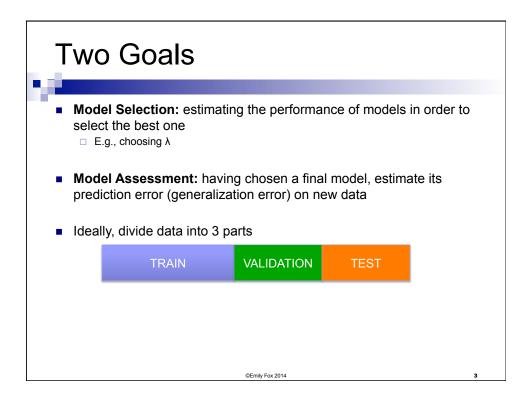
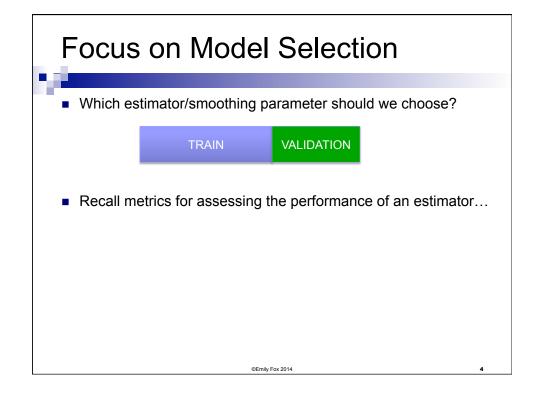


Smoothing Parameter

- In both ridge and lasso regression, we saw that the parameter λ controlled the solution
 - $\hfill \Box$ Often, can straightforwardly equate with effective degrees of freedom
- Which λ (\rightarrow estimator) should we choose???

©Emily Fox 2014





Measuring Predictive Performance

- Assume estimate $\hat{f}_n(\cdot)$ based on training data $\mathbf{y}_{1,...,}$ \mathbf{y}_n
- The generalization error provides a measure of predictive performance

$$GE(\hat{f}_n) = E_{Y,X} \left[L(Y, \hat{f}_n(X)) \right]$$

Measuring Predictive Performance

- Assume *L*₂ loss
- Y= f(x)+ € \$ E(E)=0 Var(E)=02
- Averaging over repeat training sets $Y_n = Y_1, ..., Y_n$ we get the **predictive** risk at x^*

the predictive risk at
$$x^*$$

$$E_{Y^*,Y_n}\left[(Y^* - \hat{f}_n(x^*))^2\right] = E_{Y^*,Y_n}\left[(Y^* - f(x^*) + f(x^*) - \hat{f}_n(x^*))^2\right]$$

$$\lim_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \in \mathbb{R}^n} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*))^2\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \int_{x^* \to \infty} \left[(\hat{f}_n(x^*) - f(x^*) - f(x^*)\right] + \sum_{x \to \infty} \left[(\hat{f}$$

■ Recall $MSE[\hat{f}_n(x)] = bias(\hat{f}_n(x))^2 + var(\hat{f}_n(x))$

Measuring Predictive Performance

Finally, let's average over covariates
$$x$$

Integrated MSE

MSE ($\hat{f}_n(x)$) $p(x) dx$

Summary over all inputs

Average MSE

Average MSE

MSE ($\hat{f}_n(x)$)

Note: avg. pred. risk = σ^2 + avg. MSE

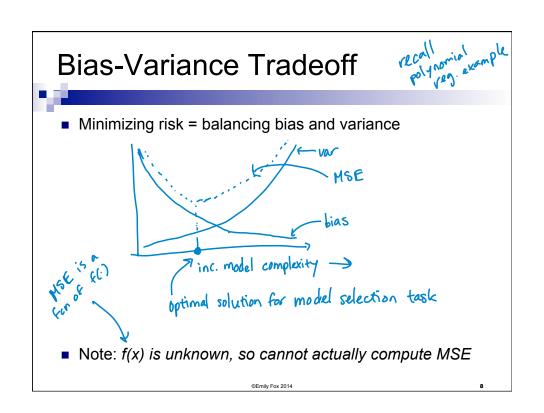
($(x^* - \hat{f}_n(x))^2$)

Still our country over all inputs

 $(x^* - \hat{f}_n(x))^2$

Still our country over all inputs

 $(x^* - \hat{f}_n(x))^2$



Focus on Model Selection

• Which estimator/smoothing parameter should we choose?

TRAIN VALIDATION

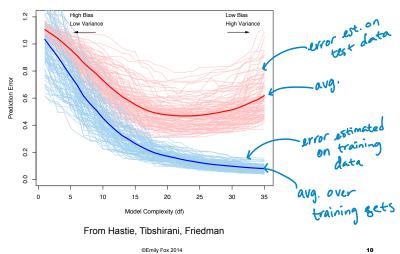
- We saw that minimizing (average) prediction error can be equated with minimizing (average) MSE
- With a validation set, we can estimate the prediction error

©Emily Fox 2014

.

