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Backtrack a bit...
= JEEE

m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of
these transformations

M — Lrons.
@)= Z p m S [ineor in These

m=1 L mr&(ﬂﬂ““ﬁo -3
m What transformations should we use?
B (2) = Ty > |inear model
B (1) = x?, b (2) = 2528 > Pa\qy\omia\ req-
hin(2) = I(Ly, <2, < Up,) > Pll_uw\'h conStont
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Piecewise Polynomial Fits

m Again, assume x univariate (MMH'(UM:W\-L X l'»('ef)
P

m Polynomial fits are often good locally, but not globally

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials

©Emily Fox 2014

Piecewise Polynomial Fits
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Regression Splines — Linear

m More directly, we can use the tri twa3|s/
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ha(z) = (z — &)y —h

ha(z) = (z = &)+
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m Resulting model: \ 0 0z 04 08 0B 10
_ 4+ B, (x- { . x
E("\ B+ rB.¥ AP From Wakefield book

by (-4 e

m Continuous at the knots because all prior basis functions are
contributing to the fit up to any single x
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Regression Splines — Cubic

= Naively, extend as 0\\» r 0‘-’NL
in ILL ',

= But, 13t derivate is d scontlnuous (check this)
Drop the truncated linear basis:

Fy: Bk Bcmut + b+ by (X»p

m Has continuous 15t derivative (check), but not 2

Popular to consider cubic spline: '[ (‘
f(.CC) = Bo + f1x + ﬁ2x2 + ﬁ3x3 -+ bl(aj — f.)i + bz(.ﬁ? — 62)3_

m Has continuous 1st and 2" derivativ a\ \\
= Typically people stop here ... 3™ u\ou%
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Cubic Spline Basis and Fit
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Cubic Splines as Linear Smoothers

" JEEE
m Cubic spline function with K knots: @
E—

f(@) = o+ fro + Boa® + B2’ + Y _bu(z — &)L

m  Simply a linear model ‘;(K): E{ch] :kz1~6
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= Estimatc,)\r: < - -k .
X: (C CB /;C— \/ W‘t Mlkr‘x

= Linear smoother: (% . C [C‘T CE:{/— L
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Natural Cubic Splines
“ JE
m For polynomial regression, fit near boundaries is erratic.
Problem is worse for splines: each is fit locally so no global constraint

m Natural cubic splines enforce Iingarity beyond boundary knots

= Starting from a cubic spline basis, the natural cubic spline basis is
ﬁl(x) =1 No(z)=2  Npyo(x) =di(z) — dr_1(x)

(z — &)} — (@ — )3

di(@) = r—,

m Derivation pw’s
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Regression Splines — Summary
" S

m Definition:
An order-M spline with knots 1 < &3 < --- < €k
is a piecewise M-1 _degree polynomial with M-2
continuous derivatives as the knots =

A spline that is linear beyond the boundary knots is

called a natural sgline

Choices:
[ . cpmne

Order of the spline we "
'( WA
Number of knots (4 i ”3

Placement of knots
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Return to Smoothing Splines
" JEE

m Objective:
@HZ f(z:))? —1—)\/f"(x )2dx
A
. all o~ ’r\é
m Solution: ¢S G0 S,\w.s
Natural cubic spline 4 § k“‘;?’ gL
Place knots at every observation location x; ﬂ &0y

B Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A

©Emily Fox 2014 1

Smoothing Splines
" JEE

m Model is of the form:  f(z) = Z N;(z)8;

m Rewrite objective:

(y— NBT(y— NB) + A8"Qn "
Tan . Ny G
e < N0 \Lﬂ'«\wg
6 (N N">"Q'“> M 7 a3 in "Jf)"

m Linear smoother: , l:,mookl“"j
¢ (N AN et

\_/Nr ‘\’)’f' kf(L>‘3
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Splines Intro — Summary
"

m Regression splines:
Fewer number of knots and no regularization

m Smoothing splines:

Knots at every observation and regularization
(smoothness penalty) to avoid interpolators
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" e 07 i
m Cubic spline function with K knots: v K ), \451
f(x) = Bo+ Bz + Bor® + Bsx® + D br(w — &)3 M by
k=1 W
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B-Splines
" JEE
= Alternative basis for representing polynomial splines
m Computationally attractive...Non-zero over limited range
m As before: o
. L
Knots {. < iK deg- of \”‘Y‘ d
Domain (a,b) 2
Number of basis functions = n + K

= Step 1: Add knots io»,a fun="

uct loasis
m Step 2: Define auxiliary knots 7; needtd € 0%

——

TlSTQS"'STMé&)

