Module 2: Splines and Kernel Methods

Regression Splines, Smoothing Splines

STAT/BIOSTAT 527, University of Washington
Emily Fox
April $10^{\text {th }}, 2014$

Backtrack a bit...

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
- Linear basis expansions maintain linear form in terms of these transformations

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x) \leftarrow \text { trans. } \underset{\substack{\text { linear in these } \\ \text { transformations }}}{\leftarrow}
$$

- What transformations should we use?
$\square h_{m}(x)=x_{m} \rightarrow$ linear model
$\square h_{m}(x)=x_{j}^{2}, \quad h_{m}(x)=x_{j} x_{k} \rightarrow$ polynomid reg.
$\square h_{m}(x)=I\left(L_{m} \leq x_{k} \leq U_{m}\right) \rightarrow$ pilcewise constant
$\square \ldots$

Piecewise Polynomial Fits

- Again, assume x univariate
- Polynomial fits are often good locally, but not globally
\square Adjusting coefficients to fit one region can make the function go wild in other regions
- Consider piecewise polynomial fits
\square Local behavior can often be well approximated by low-order polynomials

Piecewise Polynomial Fits

LIDAR Data Example

(a)

(c)

(b)

(d)

Regression Splines - Linear

- More directly, we can use the truncated power basis
$h_{1}(x)=1$
$h_{2}(x)=x$
$h_{3}(x)=\left(x-\xi_{1}\right)_{+}$
$h_{4}(x)=\left(x-\xi_{2}\right)_{+}$
- Resulting model:

$$
\begin{aligned}
& f(x)=\beta_{0}+\beta_{1} x+\beta_{2}\left(x-q_{1}\right)_{+} \\
& +\beta_{3}\left(x-q_{2}\right)+
\end{aligned}
$$

From Wakefield book

- Continuous at the knots because all prior basis functions are contributing to the fit up to any single x

Regression Splines - Cubic

- Naively, extend as
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3}\left(x-\xi_{1}\right)_{+}+\beta_{4}\left(x-\xi_{1}\right)_{+}^{2}+\beta_{5}\left(x-\xi_{2}\right)_{+}+\beta_{6}\left(x-\xi_{2}\right)_{+}^{2}$
- But, $1^{\text {st }}$ derivate is discontinuous (check this)
- Drop the truncated linear basis:
- Has continuous $1^{\text {st }}$ derivative (check), but not $2^{\text {nd }}$
- Popular to consider cubic spline:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+b_{1}\left(x-\xi_{2}\right)_{+}^{3}+b_{2}\left(x-\xi_{2}\right)_{+}^{3}$
- Has continuous $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives
- Typically people stop here

Cubic Spline Basis and Fit

Cubic Splines as Linear Smoothers

- Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$
- Simply a linear model
- Estimator:
- Linear smoother:

Natural Cubic Splines

- For polynomial regression, fit near boundaries is erratic.
\square Problem is worse for splines: each is fit locally so no global constraint
- Natural cubic splines enforce linearity beyond boundary knots
- Starting from a cubic spline basis, the natural cubic spline basis is

$$
\begin{gathered}
N_{1}(x)=1 \quad N_{2}(x)=x \quad N_{k+2}(x)=d_{k}(x)-d_{K-1}(x) \\
d_{k}(x)=\frac{\left(x-\xi_{k}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{k}}
\end{gathered}
$$

- Derivation

Regression Splines - Summary

- Definition:

An order-M spline with knots $\xi_{1}<\xi_{2}<\cdots<\xi_{K}$ is a piecewise $M-1$ degree polynomial with $M-2$ continuous derivatives as the knots

A spline that is linear beyond the boundary knots is called a natural spline

- Choices:
\square Order of the spline
\square Number of knotsPlacement of knots

Return to Smoothing Splines

- Objective:

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Solution:
\square Natural cubic spline
\square Place knots at every observation location x_{i}
- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
\square Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
\square Will not typically interpolate data, and smoothness is determined by λ

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- Rewrite objective:

$$
(y-N \beta)^{T}(y-N \beta)+\lambda \beta^{T} \Omega_{N} \beta
$$

- Solution:
- Linear smoother:

Splines Intro - Summary

- Regression splines:

Fewer number of knots and no regularization

- Smoothing splines:

Knots at every observation and regularization (smoothness penalty) to avoid interpolators

Module 2: Splines and Kernel Methods

STAT/BIOSTAT 527, University of Washington Emily Fox
April 10 ${ }^{\text {th }}, 2014$