In Practice...

Minimizing risk = balancing bias and variance



Data Scarce Approximations

- Often, we do not have enough data to form suitably sized training and validation sets
 - ☐ What is a good training/test split? Sensitivity?
 - □ Typically want to use as much data for training as possible
- Rely on other approximations

©Emily Fox 201

11

Approx 1: Training Data Only

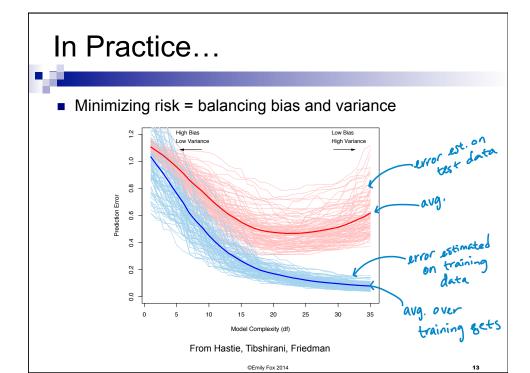
■ Goal: Minimize average MSE

$$\min_{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \hat{f}_n^{\lambda}(x_i))^2\right]$$

Solution: Use training error

©Emily Fox 2014

. .



Approx 2: Cross Validation

■ Goal: Minimize average MSE

$$\min_{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \hat{f}_n^{\lambda}(x_i))^2\right]$$

- Solution: Mimic heldout data using *training* data
- Leave-one-out (LOO) cross validation (CV) algorithm:
 - $\hfill\Box$ Estimate fit using all but \emph{i}^{th} data point
 - □ Predict *i*th observation
 - □ Repeat for all i
 - Repeat for all values of λ

©Emily Fox 2014

..

Approx 2: Cross Validation

Reasoning

- For linear smoothers
- Warning: Curves can be very flat...Don't just choose and use without thinking. Some rules of thumb (see Elements of Statistical Learning)

©Emily Fox 2014

15

Approx 2: Cross Validation

K-fold cross validation

TRAIN

TRAIN

- Algorithm
 - 1. Fit model using data with kth fraction removed
 - 2. Using fitted model, compute

$$CV_k = \frac{1}{n_k} \sum_{i \in J(k)} (y_i - \hat{f}_{-k}^{\lambda}(x_i))$$

3. Store

$$\mathbf{C}\mathbf{V} = \frac{1}{K}\sum_{k=1}^K \mathbf{C}\mathbf{V}_k$$

4. Repeat for each value of λ using same split of the data

©Emily Fox 2014

Approx 3: Generalized CV

Recall LOO ordinary CV for linear smoothers

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}_n^{\lambda}(x_i)}{1 - L_{ii}} \right)^2$$

- \blacksquare Instead of L_{ii} , use $\frac{1}{n}\sum_{i=1}^n L_{ii}$
- Often very close to OCV solution

©Emily Fox 2014

17

Approx 3: Generalized CV

$$GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}_n^{\lambda}(x_i)}{1 - \frac{\nu_{\lambda}}{n}} \right)^2$$

• One motivation: Invariance to orthonormal transformations

©Emily Fox 2014

Approx 3: Generalized CV

$$GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}_n^{\lambda}(x_i)}{1 - \frac{\nu_{\lambda}}{n}} \right)^2$$

 $\qquad \qquad \text{Using } (1-x)^{-2} \approx 1 + 2x$

©Emily Fox 201

19

Approx 4: Mallows C_p Statistic

Goal: Minimize average MSE

$$\min_{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \hat{f}_n^{\lambda}(x_i))^2\right]$$

■ Solution: Approximate directly

avg. MSE =
$$\frac{1}{n}E\left[(f - \hat{f}_n^{\lambda})^T(f - \hat{f}_n^{\lambda})\right]$$

©Emily Fox 2014

Approx 4: Mallows C_p Statistic

avg.
$$MSE = \frac{1}{n}E\left[(Y - L^{\lambda}Y)^{T}(Y - L^{\lambda}Y)\right] - \sigma^{2} + \frac{2}{n}\nu_{\lambda}\sigma^{2}$$

■ Estimate avg. MSE as

■ Note: Arises from considering L_2 loss. Log-likelihood loss leads to AIC. For BIC, consider Bayesian model selection

©Emily Fox 2014

21

Bayesian Model Selection

- Assume some M possible models
 - $\ \square$ Model M_m m=1,...,M has parameters $\ \theta_m$ and prior $\ p(\theta_m \mid M_m)$
 - $\ \square$ Prior over models $p(M_m)$
- Model posterior

$$p(M_m \mid Z) \propto p(M_m)p(Z \mid M_m)$$
$$\propto p(M_m) \int p(Z \mid \theta_m, M_m)p(\theta_m \mid M_m)d\theta_m$$

