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Backtrack a bit...
= JEEE

m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of
these transformations

M — Lrons.
f(l') = Z B @ S—— [intor in These

m=1 L mr&(ﬂﬂ““ﬁo -3
m What transformations should we use?
B (2) = Ty > |inear model
B (1) = x?, b (2) = 2528 > Pa\qy\omia\ req-
hin(2) = I(Ly, <2, < Up,) > Pll_uw\'h conStont
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Piecewise Polynomial Fits
" I

m Again, assume x univariate
S —

m Polynomial fits are often good locally, but not globally

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials
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Piecewise Polynomial Fits
“
LIDAR Data Example
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Regression Splines — Linear
" JEE
m More directly, we can use the truncated power basis /\/ y

hao(z) == /

/‘lﬂs
-

y

ha(z) = (z = &)+
ha(z) = (z = &)+

00 02 04 06 08 10

‘i',”” '52/,”/
m Resulting model: \ 00 02z 04 06 08 10
_ 4 (v—{ . x
E("\ - B,,\—B,f Av ' From Wakefield book

vk, (% f»\*

m Continuous at the knots because all prior basis functions are
contributing to the fit up to any single x
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Regression Splines — Cubic
“
m Naively, extend as

f(@) = Bo+ Pra + Bax® + B3z — &1)4 + Ba(z — &) + Bs(x — &)1 + Bo(z — &)2

m But, 1t derivate is discontinuous (check this)
m Drop the truncated linear basis:

m Has continuous 15t derivative (check), but not 2

m Popular to consider cubic spline:
f(@) = Bo + Bz + Box® + B3z’ + bi(z — &) + ba(z — &)2

m Has continuous 1st and 2" derivatives
m Typically people stop here
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Cubic Spline Basis and Fit
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Cubic Splines as Linear Smoothers
"
m  Cubic spline function with K knots: K

f(z) = Bo + Prx 4 Poa® + B3a” + Z bz — &)%
k=1

m  Simply a linear model

m Estimator:

m Linear smoother:
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Natural Cubic Splines
“
m For polynomial regression, fit near boundaries is erratic.
Problem is worse for splines: each is fit locally so no global constraint

m Natural cubic splines enforce linearity beyond boundary knots

m Starting from a cubic spline basis, the natural cubic spline basis is

Ni(x)=1 No(z)=2  Npio(x) =di(z) — dr_1(x)

(z — &)} — (@ — )3

di(@) = r—,

m Derivation
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Regression Splines — Summary
" JEE
m Definition:
An order-M spline with knots £ < & < -+ < &g

is a piecewise M-1 degree polynomial with M-2
continuous derivatives as the knots

A spline that is linear beyond the boundary knots is
called a natural spline

m Choices:
Order of the spline
Number of knots
Placement of knots
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Return to Smoothing Splines
* JEE—

m Objective:

mmz f(z; )2+)\/f” )2dx

= Solution:
Natural cubic spline
Place knots at every observation location x;

B Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines

m Model is of the form:  f(z) = Z N;(z)8;

m Rewrite objective:

(y = NB) (y — NB) + AT B

m Solution:

m Linear smoother:
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Splines Intro — Summary
"

m Regression splines:
Fewer number of knots and no regularization

m Smoothing splines:

Knots at every observation and regularization
(smoothness penalty) to avoid interpolators
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Cubic Spline Basis and Fit
* JEE

m Cubic spline function with K knots: K
2 3 3
f(@) = Bo+ ra + Boa” + Bsa® + ) b — &)Y
k=1
Discontinuous Continuous
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B-Splines
" JEE—
Alternative basis for representing polynomial splines

Computationally attractive...Non-zero over limited range

As before:
Knots
Domain
Number of basis functions =

Step 1: Add knots

Step 2: Define auxiliary knots 7
<< <1m <&
Titm =&
Ex41 S TR4M41 < - < TR4oM
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B-Splines
*
m For 1t order B-spline

B-splines of Order 1

é i From Hastie,
. i Tibshirani, Friedman
: ; book
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* JE——
m For 2" order B-spline
B-splines of Order 2
; : : ‘ ‘ ‘ ‘ ‘ ‘ ‘ : 3 From Hastie,
. i 3 3 | Tibshirani, Friedman
: | | 1 book
m Modify 1st order basis:
m Convention: If divide by 0, set basis element to 0
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B-Splines
" JEE

m For mt order B-spline, m=1,..., M

M oo e - From Hastie,
B-splines of Order 4 Tibshirani, Friedman
book
= Modify (m-1)t order basis:
L—Tj -1 Tj+m — 1
Bl'(z) = —— 4 __pgm-ty TEm Z T pme
Tj+m—1 — Tj Tj+m — Tj+1

