Module 2: Splines and Kernel Methods

B-Splines Recap

STAT/BIOSTAT 527, University of Washington Emily Fox April $15^{\text {th }}, 2014$

Cubic Spline Basis and Fit

B-Splines

- Alternative basis for representing polynomial splines
- Computationally attractive...Non-zero over limited range
- As before:
\square Knots $\quad q_{1}<\ldots<q_{k}$
\square Domain (a, b)
\square Number of basis functions $=M+K$
- Step 1: Add knots $\quad q_{0}=a \quad q_{k+1}=b$
- Step 2: Define auxiliary knots τ_{j} needed to construct basis

$$
\begin{aligned}
& \xi_{K+1} \leq \tau_{K+M+1} \leqq \cdots \leqq \tau_{K+2 M}
\end{aligned}
$$

B-Splines

- For $m^{\text {th }}$ order B-spline, $m=1, \ldots, M$

- Modify $(\mathrm{m}-1)^{\text {th }}$ order basis:

$$
B_{j}^{m}(x)=\frac{x-\tau_{j}}{\tau_{j+m-1}-\tau_{j}} B_{j}^{m-1}+\frac{\tau_{j+m}-x}{\tau_{j+m}-\tau_{j+1}} B_{j+1}^{m-1}
$$B-spline bases are non zoropor domain spanned by at most M+1 knots Q basis of order m with knots

Cubic Splines as Linear Smoothers

Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$
Simply a linear model

- Simply a linear model

$$
f(x)=E[Y \mid c]=c \gamma
$$

$C=\left[\begin{array}{cccccc}1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \left(x_{1}-q_{1}\right)_{+}^{3} & \cdots\left(x_{1}-q_{k}\right)^{3}+ \\ \vdots & & & \\ \vdots & & & \\ 1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \left(x_{n}-q_{1}\right)^{3}+\cdots & \left(x_{n}-q_{k 2}\right)^{3}\end{array}\right] \notin \gamma=\left[\begin{array}{c}B_{0} \\ B_{1} \\ B_{2} \\ B_{3} \\ b_{1} \\ \vdots \\ b_{k}\end{array}\right]$

$$
\hat{\gamma}=\left(c^{\top} c\right)^{-1} c^{\top} y
$$

- Linear smoother: $\hat{f}=\underbrace{C\left(C^{\top} C\right)^{-1} C^{\top} y})^{L}$

Cubic B-Splines as Linear Smoother

- Cubic B-spline with K knots has basis expansion:

$$
f(x)=\sum_{j=1}^{k \nmid y} B_{j}^{4}(x) B_{j}
$$

- Simply a linear model

$$
\beta=\left[\begin{array}{ccc}
\beta_{1}^{4}\left(x_{1}\right) \ldots & \beta_{k+4}^{4}\left(x_{1}\right) \\
\vdots & & \\
B_{1}^{4}\left(x_{n}\right) & \ldots & B_{k+4}^{4}\left(x_{n}\right)
\end{array}\right] \quad \gamma=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k+4}
\end{array}\right]
$$

- Computational gain:
$n \times(K+M)$ matrix B with many $O^{\prime} s$

$$
\rightarrow \text { fewer multiplies (sparse inv.) }
$$

Return to Smoothing Splines

- Objective:

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Solution:
\square Natural cubic spline
\square Place knots at every observation location x_{i}
- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
\square Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
\square Will not typically interpolate data, and smoothness is determined by λ

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- Rewrite objective:

$$
(y-N \beta)^{T}(y-N \beta)+\lambda \beta^{T} \Omega_{N} \beta
$$

- Solution:

$$
\hat{\beta}=\left(N^{\top} N+\lambda \Omega_{N}\right)^{-1} N^{\top} y
$$

pother:

$\hat{f}=\underbrace{N\left(N^{\top} N_{\lambda} \lambda \Omega_{N}\right)^{-1} N^{\top}}_{1} y$
 "smoothing $L_{\lambda} \quad V_{\lambda}=\operatorname{tr}\left(L_{\lambda}\right)$

Smoothing Splines

Previously,
Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j} K=n$ knots $M=4$
Now, order M spline
(cubic)

- Using B-spline basis instead: $f(x)=\sum_{j=1}^{n} B_{j}^{4}(x) \beta_{j}$
- Solution: $\hat{\beta}=\left(B^{T} B+\lambda \Omega_{B}\right)^{-1} B^{T} y$

- Penalty implicitly leads to natural splines
\square Objective gives infinite weight to non-zero derivatives beyond boundary

Spline Overview (so far)

Smoothing Splines

- Knots at data points x_{i}
- Natural cubic spline
- O(n) parameters
\square Shrunk towards subspace of smoother functions

