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B-Splines
" JEEE

m A:Iie;name.hasjs for representing polynomial splines
m Computationally attractive...Non-zero over limited range
m As before: /S = -
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B-Splines
" JEEE

m For m order B-spline, m=1,..., M

B-splines of Order 3

0 0 o o From Hastie,
B-splines of Order 4 Tibshirani, Friedman
book
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Cubic Splines as Linear Smoothers
" S
m Cubic spline function with K knots: K
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Cubic B-Splines  as [ Smoothes
" S

m Cubic B-spline with K kno{at]as basis expansion:

L\
flo- 2 Bj (x) (g‘j ?””\?047‘?’“'
.

o J Ve 2 entt
m  Simply a linear model (gl wl"f{.‘.
q .

Bty B (0 1

A R3)
R-| e[| e
R B (0 b (tﬁfbﬁ
$-(878Y'B'Y

m Computational gain: .
ny (k) matrix R with many DS

_> Fewer maltighes  (spase inv.)

©Emily Fox 2014




Return to Smoothing Splines
" JEE

m Objective:

mmz f(z:))? —1—)\/f"(x )2dx

= Solution: \ ,b%lmcss

[ Place knots at every observation location x;

B Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

1 Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

1 Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines ned befet
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m Model is of the form:  f(z) = Nj(z)B; . \
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Smoothing Splines

Whrows f ; q
= Model is of the form:  f(z) = / A
0( s?“ \G}

NOV)/
m Using B-spline basis instead: g(,() = Z B x)ﬁ
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m Penalty implicitly leads to natural splines a 3 L)
Objective gives infinite weight to non-zero derivatives beyond boundary
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Spline Overview (so far)

Smoothing Splines Regression Splines
m Knots at data points x; m K <n Kknots chosen
= Natural cubic spline Mt order spline = piecewise

- O(n) parameters =1 degree polynomial with M-2

continuous derivatives at knots
Shrunk towards subspace

of smoother functions
(\uc b »’ouﬁLn/..sg (w\él but many Fewts POAmS

m Linear smoothers, for (lexample using natural cubic spline basis:
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Penalized Regression Splines
* JEE

m Alternative approach:
Use K <nknots  Few Porams (L
How to choose K and knot locations?

[nEive to ¥ of obs.

m Option #1:
Place knots at n unique observation locations x; and do stepwise
Issue?? .2"‘ Mo L‘S [

m Option #2:
Place many knots for flexibility
Penalize parameters associated with knots

fee (§A”)‘°'//asso

e

m Note: Smoothing splines penalize complexity in terms of
roughness. Penalized reg. splines shrink coefficients of knots.
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Penalized Regression Splines

= General spline model ~ ((): 5 h (\()/g .
"9\ M M SP\M‘ LGS‘S
m Definition: A penalized regression spline is 5Th( ) with

2. min é( 4"/5”‘()(3”2 + \p Dﬁ
ﬁ 8 A y k?u‘ak‘,

m Form of resulting spline depends on choice of

Basis | (0]
Penalty matrix D
Penalty strength X

m Still need to choose K and associated locations. RoT (Ruppert et al 2003):

+
K+2
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1 k+1
K= min(i X # unique z;,35) & at th points of z;
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PRS Example #2 Z ~ B"h(a)* + A" DS
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PRS Example #3 Z ~B"h(z))? + A8T DS
"

m Cubic spline using truncated power basis Lj
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A Brief Spline Summary
" I

Smoothing spline — contains n knots

Cubic smoothing spline — piecewise cubic
Natural spline — linear beyond boundary knots
Regression spline — spline with K < n knots chosen

Penalized regression spline — imposes penalty (various
choices) on coefficients associated with piecewise polynomial

The # of basis functions depends on
# of knots
Degree of polynomial
A reduced number if a natural spline is considered (add constraints)
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Reading
" S

Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5
appendix

Wakefield: 11.1.1-11.2.6
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What you should know...

* JEE
m Regression splines
Cubic splines, natural cubic splines, ...

Interpretation as a linear smoother
Degrees of freedom

Smoothing splines
Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point

Natural splines
Linear beyond boundary points

B-splines
Basis functions with compact support

Penalized regression splines
Choose knots as in regression splines, but penalize associated coefficients
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Motivating Kernel Methods
" JEEE

m Recall original goal from Lecture 1:
We don't actually know the data-generating mechanism
Need an estimator fn() based on a random sample

Y;.... Y,, also known as training data
m Proposed a simple model as estimator of E[ Y| X]
N
S:()(): P(\lg( y;\ | X: € NMI‘J(X5>
use 0‘“ a_vs\\\,zf V\éos bc
2
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Choice #1: k Nearest Neighbors
" JEE—

m Define nbhd of each data point x; by the k nearest neighbors
Search for k closest observations and average these

R
2( % ): AVﬁ(\I; ) X\. € N k. ()‘)> ”S'c ':‘ L Nearest-Neighbor Kernel
e T

f(z0)20

m Discontinuity is unappealing .
hc"‘j\f\\om ave € in 8 0u®

T T
4 TQ 08

A. 0.0 0.2 0. 08 1.0
a \sC . From Hastie, Tibshirani, Friedman book
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Choice #2: Local Averages
" JEE

m A simpler choice examines a fixed distance h around each x;
0 Defineset: B, = {i: |x; — x| < h}