Compare models:

$$\frac{p(M_m \mid Z)}{p(M_\ell \mid Z)} = \frac{p(M_m)p(Z \mid M_m)}{p(M_\ell)p(Z \mid M_\ell)} \stackrel{<}{<} 1$$

©Emily Fox 2014

Bayesian Model Selection

• For Bayes factor, approximate ν_m

$$\log p(Z \mid M_m) \approx \log p(Z \mid \hat{\theta}_m, M_m) - \frac{\nu_m}{2} \log n + O(1)$$

- If loss is $-2\log p(Z\mid \hat{\theta}_m, M_m)$, then equivalent to BIC □ Minimizing BIC = maximizing approximated posterior
- However, in addition to being able to select the best model, in Bayesian framework we also get the relative merit of each

$$\approx \frac{e^{-\frac{1}{2}\mathrm{BIC}_m}}{\sum_{\ell=1}^M e^{-\frac{1}{2}\mathrm{BIC}_\ell}}$$

- BIC is asymptotically consistent, but AIC is not
- For finite samples, BIC tends to choose too simple models

©Emily Fox 2014

23

Reading

- Hastie, Tibshirani, Friedman: 7.2 (again), 7.4-7.7, 7.10
- Wakefield: 10.6 (up to 10.6.4)

©Emily Fox 2014

What you should know...

- Model selection vs. model assessment tasks
- Training/validation/test split
- In-sample approaches for selecting the smoothing parameters:
 - □ Training error = BAD
 - □ Cross validation (CV)
 - LOO
 - K-fold
 - □ Generalized cross validation (GCV)
 - □ Mallow's C_p
- Bayesian model selection

©Emily Fox 2014

25

Module 2: Splines and Kernel Methods

STAT/BIOSTAT 527, University of Washington Emily Fox April 8th, 2014

©Emily Fox 2014

Moving Beyond Linearity

- So far we have assumed standard linear models
- In the case of many predictors relative to number of observations, we considered penalized regression to avoid overfitting
- Often a convenient form, and necessary to assume simple structure to avoid overfitting in data-scarce regimes, but linear assumption rarely holds in practice

©Emily Fox 2014

27

Moving Beyond Linearity

- Consider generic functional forms (univariate x for now)
 - □ If constrained to linear forms →
 - □ If arbitrary →
- As before, penalize complexity. Here, in terms of roughness.
 - \Box If $\lambda \rightarrow 0$,
 - \Box If $\lambda \rightarrow \infty$,
- Remarkable result: Explicit, finite-dimensional minimizer

©Emily Fox 2014

Backtrack a bit...

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
- Linear basis expansions maintain linear form in terms of these transformations

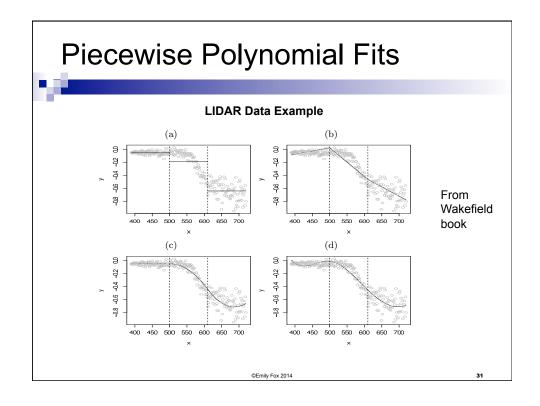
$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x)$$

- What transformations should we use?

 - $\Box h_m(x) = x_m \Rightarrow$ $\Box h_m(x) = x_j^2, \quad h_m(x) = x_j x_k \Rightarrow$
 - $\Box h_m(x) = I(L_m \le x_k \le U_m) \rightarrow$

Piecewise Polynomial Fits

- Again, assume x univariate
- Polynomial fits are often good locally, but not globally
 - □ Adjusting coefficients to fit one region can make the function go wild in other regions
- Consider piecewise polynomial fits
 - □ Local behavior can often be well approximated by low-order polynomials



Piecewise Constant/Linear Fits

Example 1: Piecewise constant, with 3 basis functions

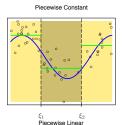
$$h_1(x) =$$

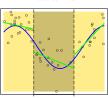
$$h_2(x) =$$

$$h_3(x) =$$

- Resulting model: $f(x) = \sum_{m=1}^{3} \beta_m h_m(x)$
- Fit: Take mean of data in each region
- Example 2: Piecewise linear
- Add three basis functions:

$$h_{m+3} = h_m(x)x$$





From Hastie, Tibshirani, Friedman book

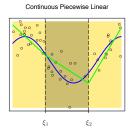
©Emily Fox 2014

Regression Splines – Linear

Resulting piecewise linear model:

$$f(x) = I(x < \xi_1)(\beta_1 + \beta_4 x) + I(\xi_1 \le x < \xi_2)(\beta_2 + \beta_5 x) + I(\xi_2 \le x)(\beta_3 + \beta_6 x)$$

- # of params?
- Typically prefer continuity...
 - □ Enforce
 - Which implies
 - □ # params?



