

B-Splines

- Alternative basis for representing polynomial splines
- Computationally attractive...Non-zero over limited range
- As before:
 - Knots
 - □ Domain (a,b)
 - □ Number of basis functions = **X** + **K**
- deg. of poly. +1
- fo= a gk+1= b Step 1: Add knots
- \blacksquare Step 2: Define auxiliary knots $\underline{\tau_j}$ needed to construct lossis

$$\tau_1 \leq \tau_2 \leq \cdots \leq \tau_M \leq \xi_0$$

$$\tau_{j+M} = \xi_j$$

$$\xi_{K+1} \leq \tau_{K+M+1} \leq \cdots \leq \tau_{K+2M}$$

B-Splines

■ For mth order B-spline, *m*=1,..., *M*

From Hastie, Tibshirani, Friedman book

Modify (m-1)th order basis:

$$B_j^m(x) = \frac{x - \tau_j}{\tau_{j+m-1} - \tau_j} B_j^{m-1} + \frac{\tau_{j+m} - x}{\tau_{j+m} - \tau_{j+1}} B_{j+1}^{m-1}$$

- □ B-spline bases are non-zero over domain spanned by at most M+1 knots

Cubic Splines as Linear Smoothers

• Simply a linear model
$$f(x) = E(Y | c) = c Y$$

• Estimator:
$$\hat{Y} = (c^{\mathsf{T}}())^{-1} C^{\mathsf{T}}$$

Cubic B-Splines as linear Smoother

Cubic B-spline with K knots has basis expansion:

Simply a linear model

Simply a linear model
$$\beta = \begin{bmatrix}
\beta_1^{\mathsf{q}}(x_1) & \beta_{\mathsf{k}+\mathsf{q}}^{\mathsf{q}}(x_1) \\
\vdots \\
\beta_{\mathsf{q}}^{\mathsf{q}}(x_n) & \beta_{\mathsf{k}+\mathsf{q}}^{\mathsf{q}}(x_n)
\end{bmatrix}$$

$$\gamma = \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{\mathsf{k}+\mathsf{q}}
\end{bmatrix}$$

Computational gain:

Return to Smoothing Splines

Objective:

$$\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

- Solution:
 - □ Natural cubic spline
 - \square Place knots at every observation location x_i
- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
 - □ Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
 - $\ \square$ Will not typically interpolate data, and smoothness is determined by λ

©Emily Fox 2014

Smoothing Splines _* of olds.

- Model is of the form: $f(x) = \sum_{j=1}^{n} N_j(x)\beta_j$

Linear smoother:

Smoothing Splines

- Model is of the form:
- Using B-spline basis instead: $F(x) = \sum_{j=1}^{n} B_{j}^{4}(x)\beta_{j}$

- Penalty implicitly leads to natural splines
 - □ Objective gives infinite weight to non-zero derivatives beyond boundary

Spline Overview (so far)

Smoothing Splines

- Knots at data points x_i
- Natural cubic spline
- O(n) parameters
 - □ Shrunk towards subspace of smoother functions

Regression Splines

- *K* < *n* knots chosen
- Mth order spline = piecewise M-1 degree polynomial with M-2 continuous derivatives at knots
- Linear smoothers, for example using natural cubic spline basis:

Penalized Regression Splines

- Alternative approach:
 - □ Use *K* < *n* knots
 - ☐ How to choose *K* and knot locations?
- Option #1:
 - \square Place knots at *n* unique observation locations x_i and do stepwise
 - □ Issue??
- Option #2:
 - Place many knots for flexibility
 - □ Penalize parameters associated with knots
- Note: Smoothing splines penalize complexity in terms of roughness. Penalized reg. splines shrink coefficients of knots.

©Emily Fox 2014

Penalized Regression Splines

- General spline model
- Definition: A *penalized regression spline* is $\hat{\beta}^T h(x)$ with
- Form of resulting spline depends on choice of
 - □ Basis
 - Penalty matrix
 - □ Penalty strength
- Still need to choose *K* and associated locations. RoT (Ruppert et al 2003):

$$K = \min(\frac{1}{4} \times \# \text{ unique } x_i, 35)$$
 $\xi_k \text{ at } \frac{k+1}{K+2} th \text{ points of } x_i$

