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Module 2: Splines and Kernel Methods 

Backtrack a bit… 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)
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Piecewise Polynomial Fits 
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n  Again, assume x univariate 

n  Polynomial fits are often good locally, but not globally 
¨  Adjusting coefficients to fit one region can make the function go wild in 

other regions 

n  Consider piecewise polynomial fits 
¨  Local behavior can often be well approximated by low-order polynomials 

Piecewise Polynomial Fits 
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(a) (b)

(c) (d)

Figure 20: Piecewise polynomials, for the LIDAR data: (a) constant,

(b) linear, (c) quadratic, (d) cubic.
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To motivate spline models, we fit piecewise constant, linear,

quadratic and cubic models using least squares, with three pieces in

each case.

The fits are displayed in Figure 20. The piecewise linear model is

shown in Figure 20(b). By forcing the curve to be continuous but

only allowing linear segments we see that the fit is not good

(particularly in the first segment). The lack of smoothness is also

undesirable.

The quadratic and cubic fits in panels (c) and (d) are far more

visually appealing, though neither provide satisfactory fits, because

we have only allowed three piecewise polynomials. In particular, in

panel (d) the cubic fit is still poor at the left endpoint.

153

From 
Wakefield 
book 

LIDAR Data Example 
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Regression Splines – Linear  
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n  More directly, we can use the truncated power basis 

 

n  Resulting model: 

n  Continuous at the knots because all prior basis functions are 
contributing to the fit up to any single x 

From Wakefield book 

2012 Jon Wakefield, Stat/Biostat 527

The lack of continuity is a problem with this model, but we can

impose two constraints to enforce f(ξ−1 ) = f(ξ+
1 ) and

f(ξ−2 ) = f(ξ+
2 ), which implies

β1 + ξ1β4 = β2 + ξ1β5

β2 + ξ2β5 = β3 + ξ2β6

to give four parameters in total. A neater way of incorporating

these constraints is with the basis:

h1(x) = 1, h2(x) = x, h3(x) = (x−ξ1)+, h4(x) = (x−ξ2)+ (42)

where t+ denotes the positive part. The generic basis (x − ξ)+ is

sometimes referred to as a truncated line. The resultant function

f(x) = β0 + β1x + β2(x − ξ1)+ + β3(x − ξ2)+

is continuous at the knots, since all prior basis functions are

contributing to the fit up to any single x value.
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The model defined by the basis (42) is an order-2 spline and the

first derivative is discontinuous.

Figure 21 shows the basis functions for this representation.

Figure 21: Basis functions for piecewise linear model with two knots

at ξ1 and ξ2. The solid lines are the bases 1 and x, and the dashed

lines are the bases (x − ξ1)+ and (x − ξ2)+.
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h3(x) = (x� ⇠1)+

h4(x) = (x� ⇠2)+

h2(x) = x

h1(x) = 1

Regression Splines – Cubic  
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n  Naively, extend as 

n  But, 1st derivate is discontinuous (check this) 
n  Drop the truncated linear basis: 

n  Has continuous 1st derivative (check), but not 2nd 

n  Popular to consider cubic spline: 

 
n  Has continuous 1st and 2nd derivatives 
n  Typically people stop here 

f(x) = �0 + �1x+ �2x
2 + �3(x� ⇠1)+ + �4(x� ⇠1)

2
+ + �5(x� ⇠2)+ + �6(x� ⇠2)

2
+

f(x) = �0 + �1x+ �2x
2 + �3x

3 + b1(x� ⇠2)
3
+ + b2(x� ⇠2)

3
+
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Cubic Spline Basis and Fit 
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5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

2012 Jon Wakefield, Stat/Biostat 527

Figure 22: Basis functions for a piecewise cubic spline model, with

two knots at ξ1 and ξ2. Panel (a) shows the bases 1, x, x2, x3, and

panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+.
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For K knots we write the cubic spline function as

f(x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

bk(x − ξk)3+, (43)

so that we have K + 4 coefficients.