Regression Splines

- $K<n$ knots chosen
- $\mathrm{M}^{\text {th }}$ order spline $=$ piecewise M-1 degree polynomial with $M-2$ continuous derivatives at knots
- Linear smoothers, for example using natural cubic spline basis:

Module 2: Splines and Kernel Methods

Penalized Regression Splines

STAT/BIOSTAT 527, University of Washington Emily Fox
April 15 th, 2014

Penalized Regression Splines

- Alternative approach:
\square Use $K<n$ knots
\square How to choose K and knot locations?
- Option \#1:
\square Place knots at n unique observation locations x_{i} and do stepwise
\square Issue??
- Option \#2:
\square Place many knots for flexibility
\square Penalize parameters associated with knots
- Note: Smoothing splines penalize complexity in terms of roughness. Penalized reg. splines shrink coefficients of knots.

Penalized Regression Splines

- General spline model
- Definition: A penalized regression spline is $\hat{\beta}^{T} h(x)$ with
- Form of resulting spline depends on choice of
\square Basis
\square Penalty matrix
\square Penalty strength
- Still need to choose K and associated locations. RoT (Ruppert et al 2003):
$K=\min \left(\frac{1}{4} \times \#\right.$ unique $\left.x_{i}, 35\right) \quad \xi_{k}$ at $\frac{k+1}{K+2} t h$ points of x_{i}

PRS Example \#1 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\tau} D \beta$

- Cubic B-spline basis + penalty
- For this penalty, the matrix D is given by
- Leads to

PRS Example \#2 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\tau} D \beta$

- B-spline basis + penalty
- For this penalty, the matrix D is given by
- Leads to

PRS Example \#3 $\sum_{k=1}^{n}\left(u_{1}-\beta^{r}(x, y)\right)^{2}+\lambda \beta^{\sigma^{r} D \beta}$

- Cubic spline using truncated power basis
+ penalty on truncated power coefficients
- For this penalty, the matrix D is given by

A Brief Spline Summary

- Smoothing spline - contains n knots
- Cubic smoothing spline - piecewise cubic
- Natural spline - linear beyond boundary knots
- Regression spline - spline with $K<n$ knots chosen
- Penalized regression spline - imposes penalty (various choices) on coefficients associated with piecewise polynomial
- The \# of basis functions depends on
\square \# of knots
\square Degree of polynomial
\square A reduced number if a natural spline is considered (add constraints)

Reading

■ Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5 appendix

- Wakefield: 11.1.1-11.2.6

What you should know...

- Regression splines
\square Cubic splines, natural cubic splines, ...
\square Interpretation as a linear smoother
\square Degrees of freedom
- Smoothing splines
\square Arising from penalized regression setting with smoothness penalty
\square Cubic spline basis with knots at every data point
- Natural splines
\square Linear beyond boundary points
- B-splines
\square Basis functions with compact support
- Penalized regression splines
\square Choose knots as in regression splines, but penalize associated coefficients

Motivating Kernel Methods

- Recall original goal from Lecture 1 :
\square We don't actually know the data-generating mechanism
\square Need an estimator $\hat{f}_{n}(\cdot)$ based on a random sample $Y_{1, \ldots}, Y_{n}$, also known as training data
- Proposed a simple model as estimator of $E[Y \mid X]$

Choice \#1: k Nearest Neighbors

- Define nbhd of each data point x_{i} by the k nearest neighbors
\square Search for k closest observations and average these
- Discontinuity is unappealing

Choice \#2: Local Averages

- A simpler choice examines a fixed distance h around each x_{i}
\square Define set: $B_{x}=\left\{i:\left|x_{i}-x\right| \leq h\right\}$
\square \# of x_{i} in set: n_{x}
- Results in a linear smoother
- For example, with $x_{i}=$ and $h=$

$$
L=
$$

More General Forms

- Instead of weighting all points equally, slowly add some in and let others gradually die off
- Nadaraya-Watson kernel weighted average
- But what is a kernel ???