PRS Example #1 $\sum_{i=1}^{n} (y_i - \beta^T h(x_i))^2 + \lambda \beta^T D\beta$

$$\sum_{i=1}^{n} (y_i - \beta^T h(x_i))^2 + \lambda \beta^T D\beta$$

- Cubic B-spline basis + penalty
- For this penalty, the matrix *D* is given by
- Leads to

PRS Example #2
$$\sum_{i=1}^{n} (y_i - \beta^T h(x_i))^2 + \lambda \beta^T D\beta$$

- B-spline basis + penalty
- For this penalty, the matrix *D* is given by
- Leads to

PRS Example #3
$$\sum_{i=1}^{n} (y_i - \beta^T h(x_i))^2 + \lambda \beta^T D\beta$$

- Cubic spline using truncated power basis
 - + penalty on truncated power coefficients
- For this penalty, the matrix *D* is given by

A Brief Spline Summary

- **Smoothing spline** contains *n* knots
- Cubic smoothing spline piecewise cubic
- *Natural spline* linear beyond boundary knots
- **Regression spline** spline with *K* < *n* knots chosen
- Penalized regression spline imposes penalty (various choices) on coefficients associated with piecewise polynomial
- The # of basis functions depends on
 - □ # of knots
 - □ Degree of polynomial
 - ☐ A reduced number if a natural spline is considered (add constraints)

©Emily Fox 2014

17

Reading

- Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5 appendix
- Wakefield: 11.1.1-11.2.6

Emily Fox 2014

What you should know...

- Regression splines
 - □ Cubic splines, natural cubic splines, ...
 - □ Interpretation as a linear smoother
 - Degrees of freedom
- Smoothing splines
 - □ Arising from penalized regression setting with smoothness penalty
 - □ Cubic spline basis with knots at every data point
- Natural splines
 - □ Linear beyond boundary points
- B-splines
 - □ Basis functions with compact support
- Penalized regression splines
 - □ Choose knots as in regression splines, but penalize associated coefficients

©Emily Fox 2014

19

Module 2: Splines and Kernel Methods

STAT/BIOSTAT 527, University of Washington Emily Fox April 15th, 2014

©Emily Fox 2014

•

Motivating Kernel Methods

- Recall original goal from Lecture 1:
 - □ We don't actually know the data-generating mechanism
 - $\ \square$ Need an estimator $\hat{f}_n(\cdot)$ based on a random sample Y_{1,}..., Y_n, also known as *training data*
- Proposed a simple model as estimator of E [Y | X]

©Emily Fox 2014

21

Choice #1: k Nearest Neighbors

- Define nbhd of each data point x_i by the k nearest neighbors
 - □ Search for *k* closest observations and average these

Discontinuity is unappealing

Emily Fox 2014

Choice #2: Local Averages

- A simpler choice examines a fixed distance h around each x_i
 - \Box Define set: $B_x = \{i : |x_i x| \le h\}$
 - \square # of x_i in set: n_x
- Results in a linear smoother
- For example, with x_i = and h=

L =

©Emily Fox 2014

23

More General Forms

- Instead of weighting all points equally, slowly add some in and let others gradually die off
- Nadaraya-Watson kernel weighted average

■ But what is a kernel ???

©Emily Fox 2014

Kernels

- Could spend an entire quarter (or more!) just on kernels
- Will see them again in the Bayesian nonparametrics portion
- For now, the following definition suffices

©Emily Fox 2014

25

Example Kernels

- $lacksquare Gaussian \qquad K(x) = rac{1}{2\pi} e^{-rac{x}{2}}$
- $\qquad \qquad \textbf{Epanechnikov} \qquad K(x) = \frac{3}{4}(1-x)^2 I(x)$
- Tricube $K(x) = \frac{70}{81}(1 |x|^3)^3 I(x)$

©Emily Fox 2014

Nadaraya-Watson Estimator

Return to Nadaraya-Watson kernel weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i)}$$

Linear smoother:

©Emily Fox 2014

Nadaraya-Watson Estimator

Example:

 $\hat{f}(x_0) = \frac{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i)}$

- □ Boxcar kernel →
- □ Epanechnikov
- □ Gaussian
- Often, choice of kernel matters much less than choice of λ

Local Linear Regression

- Locally weighted averages can be badly biased at the boundaries because of asymmetries in the kernel
- Reinterpretation:

- Equivalent to the Nadaraya-Watson estimator
- Locally constant estimator obtained from weighted least squares

