Module 1: Nonparametric Preliminaries

Selecting Smoothing
Parameters
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Smoothing Parameter
* JEE
m In both ridge and lasso regression, we saw that the parameter

A controlled the solution
Often, can straightforwardly equate with effective degrees of freedom

m Which A (= estimator) should we choose???
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Two Goals
" JEE
m Model Selection: estimating the performance of models in order to

select the best one
o E.g., choosing A

m Model Assessment: having chosen a final model, estimate its
prediction error (generalization error) on new data

m Ideally, divide data into 3 parts

TRAIN VALIDATION TEST
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Focus on Model Selection
" JE
m Which estimator/smoothing parameter should we choose?

VALIDATION

m Recall metrics for assessing the performance of an estimator...
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Measuring Predictive Performance
" JEEE

= Assume estimate f,,(+) based on training data A

m The generalization error provides a measure of
predictive performance

GE(f,) = By x [L(Y, fu(X))]
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Measuring Predictive Performance
* JEE—
m Assume L,loss Y- F00tE 3 £(e):0 vor(e):g*

m Averaging over repeat training sets Y, = Y, ..., Y, we get
the predictive risk at x*
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m Recall MSE[f,(x)] = bias(f,(2))? + var(f,(z))
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Measuring Predictive Performance
" JEE
s an MSE be

m Finally, let’'s average over covariates x (“Lmq_ wnoid o )
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Bias-Variance Tradeoff @ u et
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" NN

m Minimizing risk = balancing bias and variance

)
© (:.l;\ wnc. Model compleity —
Q -
tﬂ‘“ ’ \ pptimal solution for model sdection tasle
m Note: f(x) is unknown, so cannot actually compute MSE
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Focus on Model Selection
= JEE

m Which estimator/smoothing parameter should we choose?

TRAIN VALIDATION

m We saw that minimizing (average) prediction error can be
equated with minimizing (average) MSE

m With a validation set, we can estimate the prediction error
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In Practice...
" D

m Minimizing risk = balancing bias and variance
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From Hastie, Tibshirani, Friedman
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Data Scarce Approximations
* JEE—
m Often, we do not have enough data to form suitably sized
training and validation sets

What is a good training/test split? Sensitivity?
Typically want to use as much data for training as possible

m Rely on other approximations
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Approx 1: Training Data Only
" S

m Goal: Minimize average MSE
n

min B | - S(F () — w0

=1

m Solution: Use training error
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In Practice...
» B

m Minimizing risk = balancing bias and variance
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Approx 2: Cross Validation
" JEE—

m Goal: Minimize average MSE
n

min %Zu(m — PMa))?

m Solution: Mimic heldout data using *training* data

m Leave-one-out (LOO) cross validation (CV) algorithm:
Estimate fit using all but " data point
Predict " observation
Repeat for all i

Repeat for all values of A
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Approx 2: Cross Validation

m Reasoning

m For linear smoothers

m Warning: Curves can be very flat...Don'’t just choose and use without
thinking. Some rules of thumb (see Elements of Statistical Learning)
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Approx 2: Cross Validation

m K-fold cross validation
VALID-
TRAIN | TRAIN | - 8 | TRAIN | TRAIN

= Algorithm
1. Fit model using data with k™ fraction removed
2. Using fitted model, compute

cvk_—z — ()

zEJ(k)
3. Store

1 K
CV=2> CVi

4. Repeat for each value of A using same split of the data
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Approx 3: Generalized CV
" S

m Recall LOO ordinary CV for linear smoothers

UOEESS (—yll _fg(ﬁl))

=1

1 n
» Instead of L;;, use - z; Li;
1=

m Often very close to OCV solution
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Approx 3: Generalized CV

" JEE— X
GOV (\) = %i (—yi - _f’ixi)>

i=1 n

m  One motivation: Invariance to orthonormal transformations
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Approx 3: Generalized CV
"

2
1« Yi — JM 331)
GCV(A) = ﬁ :E ( — )

’I’L

m Using (1—2)?~1+2x
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Approx 4: Mallows C, Statistic
* JEE—

m Goal: Minimize average MSE
n

min B | - S(F () — w0

i=1
m Solution: Approximate directly

avg, MSE = =5 [(/ = )7 (7 = )

ooooooooooooo
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Approx 4: Mallows C Statistic
" JEE—
avg. MSE = %E (Y = L*Y)T (Y = LMY)] —o? + %Wﬂ

m Estimate avg. MSE as

m Note: Arises from considering L, loss. Log-likelihood loss
leads to AIC. For BIC, consider Bayesian model selection
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Bayesian Model Selection
* JEE——
m Assume some M possible models

Model M,, m=1,...,M has parameters Qm and prior p(@m | Mm)
Prior over models p(M,,,)

m Model posterior
(M, | Z) o< p(Mp)p(Z | Miy,)

< p(M) [ (2| Mo )p(61 | My ),
m Compare models:

p(My, | Z) _ p(My)p(Z | M) 2 1
p(Me | Z)  p(Me)p(Z | M)
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Bayesian Model Selection
* JEE—

m For Bayes factor, approximate
A 1%
logp(Z | Myn) ~10gp(Z | 6, M) — == logn + O(1)

m Iflossis —210gp(Z | Oy, M), then equivalent to BIC
Minimizing BIC = maximizing approximated posterior

m However, in addition to being able to select the best model, in
Bayesian framework we also get the relative merit of each

o—3BIC,,
=y VY
Z@:]_ e 2:B:[Cg

m BIC is asymptotically consistent, but AIC is not
m For finite samples, BIC tends to choose too simple models
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Reading