We simply have a linear model, f(x) = E[Y | c] = cγ, where

c =

2

6666664

1 x1 x2
1 x3

1 (x1 − ξ1)3+ ... (x1 − ξK)3+

1 x2 x2
2 x3

2 (x2 − ξ1)3+ ... (x2 − ξK)3+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3+ ... (xn − ξK)3+

3

7777775
, γ =

2

666666666666664

β0

β1

β2

β3

b1

...

bK

3

777777777777775

.

Estimator: bγ = (cTc)−1cTY . Linear smoother: bY = SY , S = c(cTc)−1cT.

161

Cubic Splines as Linear Smoothers 
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n  Cubic spline function with K knots: 

 
n  Simply a linear model 

n  Estimator: 

n  Linear smoother: 

f(x) = �0 + �1x+ �2x
2 + �3x

3 +
KX

k=1

bk(x� ⇠k)
3
+
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Natural Cubic Splines 
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n  For polynomial regression, fit near boundaries is erratic. 
¨  Problem is worse for splines: each is fit locally so no global constraint 

n  Natural cubic splines enforce linearity beyond boundary knots 

n  Starting from a cubic spline basis, the natural cubic spline basis is 

n  Derivation 

N1(x) = 1 N2(x) = x Nk+2(x) = dk(x)� dK�1(x)

dk(x) =
(x� ⇠k)3+ � (x� ⇠K)3+

⇠K � ⇠k

Regression Splines – Summary  
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n  Definition: 
 An order-M spline with knots 
 is a piecewise M-1 degree polynomial with M-2 
 continuous derivatives as the knots 

 
 A spline that is linear beyond the boundary knots is 
 called a natural spline 

n  Choices: 
¨  Order of the spline 
¨  Number of knots 
¨  Placement of knots 

⇠1 < ⇠2 < · · · < ⇠K
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Return to Smoothing Splines 
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n  Objective: 

 
n  Solution: 

¨  Natural cubic spline 
¨  Place knots at every observation location xi 

n  Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook 

n  Notes: 
¨  Would seem to overfit, but penalty term shrinks spline coefficients 

toward linear fit 
¨  Will not typically interpolate data, and smoothness is determined by λ 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

Smoothing Splines 
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n  Model is of the form: 

n  Rewrite objective: 

n  Solution: 

n  Linear smoother: 

f(x) =
nX

j=1

Nj(x)�j

(y �N�)T (y �N�) + ��T⌦N�
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Splines Intro – Summary  
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n  Regression splines:  
 Fewer number of knots and no regularization 

 
n  Smoothing splines:  

 Knots at every observation and regularization 
 (smoothness penalty) to avoid interpolators 
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B-Splines 
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Module 2: Splines and Kernel Methods 
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Cubic Spline Basis and Fit 
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5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

2012 Jon Wakefield, Stat/Biostat 527

Figure 22: Basis functions for a piecewise cubic spline model, with

two knots at ξ1 and ξ2. Panel (a) shows the bases 1, x, x2, x3, and

panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+.
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For K knots we write the cubic spline function as

f(x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

bk(x − ξk)3+, (43)

so that we have K + 4 coefficients.

We simply have a linear model, f(x) = E[Y | c] = cγ, where

c =

2

6666664

1 x1 x2
1 x3

1 (x1 − ξ1)3+ ... (x1 − ξK)3+

1 x2 x2
2 x3

2 (x2 − ξ1)3+ ... (x2 − ξK)3+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3+ ... (xn − ξK)3+

3

7777775
, γ =

2

666666666666664

β0

β1

β2

β3

b1

...

bK

3

777777777777775

.