Local Linear Regression

- Consider locally weighted linear regression instead
- Local linear model around fixed target x₀:
- Minimize:
- Return:
- Fit a new local polynomial for every target x₀

Local Linear Regression

$$\min_{\beta_{x_0}} \sum_{i=1}^n K_{\lambda}(x_0, x_i) (y_i - \beta_{0x_0} - \beta_{1x_0}(x_i - x_0))^2$$

- Equivalently, minimize
- Solution:

©Emily Fox 2014

31

Local Linear Regression

Bias calculation:

$$E[\hat{f}(x_0)] = \sum_{i} \ell_i(x_0) f(x_i)$$

- \bullet Bias $E[\hat{f}(x_0)] f(x_0)$ only depends on quadratic and higher order terms
- Local linear regression corrects bias exactly to 1st order

From Hastie, Tibshirani, Friedman book

Emily Fox 2014

Local Polynomial Regression

- Local linear regression is biased in regions of curvature □ "Trimming the hills" and "filling the valleys"
- Local quadratics tend to eliminate this bias, but at the cost of increased variance

Local Polynomial Regression

- Consider local polynomial of degree d centered about x₀ $P_{x_0}(x;\beta_{x_0}) =$
- $\qquad \text{Minimize: } \min_{\beta_{x_0}} \sum_{i=1}^n K_{\lambda}(x_0,x_i) (y_i P_{x_0}(x;\beta_{x_0}))^2$
- Equivalently:
- Return:
- Bias only has components of degree d+1 and higher

Local Polynomial Regression

- Rules of thumb:
 - □ Local linear fit helps at boundaries with minimum increase in variance
 - □ Local quadratic fit doesn't help at boundaries and increases variance
 - □ Local quadratic fit helps most for capturing curvature in the interior
 - □ Asymptotic analysis →
 local polynomials of odd degree dominate those of even degree
 (MSE dominated by boundary effects)
 - □ Recommended default choice: **local linear regression**

©Emily Fox 2014

35

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample
- Choice #1: empirical estimate?
- Choice #2: as before, maybe we should use an estimator
- Choice #3: again, consider kernel weightings instead

©Emily Fox 2014

Kernel Density Estimation

■ Popular choice = Gaussian kernel → Gaussian KDE

From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

KDE Properties
$$\hat{p}^{\lambda}(x) = \frac{1}{n\lambda} \sum_{i=1}^{n} K\left(\frac{x-x_i}{\lambda}\right)$$

Let's examine the bias of the KDE

$$E[\hat{p}^{\lambda}(x)] =$$

- Smoothing leads to biased estimator with mean a smoother version of the true density
- For kernel estimate to concentrate about x and bias $\rightarrow 0$, want

KDE Properties
$$\hat{p}^{\lambda}(x) = \frac{1}{n\lambda} \sum_{i=1}^{n} K\left(\frac{x - x_i}{\lambda}\right)$$

Assuming smoothness properties of the target distribution, it's straightforward to show that

$$E[\hat{p}^{\lambda}(x)] =$$

- □ In peaks, negative bias and KDE underestimates *p*
- ☐ In troughs, positive bias and KDE over estimates p
- □ Again, "trimming the hills" and "filling the valleys"
- For var→0, require
- More details, including IMSE, in Wakefield book
- Fun fact: There does not exist an estimator that converges faster than KDE assuming only existence of p''

©Emily Fox 2014

Connecting KDE and N-W Est.

$$f(x) = E[Y \mid x] = \int yp(y \mid x)dy$$

Estimate joint density p(x,y) with product kernel

$$\hat{p}^{\lambda_x,\lambda_y}(x,y) =$$

Estimate margin p(y) by

$$\hat{p}^{\lambda_x}(x) =$$

Connecting KDE and N-W Est.

Then,

$$\hat{f}(x) =$$

■ Equivalent to Naradaya-Watson weighted average estimator

©Emily Fox 2014

41

Reading

- Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
- Wakefield: 11.3

©Emily Fox 2014

What you should know...

- Definition of a kernel and examples
- Nearest neighbors vs. local averages
- Nadarya-Watson estimation
 - □ Interpretation as local linear regression
- Local polynomial regression
 - Definition
 - □ Properties/ rules of thumb
- Kernel density estimation
 - Definition
 - Properties
 - □ Relationship to Nadarya-Watson estimation

©Emily Fox 2014