0'1“/7 = = Ti+M = 6
cv.‘g 0_(5. J J
Ex+1 S TrR4M4+1 < - < Tryom
[ = =
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B-Splines
*
m For 1t order B-spline

B-splines of Order 1

From Hastie,
Tibshirani, Friedman
o book
\:,‘\ 0{)‘r \ ,
!—. ‘ X < . l -
R (¥) = G ex2Te Basr bosis

/J D ow Funct09

ce WSIS
Jz\w‘"rk

Con GON"\ m\/ P'I(CLWUQ con Skont Ecn
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B-Splines

m For 2" order B-spline — piecawise linear Cen + cont. @ knsts

B-splines of Order 2

From Hastie,
Tibshirani, Friedman
book

. ‘ . y\&ﬂ)- Slb?f_
= Modify 1st order basis:

z . X-T; \ Ter - X ‘ (x)
. X) < J B () + ‘__\L_,/ %“4—\
BJ ( /?—;‘:’I’) ) T'aL'TJ“"

T 00

. .. . T:> tj“"
m Convention: If divide by 0, set basis element to 0 (Y
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B-Splines
" JEE

m For mt order B-spline, m=1,..., M

B-splines of Order 3

M oo e - From Hastie,
B-splines of Order 4 Tibshirani, Friedman
book
= Modify (m-1)t order basis:
r—Tj Tjtm — &
m _ J m—1 J+m m—1
Bj'(w) = — B '+ ——— B
Jjt+m—1 J Jjt+m Jj+1

[ B-spline bases are noa—zera-everdamain spanned by at most M+1 knots

0 @ewsubsets{B" |i=M —m+1,..., M + Kyare needed for
basis of order m with knots £ < CenS

Cor w: M = MR eesit 1:
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Cubic Splines as Linear Smoothers
" J——
= Cubic spline function with K knots: K rord™ ¥ g8
f(l’) = Bo + f1x + BQZCQ + 53$3 + Z bk(l’ — fk):}l-
k=1
m  Simply a linear model {:“) - E(ch') zcY

X ’(\1 ¥? (’(l’ 213?;“'(“'{{\3“' g’

N 3 §7« i
| vn w2 (¥a-§ )¢ (xn—fh

m Estimator: '{(\: (CT( ),\ C—| '\I

ok |
n I S §
m Linear smoother: F’ C(CTL) ( \{ L

“
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Cubic B-Splines s [ Saoother
" JEE
m Cubic B-spline W|th K kno&aQas basis expansion:
qOE Z 8 (04,
m Simply a linear model /_g'

Ny B (X) ‘
B2 =]
1 -+ Bur ) B

$-(878Y'8"Y
m Computational gain:

h\((k*r‘\ mA\”f)( i% N(Yl" MMY DS
—> Fwer Mdlhp\‘ts (spﬂfsc Mv.)
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Return to Smoothing Splines
"

m Objective:

mlnz f(x;)) +)\/f"(a: )2dx

m Solution:
Natural cubic spline
Place knots at every observation location x;

m Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines _« #**

] ﬂ/
m Modelis of the form:  f(z) = N;(x)B;

L = 'tvxo\’(wd Uk -
m Rewrite objectlve oSt S

— NB) (y — NB) + AT Qn

//\ [N) N' (%) &

fixn
= Solution: A %

(N N+ }\,Qn) N ‘/ as in nJ:

m Linear smoother:

\'-n&
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oA, T thin
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"

¢
La \’)’ tf( LA)
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Smoothing Splines

M=
Model is of the form: g
| o flx x)//" 0”) ?\.r\ b\‘)
oxy
= Using B-spline basis instead: g(,() z Z B x)B

= Solution: 3= (BTB+ )\QB)_lBT
e o) %004
m(('\"’ q W " J - CDMP‘A"d onel FE,

‘owlf q
m Penalty implicitly leads to natural splines
[ Objective gives infinite weight to non-zero derivatives beyond boundary
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Spline Overview (so far)
" I

Smoothing Splines Regression Splines
m Knots at data points x; m K <n knots chosen
= Natural cubic spline m M" order spline = piecewise

M-1 degree polynomial with M-2

= O(n) parameters continuous derivatives at knots

Shrunk towards subspace
of smoother functions

m Linear smoothers, for example using natural cubic spline basis:

©Emily Fox 2014 25

Reading
" S

m Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5
appendix

m Wakefield: 11.1.1-11.2.6
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What you should know...

m Regression splines
Cubic splines, natural cubic splines, ...
Interpretation as a linear smoother
Degrees of freedom

Smoothing splines
Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point

Natural splines
Linear beyond boundary points

B-splines
Basis functions with compact support

Penalized regression splines
Choose knots as in regression splines, but penalize associated coefficients
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