From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

33

Regression Splines – Linear

More directly, we can use the truncated power basis

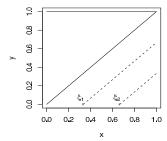
$$h_1(x) = 1$$

$$h_2(x) = x$$

$$h_3(x) = (x - \xi_1)_+$$

$$h_4(x) = (x - \xi_2)_+$$

Resulting model:



From Wakefield book

 Continuous at the knots because all prior basis functions are contributing to the fit up to any single x

©Emily Fox 2014

Regression Splines - Cubic

Naively, extend as

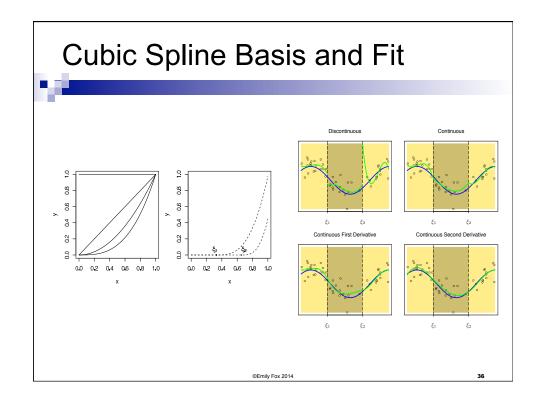
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 (x - \xi_1)_+ + \beta_4 (x - \xi_1)_+^2 + \beta_5 (x - \xi_2)_+ + \beta_6 (x - \xi_2)_+^2$$

- But, 1st derivate is discontinuous (check this)
- Drop the truncated linear basis:
- Has continuous 1st derivative (check), but not 2nd
- Popular to consider *cubic spline*:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + b_1 (x - \xi_2)_+^3 + b_2 (x - \xi_2)_+^3$$

- Has continuous 1st and 2nd derivatives
- Typically people stop here

©Emily Fox 2014



Cubic Splines as Linear Smoothers

- Cubic spline function with K knots: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sum_{k=1}^K b_k (x \xi_k)_+^3$
- Simply a linear model

- Estimator:
- Linear smoother:

©Emily Fox 2014

37

Natural Cubic Splines

- For polynomial regression, fit near boundaries is erratic.
 - □ Problem is worse for splines: each is fit locally so no global constraint
- Natural cubic splines enforce linearity beyond boundary knots
- Starting from a cubic spline basis, the natural cubic spline basis is

$$N_1(x) = 1$$
 $N_2(x) = x$ $N_{k+2}(x) = d_k(x) - d_{K-1}(x)$

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$

Derivation

©Emily Fox 2014

Regression Splines – Summary

Definition:

An **order-M spline** with knots $\xi_1 < \xi_2 < \cdots < \xi_K$ is a piecewise M-1 degree polynomial with M-2 continuous derivatives as the knots

A spline that is linear beyond the boundary knots is called a **natural spline**

- Choices:
 - □ Order of the spline
 - Number of knots
 - Placement of knots

©Emily Fox 2014

39

Return to Smoothing Splines

Objective:

$$\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

- Solution:
 - □ Natural cubic spline
 - \square Place knots at every observation location x_i
- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
 - Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
 - \square Will not typically interpolate data, and smoothness is determined by λ

©Emily Fox 2014

Smoothing Splines

- Model is of the form: $f(x) = \sum_{j=1}^{n} N_j(x)\beta_j$
- Rewrite objective:

$$(y - N\beta)^T (y - N\beta) + \lambda \beta^T \Omega_N \beta$$

- Solution:
- Linear smoother:

©Emily Fox 2014

41

Splines – Summary

Regression splines:

Fewer number of knots and no regularization

Smoothing splines:

Knots at every observation and regularization (smoothness penalty) to avoid interpolators

©Emily Fox 2014

Reading

■ Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3)

Wakefield: 11.1.1-11.2.3

©Emily Fox 2014

43

What you should know...

- Linear basis expansions
- Regression splines
 - □ Cubic splines, natural cubic splines, ...
 - □ Interpretation as a linear smoother
 - Degrees of freedom
- Smoothing splines
 - □ Arising from penalized regression setting with smoothness penalty
 - □ Cubic spline basis with knots at every data point

©Emily Fox 2014

..