- et irl\set nﬂ? Z Y ‘vp)- oLS. w;'(l-:lﬂ
= ./- \Stmne
¢ (x)= et Mistace |
m Results malmearsmoother I ’ L\
. Z
MO
(v)‘ Z)( (Y)y .
4\ O OUJ
|
m For example, with ':iq' and h= K]
L% 0o -
0 - \/ lo'
R I
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More General Forms
= JEEE—

m Instead of weighting all points equally, slowly add some in and
let others gradually die off -

[ Nadaraya-Watson kernel weighted average

F()() Z K Xo; )Y" ‘L,\(xo,)(): \((_———)
2- Ky Xolxé)

m But what is a kernel ??7?
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Kernels
" JEE

m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices

K() (s a kernel

WOz 0 ¥X

f K (o) dun =]

f\»\((v\ v =0 6:78“1”“3!1"“””
Example Kernels

* JEE——
. 1 o
m Gaussian K(z)= —e 2 o] o AN
Y

m Epanechnikov K(z) = Z(l _ $)21($)
m Tricube K(z) = g(l |2 I(2)
m Boxcar K(z) = %I(x)
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Nadaraya-Watson Estimator
" JEE

m Return to Nadaraya-Watson kernel weighted average

A Zz 1K)\(x07xz)yz
fleo) = Zi:l K (2o, ;)
m Linear smoother
A Y) Z (Yi Y» Z 1 (Y
ZK)(Yo A Az
V\rv
[;(Y)

N
'\))\: kf(L;)
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Nadaraya-\Watson Estimator

" > i1 K (wo, z4)yi

m Example: ___\'"\_ Zzzl K (o, i)
Boxcar kernel > locgd avys

Epanechnikov

Gaussian

\ )‘lw‘si

4 > w
\¢ ‘»“’J\‘

m Often, choice of kernel matters much less than choice of A

w (\ Lh\

Nearest-Neighbor Kernel

From Hastie |g yv
Tibshirani, var
Friedman

book
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Local Linear Regression
"
m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

[ Relnterpretatlon

seggin 2 (i) @)
e 9o I \A{B

—-)FY /

1 RS
foy: wgpin 2 i) lye-e oy

- . ' 0‘0 ‘IO 0‘2 0‘4 0‘5 D‘B U!‘D
\t:\*° § (y 3 - Zw‘ (\(') y“ From Hastie, Tibshirani, Friedman book
0 —
i W&(YoB

m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares
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Local Linear Regression
"

m Consider locally weighted linear regression instead
m Local linear model around fixed target x, :

/g%* Bix, (4-%,)
m Minimize:

MmN i K XD/X> ‘gox,"lgny,(Y )Q))>
By,

m Return: .

A :
?(m : Box, (i at ¥,

Noke: nok ¢qm‘.vu\¢n{- Lo f?el&na) « loce) conseant

m Fit a new local polynomial for every target x,, _
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Local Linear Regression
* JEE—
%lmin Kx(20,2:)(Yi — Bowo — Brao (Ti — 20))?

st kilox) |
m Equivalently, minimize
(\, B Xx° é’{o\'\' \Nx, (‘/' }Q«, éyb k,\()ﬁ,":)
m Solution: ’\ [\l ,;::;0,\
()( Iy, Yo
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Local Linear Regression i

= Bias calculation: g(\(,)' , !)‘ )Y
M\s
E[fxo]_ze o) a‘\ewl Lol

/W M
nx.)z Ly v 500 Z (x4)00) +
(" h (YO 5wy L)t & € M

Local Linear Regre:

p(%; £

wv’)

W y)&f
c/ms

at Boundary

=§(m+F )

m Bias E[f(x0)] — f(xo) only depends
on quadratic and higher order terms

m Local linear regression corrects bias

wTo oz _ o4  os g 10
exactly to 1st order From Hoastie, Tibshirani, Friedman book
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Local Polynomial Regression
" SN

m Local linear regression is biased in regions of curvature
“Trimming the hills” and “filling the valleys”

m Local quadratics tend to eliminate this bias, but at the cost of
increased variance

Local Linear in Interior Local Quadratic in Interior

(o)

From Hastie, Tibshirani, Friedman book
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Local Polynomial Regression
“

m Consider local polynomial of degree d centered about x,
Pxo(x;gxo) = Ig“‘o * ﬁ'Y‘ (X'yo)* Isixf- ()(a)(‘,)ll o

= 4
* }%‘i'o (X"Xp}

mn
= Minimize: %ﬂnz Kx(xo,2:)(yi — Pry(; 5&30))2
0 =1
"X BT W (B
l\_ Poach (X('Vo)‘
Y N i X;vya T d
m Return: HX.) ‘./60)(,) Q“—j;")
m Bias only has components of degree d+7 and higher
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Local Polynomial Regression
" S

m Rules of thumb:
Local linear fit helps at boundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and increases variance
Local quadratic fit helps most for capturing curvature in the interior

Asymptotic analysis >
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression
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Reading
" S

m Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
m Wakefield: 11.3
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What you should know...
* JEE
m Definition of a kernel and examples

m Nearest neighbors vs. local averages

m Nadarya-Watson estimation
Interpretation as local linear regression

m Local polynomial regression

Definition
Properties/ rules of thumb
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