Module 2: Splines and Kernel Methods

B-Splines Recap
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Cubic Spline Basis and Fit
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B-Splines
" JEE

= Alternative-hasis for representing polynomial splines
m Computationally attractive...Non-zero over limited range
m As before: = o
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B-Splines
" S

m For m order B-spline, m=1,..., M

B-splines of Order 3

From Hastie,
Tibshirani, Friedman
book

B-splines of Order 4

m  Modify (m-1)t order basis:
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Cubic Splines as Linear Smoothers
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m Cubic spline function with K knots: K S WS
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m Estimator:
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Cubic B-Splines  as [ Smoothes
" S

m Cubic B-spline with K kno&aqas basis expansion:
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Return to Smoothing Splines
" JEE
m Objective:

mmz f(z:))? —1—)\/f"(x )2dx

= Solution:
Natural cubic spline
Place knots at every observation location x;

B Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines _# "

= Modelis of the form:  f(z) = N;(x)B;
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Smoothing Splines

|
oty ‘l
m Modelis of the form:  f(z) = A
0‘ ?“ c
o ( ‘i)

m Using B-spline basis instead: g(,() = Z B x)ﬁ
= Solution: 3= (BTB+ /\QB)—lBTy
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m Penalty implicitly leads to natural splines
Objective gives infinite weight to non-zero derivatives beyond boundary
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Spline Overview (so far)
“ J

Smoothing Splines Regression Splines

m Knots at data points x; m K <n knots chosen

m Natural cubic spline m M" order spline = piecewise

M-1 degree polynomial with M-2

" O(n) parameters continuous derivatives at knots
Shrunk towards subspace
of smoother functions

m Linear smoothers, for example using natural cubic spline basis:
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Penalized Regression
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Penalized Regression Splines
* JEE

m Alternative approach:
Use K < n knots
How to choose K and knot locations?

m Option #1:
Place knots at n unique observation locations x; and do stepwise
Issue??

m Option #2:
Place many knots for flexibility
Penalize parameters associated with knots

m Note: Smoothing splines penalize complexity in terms of
roughness. Penalized reg. splines shrink coefficients of knots.
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Penalized Regression Splines
" JEE

m General spline model

m Definition: A penalized regression spline is BTh(g;) with

m Form of resulting spline depends on choice of
Basis
Penalty matrix
Penalty strength

m Still need to choose K and associated locations. RoT (Ruppert et al 2003):
k+1

K42
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1
K= min(i X # unique x;,35) & at th points of x;

n

PRS Example #1 ;(yz — BTh(x;))® + BT DB
" JEE

m Cubic B-spline basis + penalty

m For this penalty, the matrix D is given by

m Leads to
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PRS Example #2 Z
" JEE

m B-spline basis + penalty

m For this penalty, the matrix D is given by

m Leads to
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— BT h(x:))* + AT DS

PRS Example #3 Z
" S

m Cubic spline using truncated power basis

+ penalty on truncated power coefficients

m For this penalty, the matrix D is given by

©Emily Fox 2014

— BT h(x))

21 08TDp




A Brief Spline Summary
" I

Smoothing spline — contains n knots

Cubic smoothing spline — piecewise cubic
Natural spline — linear beyond boundary knots
Regression spline — spline with K < n knots chosen

Penalized regression spline — imposes penalty (various
choices) on coefficients associated with piecewise polynomial

The # of basis functions depends on
# of knots
Degree of polynomial
A reduced number if a natural spline is considered (add constraints)
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Reading
" S

Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5
appendix

Wakefield: 11.1.1-11.2.6
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What you should know...

* JEE
m Regression splines
Cubic splines, natural cubic splines, ...

Interpretation as a linear smoother
Degrees of freedom

Smoothing splines
Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point

Natural splines
Linear beyond boundary points

B-splines
Basis functions with compact support

Penalized regression splines
Choose knots as in regression splines, but penalize associated coefficients
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Motivating Kernel Methods
* JEE—

m Recall original goal from Lecture 1:
We don't actually know the data-generating mechanism

Need an estimator fn() based on a random sample
Y;.... Y,, also known as training data

m Proposed a simple model as estimator of E[ Y| X]
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Choice #1: k Nearest Neighbors
* JEE——

m Define nbhd of each data point x; by the k nearest neighbors
Search for k closest observations and average these

Nearest-Neighbor Kernel

m Discontinuity is unappealing

T T T T T T T
00 02 04 XQ 06 08 1.0

From Hastie, Tibshirani, Friedman book
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Choice #2: Local Averages
* JEE

m A simpler choice examines a fixed distance h around each x;
Define set: B, = {i : |x; — x| < h}
#of x;in set: M,

m Results in a linear smoother

m For example, with x= and h=

L =
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More General Forms
= JEE

m Instead of weighting all points equally, slowly add some in and
let others gradually die off

m Nadaraya-Watson kernel weighted average

m But what is a kernel ??7?
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Kernels
= JEEE

m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices
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Example Kernels