Kernels

- Could spend an entire quarter (or more!) just on kernels
- Will see them again in the Bayesian nonparametrics portion
- For now, the following definition suffices

Example Kernels

- Gaussian
$K(x)=\frac{1}{2 \pi} e^{-\frac{x}{2}}$
- Epanechnikov $\quad K(x)=\frac{3}{4}(1-x)^{2} I(x)$
- Tricube
$K(x)=\frac{70}{81}\left(1-|x|^{3}\right)^{3} I(x)$
- Boxcar
$K(x)=\frac{1}{2} I(x)$

Nadaraya-Watson Estimator

- Return to Nadaraya-Watson kernel weighted average

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}
$$

- Linear smoother:

Nadaraya-Watson Estimator

- Example:

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}
$$

\square Boxcar kernel \rightarrow
\square Epanechnikov
\square Gaussian

- Often, choice of kernel matters much less than choice of λ

Local Linear Regression

- Locally weighted averages can be badly biased at the boundaries because of asymmetries in the kernel
- Reinterpretation:

From Hastie, Tibshirani, Friedman book

- Equivalent to the Nadaraya-Watson estimator
- Locally constant estimator obtained from weighted least squares

Local Linear Regression

- Consider locally weighted linear regression instead
- Local linear model around fixed target x_{0} :
- Minimize:
- Return:
- Fit a new local polynomial for every target x_{0}

Local Linear Regression

$$
\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-\beta_{0 x_{0}}-\beta_{1 x_{0}}\left(x_{i}-x_{0}\right)\right)^{2}
$$

- Equivalently, minimize
- Solution:

Local Linear Regression

- Bias calculation:
$E\left[\hat{f}\left(x_{0}\right)\right]=\sum_{i} \ell_{i}\left(x_{0}\right) f\left(x_{i}\right)$
- Bias $E\left[\hat{f}\left(x_{0}\right)\right]-f\left(x_{0}\right)$ only depends on quadratic and higher order terms
- Local linear regression corrects bias exactly to $1^{\text {st }}$ order

Local Polynomial Regression

- Local linear regression is biased in regions of curvature
\square "Trimming the hills" and "filling the valleys"
- Local quadratics tend to eliminate this bias, but at the cost of increased variance

Local Polynomial Regression

- Consider local polynomial of degree d centered about x_{0} $P_{x_{0}}\left(x ; \beta_{x_{0}}\right)=$
- Minimize: $\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}$
- Equivalently:
- Return:
- Bias only has components of degree $d+1$ and higher

Local Polynomial Regression

- Rules of thumb:
\square Local linear fit helps at boundaries with minimum increase in variance
\square Local quadratic fit doesn't help at boundaries and increases variance
\square Local quadratic fit helps most for capturing curvature in the interior
\square Asymptotic analysis \rightarrow
local polynomials of odd degree dominate those of even degree (MSE dominated by boundary effects)
\square Recommended default choice: local linear regression

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample
- Choice \#1: empirical estimate?
- Choice \#2: as before, maybe we should use an estimator
- Choice \#3: again, consider kernel weightings instead

Kernel Density Estimation

- Popular choice = Gaussian kernel \rightarrow Gaussian KDE

From Hastie, Tibshirani, Friedman book

KDE Properties $\quad \hat{p}^{\lambda}(x)=\frac{1}{n \lambda} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{\lambda}\right)$

- Let's examine the bias of the KDE
$E\left[\hat{p}^{\lambda}(x)\right]=$
- Smoothing leads to biased estimator with mean a smoother version of the true density
- For kernel estimate to concentrate about x and bias $\rightarrow 0$, want

KDE Properties $\quad \bar{p}^{\lambda}(x)=\frac{1}{n \lambda} \sum_{=1}^{n} K\left(\frac{x-x_{i}}{\lambda}\right)$

- Assuming smoothness properties of the target distribution, it's straightforward to show that
$E\left[\hat{p}^{\lambda}(x)\right]=$
\square In peaks, negative bias and KDE underestimates p
\square In troughs, positive bias and KDE over estimates p
Again, "trimming the hills" and "filling the valleys"
- For var $\rightarrow 0$, require
- More details, including IMSE, in Wakefield book
- Fun fact: There does not exist an estimator that converges faster than KDE assuming only existence of $p^{\prime \prime}$

Connecting KDE and N-W Est.

- Recall task:

$$
f(x)=E[Y \mid x]=\int y p(y \mid x) d y
$$

- Estimate joint density $p(x, y)$ with product kernel

$$
\hat{p}^{\lambda_{x}, \lambda_{y}}(x, y)=
$$

- Estimate margin $p(y)$ by

$$
\hat{p}^{\lambda_{x}}(x)=
$$

Connecting KDE and N-W Est.

- Then, $\hat{f}(x)=$
- Equivalent to Naradaya-Watson weighted average estimator

Reading

- Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6

■ Wakefield: 11.3

What you should know...

- Definition of a kernel and examples
- Nearest neighbors vs. local averages
- Nadarya-Watson estimation
\square Interpretation as local linear regression
- Local polynomial regression
\square Definition
\square Properties/ rules of thumb
- Kernel density estimation
\square Definition
\square Properties
\square Relationship to Nadarya-Watson estimation