Estimator: bγ = (cTc)−1cTY . Linear smoother: bY = SY , S = c(cTc)−1cT.
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n  Cubic spline function with K knots: 

 
f(x) = �0 + �1x+ �2x

2 + �3x
3 +

KX

k=1

bk(x� ⇠k)
3
+

B-Splines 
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n  Alternative basis for representing polynomial splines 
n  Computationally attractive…Non-zero over limited range 
n  As before: 

¨  Knots  
¨  Domain  
¨  Number of basis functions =  

n  Step 1: Add knots 

n  Step 2: Define auxiliary knots  ⌧j

⌧1  ⌧2  · · ·  ⌧M  ⇠0

⌧j+M = ⇠j

⇠K+1  ⌧K+M+1  · · ·  ⌧K+2M
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B-Splines 
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n  For 1st order B-spline 

188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

From Hastie, 
Tibshirani, Friedman 

book 

188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B-Splines 
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n  For 2nd order B-spline 

n  Modify 1st order basis: 

n  Convention: If divide by 0, set basis element to 0 

From Hastie, 
Tibshirani, Friedman 

book 
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n  For mth order B-spline, m=1,…, M 

n  Modify (m-1)th order basis: 

 

¨  B-spline bases are non-zero over domain spanned by at most M+1 knots 
¨  Only subsets      are needed for 

basis of order m with knots  

B-Splines 

©Emily Fox 2014 19 

188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B

m
j (x) =

x� ⌧j

⌧j+m�1 � ⌧j
B

m�1
j +

⌧j+m � x

⌧j+m � ⌧j+1
B

m�1
j+1

{Bm
i | i = M �m+ 1, . . . ,M +K}

⇠

From Hastie, 
Tibshirani, Friedman 

book 

Cubic Splines as Linear Smoothers 
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n  Cubic spline function with K knots: 

 
n  Simply a linear model 

n  Estimator: 

n  Linear smoother: 

f(x) = �0 + �1x+ �2x
2 + �3x

3 +
KX

k=1

bk(x� ⇠k)
3
+



11 

Cubic B-Splines 
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n  Cubic B-spline with K knots has basis expansion: 

 
n  Simply a linear model 

n  Computational gain: 

Return to Smoothing Splines 
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n  Objective: 

 
n  Solution: 

¨  Natural cubic spline 
¨  Place knots at every observation location xi 

n  Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook 

n  Notes: 
¨  Would seem to overfit, but penalty term shrinks spline coefficients 

toward linear fit 
¨  Will not typically interpolate data, and smoothness is determined by λ 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx
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Smoothing Splines 
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n  Model is of the form: 

n  Rewrite objective: 

n  Solution: 

n  Linear smoother: 

f(x) =
nX

j=1

Nj(x)�j

(y �N�)T (y �N�) + ��T⌦N�

Smoothing Splines 
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n  Model is of the form: 

n  Using B-spline basis instead: 
 
n  Solution: 

n  Penalty implicitly leads to natural splines 
¨  Objective gives infinite weight to non-zero derivatives beyond boundary 

f(x) =
nX

j=1

Nj(x)�j

�̂ = (BTB + �⌦B)
�1BT y
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Smoothing Splines   
n  Knots at data points xi 
n  Natural cubic spline 
n  O(n) parameters 

¨  Shrunk towards subspace 
of smoother functions 

Regression Splines 
n  K < n  knots chosen 
n  Mth order spline = piecewise 

M-1 degree polynomial with M-2 
continuous derivatives at knots 

©Emily Fox 2014 25 

Spline Overview (so far) 

n  Linear smoothers, for example using natural cubic spline basis: 

Reading 

©Emily Fox 2014 26 

n  Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5 
appendix  

n  Wakefield: 11.1.1-11.2.6 
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What you should know… 
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n  Regression splines 
¨  Cubic splines, natural cubic splines, … 
¨  Interpretation as a linear smoother 
¨  Degrees of freedom 

n  Smoothing splines 
¨  Arising from penalized regression setting with smoothness penalty 
¨  Cubic spline basis with knots at every data point 

n  Natural splines 
¨  Linear beyond boundary points 

n  B-splines 
¨  Basis functions with compact support 

n  Penalized regression splines 
¨  Choose knots as in regression splines, but penalize associated coefficients 


