

|

|

From Wakefield book

m Continuous at the knots because all prior basis functions are

contributing to the fit up to any single x
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Reading

" JE
m Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3)
m Wakefield: 11.1.1-11.2.3
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What you should know...
* JEE—

m Linear basis expansions

m Regression splines
Cubic splines, natural cubic splines, ...
Interpretation as a linear smoother
Degrees of freedom

m Smoothing splines

Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point
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