" JEE
m Hastie, Tibshirani, Friedman: 7.2 (again), 7.4-7.7, 7.10
m Wakefield: 10.6 (up to 10.6.4)
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What you should know...
* JEE

m Model selection vs. model assessment tasks

m Training/validation/test split

m In-sample approaches for selecting the smoothing parameters:
Training error = BAD

Cross validation (CV)

= LOO

s K-fold
Generalized cross validation (GCV)
Mallow’s C,,

m Bayesian model selection
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Module 2: Splines and Kernel Methods

Spline Model Overview,

Regression Splines,
Smoothing Splines

STAT/BIOSTAT 527, University of Washington

Emily Fox
April 8t, 2014
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Moving Beyond Linearity
" S

m So far we have assumed standard linear models

m In the case of many predictors relative to number of observations,

we considered penalized regression to avoid overfitting

m Often a convenient form, and necessary to assume simple
structure to avoid overfitting in data-scarce regimes, but linear
assumption rarely holds in practice
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Moving Beyond Linearity
" S

m Consider generic functional forms (univariate x for now)

If constrained to linear forms >
If arbitrary >

m As before, penalize complexity. Here, in terms of roughness.

IfA >0,
IfA > o,

m Remarkable result: Explicit, finite-dimensional minimizer
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Backtrack a bit...
= JEE

m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of

these transformations M
f(x) = Z 6mhm($)
m=1
m What transformations should we use?
hn(z) = 2y 2

him(2) :x?7 hp(z) = 2571 >
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Piecewise Polynomial Fits
" JE

m Again, assume x univariate

m Polynomial fits are often good locally, but not globally

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials
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Piecewise Polynomial Fits
"

LIDAR Data Example
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Piecewise Constant/Linear Fits
= JEEE

Example 1: Piecewise constant, with 3 basis functions

Piecewise Constant

hl(ilf) =
h2<$) =
hg(&?) =

3
Resulting model: f(x) = Bmhm(x)
m=1

Fit: Take mean of data in each region

Example 2: Piecewise linear
Add three basis functions:

himts = hpm(x)x
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Regression Splines — Linear
* JEE—
m Resulting piecewise linear model:
f(x) = I(x < &) (Br 4 Pax) + 1(§1 < w0 < &) (B2 + Bsx) + 1(§2 < )(Bs + Pox)
# of params?

Continuous Piecewise Linear

m Typically prefer continuity...

| 1
° o | |
Enforce P e
] A
N ° | °
NN
Which implies T
| |
e
& 133
# params? From Hastie, Tibshirani,

Friedman book
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Regression Splines — Linear
* JEE——
m More directly, we can use the truncated power basis
hi(z) =1
ho(z) ==
hs(z) = (z — &)+
ha(z) = (x — &2)+

] ReSuIting mOdel: 00 02 04 06 08 1.0

x

From Wakefield book

y

00 02 04 06 08 10

g, &,

m Continuous at the knots because all prior basis functions are
contributing to the fit up to any single x
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Regression Splines — Cubic
* JE
m Naively, extend as
f(x) = Bo+ Brz 4 Por® + Bs(x — &)1 + Balz — &1)F + Bs(x — &)+ + Bo(z — &)3

But, 1st derivate is discontinuous (check this)
Drop the truncated linear basis:

Has continuous 1st derivative (check), but not 2nd

m Popular to consider cubic spline:
f(@) = Bo + Bz + Baz” + B3z’ + by (w — &) + ba(z — &)

m Has continuous 15t and 2" derivatives
m Typically people stop here
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Cubic Splines as Linear Smoothers
" S

m Cubic spline function with K knots: K

f(@) = Bo+ Bra + Baa® + Baa® + > be(w — &)}

k=1
m Simply a linear model

m Estimator:

m Linear smoother:
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Natural Cubic Splines
" JEE
m For polynomial regression, fit near boundaries is erratic.
Problem is worse for splines: each is fit locally so no global constraint

m Natural cubic splines enforce linearity beyond boundary knots

m Starting from a cubic spline basis, the natural cubic spline basis is

Ni(z) =1 No(x) =2  Niyo(z) =di(x) — dr—1(2)

(z—&)3 — (z—€x)3

di(w) = Ex — &k

m Derivation
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19



Regression Splines — Summary
* JE
m Definition:
An order-M spline with knots £ < &5 < - -+ < £

is a piecewise M-1 degree polynomial with M-2
continuous derivatives as the knots

A spline that is linear beyond the boundary knots is
called a natural spline

m Choices:
Order of the spline
Number of knots
Placement of knots
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Return to Smoothing Splines
“

m Objective:

mlnz f(x;)) +)\/f"

m Solution:
Natural cubic spline
Place knots at every observation location x;

m Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines

* JEE—
m Model is of the form:  f(z) = Z N, (z)8;
m Rewrite objective: :

(y—NB)T(y— NB) + ABTQn B

m Solution:

m Linear smoother:
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Splines — Summary
" S

m Regression splines:
Fewer number of knots and no regularization

m Smoothing splines:

Knots at every observation and regularization
(smoothness penalty) to avoid interpolators
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Reading

" JE
m Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3)
m Wakefield: 11.1.1-11.2.3
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What you should know...
* JEE—

m Linear basis expansions

m Regression splines
Cubic splines, natural cubic splines, ...
Interpretation as a linear smoother
Degrees of freedom

m Smoothing splines

Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point
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