) 1 x

m Gaussian K(a:) = 2—6_5
s
m Epanechnikov K(x) = 2(1 _ $)21($)
m Tricube 70 3)3
K(z) = g (1~ [o*)I(2)
1

m Boxcar K(z) = 5I(a:) _
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Nadaraya-Watson Estimator
* JEE
m Return to Nadaraya-Watson kernel weighted average
f(.il]' ) _ Z?:l Kk(x()?xi)yi
’ > i1 K(wo, 24)

m Linear smoother:
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Nadaraya-Watson Estimator

" JEE f(xo) = > iy Ko, z)yi
0) =
m Example: Z?:l K (o, i)
Boxcar kernel >

Epanechnikov
Gaussian

m Often, choice of kernel matters much less than choice of A

Nearest-Neighbor Kernel Epanechnikov Kernel

0 9g0 O
%
, —f(70)%0

From Hastie,
Tibshirani,
Friedman
book
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Local Linear Regression
" JEE
m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

m Reinterpretation:

T T
00Ty o2

From Hastie, Tibshirani, Friedman book

m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares
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Local Linear Regression
" JEE

m Consider locally weighted linear regression instead
m Local linear model around fixed target x, :

m Minimize:

m Return:

m Fit a new local polynomial for every target x,

©Emily Fox 2014 30
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Local Linear Regression

%linz K\ (20,24)(Yi — Boxe — Brao (i — m0))?
“0 =1

m Equivalently, minimize

m Solution:

©Emily Fox 2014
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Local Linear Regression

m Bias calculation:

E[f(xo)] = Zfz‘(ib’o)f(xz')

m Bias E[f(x0)] — f(xo) only depends
on quadratic and higher order terms

m Local linear regression corrects bias
exactly to 1st order

©Emily Fox 2014

00 To 02 04 06 08 10
From Hastie, Tibshirani, Friedman book
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Local Polynomial Regression
" S

m Local linear regression is biased in regions of curvature
“Trimming the hills” and “filling the valleys”

m Local quadratics tend to eliminate this bias, but at the cost of
increased variance

Local Linear in Interior Local Quadratic in Interior

f(ZO) R . f(zo)

From Hastie, Tibshirani, Friedman book
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Local Polynomial Regression
" JEE

m Consider local polynomial of degree d centered about x,
Py (75 Bo) =

Minimize: %ﬂnz Kx(20,2:) (Y — Pay (3 Bay))?
0 ;=1

Equivalently:

Return:
Bias only has components of degree d+17 and higher
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Local Polynomial Regression
" S

m Rules of thumb:
Local linear fit helps at boundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and increases variance
Local quadratic fit helps most for capturing curvature in the interior

Asymptotic analysis >
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression
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Kernel Density Estimation
" S

m Kernel methods are often used for density estimation
(actually, classical origin)

Assume random sample

Choice #1: empirical estimate?

Choice #2: as before, maybe we should use an estimator

Choice #3: again, consider kernel weightings instead

©Emily Fox 2014 36
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Kernel Density Estimation
* JEE

m Popular choice = Gaussian kernel - Gaussian KDE
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Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book
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KDE Properties 7= > 5 (*5")
" JEE

m Let's examine the bias of the KDE

E[p*(x)] =

m Smoothing leads to biased estimator with mean a smoother
version of the true density

m For kernel estimate to concentrate about x and bias=>0, want
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KDE Properties ﬁ*@):%iff(x}xi)
* JE

m Assuming smoothness properties of the target distribution,
it's straightforward to show that

E[p* («)] =

In peaks, negative bias and KDE underestimates p
In troughs, positive bias and KDE over estimates p
Again, “trimming the hills” and “filling the valleys”
m For var->0, require
m More details, including IMSE, in Wakefield book
m Fun fact: There does not exist an estimator that converges faster
than KDE assuming only existence of p"
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Connecting KDE and N-W Est.
* JEE—

m Recall task:

f@) = EIY |2 = [ uply | 2)dy
m Estimate joint density p(x,y) with product kernel
Pt (a,y) =

m Estimate margin p(y) by

P (z) =
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Connecting KDE and N-W Est.

" JE—
m Then,

A

flz) =

m Equivalent to Naradaya-Watson weighted average estimator

©Emily Fox 2014

Reading

" JEE—
m Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
m \Wakefield: 11.3

ooooooooooooo
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What you should know...

Definition of a kernel and examples
Nearest neighbors vs. local averages

Nadarya-Watson estimation
Interpretation as local linear regression

Local polynomial regression
Definition
Properties/ rules of thumb

Kernel density estimation
Definition
Properties
Relationship to Nadarya-Watson estimation
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