B-spline bases are non-zero over domain spanned by at most M+1 knots
Only subsets { Bj" | i = M —m+1,..., M + K }are needed for
basis of order m with knots 5
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Cubic Splines as Linear Smoothers

" JEEE
= Cubic spline function with K knots:

f(x) = Bo + Brz + Boa® + sz’ +Zbk T — &)
m  Simply a linear model F(")’ E(ch')/ cY

(S 1
C AR A A o
= i . 0;
) ; g [ o
[ v, )(}\ \(.»g (Ya'g\)*’ (x"’gh ?l
m Estimator: * ok

. (CTC)'\ C’l\l

m Linear smoother: 'F\ 4 C (CTC y( LT\{ L
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Cubic B-Splines
* JEE

m Cubic B-spline with K knots has basis expansion:

m Simply a linear model

m Computational gain:
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Return to Smoothing Splines
“

m Objective:

mlnz f(x;)) +)\/f" Qdm

m Solution:
Natural cubic spline
Place knots at every observation location x;

m Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines _« #**

] ﬂ"/
m Modelis of the form:  f(z) = N;(x)B;

i X \'-n&
N AR
m Rewrite objective: oSt S

(y—NB)T(y— NB) + ABTQn B

A
NIRRT NN
m Solution: A !

/3': (NTN-% )\.ﬂ—n).‘NT\/ as in ry

dne
m Linear smoother: .
A . ¥ T «smootl‘i”J
€$ N(N N4 )ﬁn N y (‘ motyiy?
~ ————
La \’)"" tf( LA)
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Smoothing Splines

" JE
m Model is of the form:  f(z) = Z N;(x)B8;
j=1
m Using B-spline basis instead:

m Solution: 3= (BTB+ X)) 1By

m Penalty implicitly leads to natural splines
1 Objective gives infinite weight to non-zero derivatives beyond boundary
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Spline Overview (so far)
"

Smoothing Splines Regression Splines

m Knots at data points x; m K <n knots chosen

= Natural cubic spline m M" order spline = piecewise
- O(n) parameters M-1 degree polynomial with M-2

continuous derivatives at knots
Shrunk towards subspace

of smoother functions

m Linear smoothers, for example using natural cubic spline basis:
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Penalized Regression Splines
" JEE

m Alternative approach:
Use K < n knots
How to choose K and knot locations?

m Option #1:
Place knots at n unique observation locations x; and do stepwise
Issue??

m Option #2:
Place many knots for flexibility
Penalize parameters associated with knots

m Note: Smoothing splines penalize complexity in terms of
roughness. Penalized reg. splines shrink coefficients of knots.
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Penalized Regression Splines
" I

m General spline model

m Definition: A penalized regression spline is 37 h(z) with

m Form of resulting spline depends on choice of
Basis
Penalty matrix
Penalty strength

m Still need to choose K and associated locations. RoT (Ruppert et al 2003):
+1

K+2
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1
K= min(z X # unique x;, 35) & at th points of x;
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n

PRS Example #1 > (- 5"h))* +25"Dj
*

m Cubic B-spline basis + penalty

i=1

m For this penalty, the matrix D is given by

m Leads to
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PRS Example #2 Z ~ 8" h(@)* + A" DB
" S

m B-spline basis + penalty

m For this penalty, the matrix D is given by

m Leads to
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PRS Example #3 Z ~ BTh(x))? + A8T DB
“

m Cubic spline using truncated power basis

+ penalty on truncated power coefficients

m For this penalty, the matrix D is given by
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A Brief Spline Summary
“ J

m Smoothing spline — contains n knots

m Cubic smoothing spline — piecewise cubic

m Natural spline — linear beyond boundary knots

m Regression spline — spline with K < n knots chosen

m Penalized regression spline — imposes penalty (various
choices) on coefficients associated with piecewise polynomial

m The # of basis functions depends on
# of knots
Degree of polynomial
A reduced number if a natural spline is considered (add constraints)
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Reading
“ JE
m Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5
appendix

m Wakefield: 11.1.1-11.2.6

©Emily Fox 2014

33

What you should know...
* JEE—

m Regression splines
Cubic splines, natural cubic splines, ...
Interpretation as a linear smoother
Degrees of freedom

Smoothing splines
Arising from penalized regression setting with smoothness penalty
Cubic spline basis with knots at every data point

Natural splines
Linear beyond boundary points

B-splines
Basis functions with compact support

Penalized regression splines
Choose knots as in regression splines, but penalize associated coefficients
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