Cubic Spline Basis and Fit

- Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$

B-Splines

- Alternative basis for representing polynomial splines
- Computationally attractive...Non-zero over limited range
- As before:
\square Knots
\square Domain
\square Number of basis functions =
- Step 1: Add knots
- Step 2: Define auxiliary knots τ_{j}

$$
\begin{aligned}
\tau_{1} \leq \tau_{2} \leq \cdots \leq & \tau_{M} \leq \xi_{0} \\
& \tau_{j+M}=\xi_{j} \\
\xi_{K+1} & \leq \tau_{K+M+1} \leq \cdots \leq \tau_{K+2 M}
\end{aligned}
$$

B-Splines

- For $1^{\text {st }}$ order B-spline

From Hastie, Tibshirani, Friedman book

B-Splines

- For $2^{\text {nd }}$ order B-spline

- Modify $1^{\text {st }}$ order basis:
- Convention: If divide by 0 , set basis element to 0

B-Splines

- For $m^{\text {th }}$ order B-spline, $m=1, \ldots,{ }_{\text {B.splinese }}$ or order 3

From Hastie, Tibshirani, Friedman book

- Modify ($\mathrm{m}-1)^{\text {th }}$ order basis:

$$
B_{j}^{m}(x)=\frac{x-\tau_{j}}{\tau_{j+m-1}-\tau_{j}} B_{j}^{m-1}+\frac{\tau_{j+m}-x}{\tau_{j+m}-\tau_{j+1}} B_{j+1}^{m-1}
$$

B-spline bases are non-zero over domain spanned by at most $\mathrm{M}+1$ knots
\square Only subsets $\left\{B_{i}^{m} \mid i=M-m+1, \ldots, M+K\right\}$ are needed for basis of order m with knots ξ

Cubic Splines as Linear Smoothers

- Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$
- Simply a linear model $f(x)=E[Y \mid c]=c \gamma$
$C=\left[\begin{array}{cccccc}1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \left(x_{1}-q_{1}\right)_{+}^{3} & \cdots \\ \vdots & \left(x_{1}-q_{k}\right)^{3}+ \\ 1 & & & & \\ 1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \left(x_{n}-q_{1}\right)^{3}+\cdots & \left(x_{n}-q_{k}\right)^{3}\end{array}\right]$
- Estimator:

$$
\hat{\gamma}=\left(c^{\top} c\right)^{-1} c^{\top} y
$$

- Linear smoother:

Cubic B-Splines

- Cubic B-spline with K knots has basis expansion:
- Simply a linear model
- Computational gain:

Return to Smoothing Splines

- Objective:

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Solution:

Natural cubic splinePlace knots at every observation location x_{i}

- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
\square Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
\square Will not typically interpolate data, and smoothness is determined by λ

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} \underbrace{}_{j}(x) \beta_{j}$
- Rewrite objective: basis

$$
(y-N \beta)^{T}(y-N \beta)+\lambda \beta^{T} \Omega_{N} \beta
$$

- Solution:

$$
\hat{\beta}-1, T, O, V^{-1} N^{\top}
$$

- Linear smoother:

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- Using B-spline basis instead:
- Solution: $\hat{\beta}=\left(B^{T} B+\lambda \Omega_{B}\right)^{-1} B^{T} y$
- Penalty implicitly leads to natural splines
\square Objective gives infinite weight to non-zero derivatives beyond boundary

Spline Overview (so far)

Smoothing Splines

- Knots at data points x_{i}
- Natural cubic spline
- O(n) parameters
\square Shrunk towards subspace of smoother functions

Regression Splines

- K<n knots chosen
- $\mathrm{M}^{\text {th }}$ order spline $=$ piecewise M-1 degree polynomial with M-2 continuous derivatives at knots

Module 2: Splines and Kernel Methods

Penalized Regression Splines

Penalized Regression Splines

- Alternative approach:
\square Use $K<n$ knots
\square How to choose K and knot locations?
- Option \#1:
\square Place knots at n unique observation locations x_{i} and do stepwise
\square Issue??
- Option \#2:
\square Place many knots for flexibility
\square Penalize parameters associated with knots
- Note: Smoothing splines penalize complexity in terms of roughness. Penalized reg. splines shrink coefficients of knots.

Penalized Regression Splines

- General spline model
- Definition: A penalized regression spline is $\hat{\beta}^{T} h(x)$ with
- Form of resulting spline depends on choice of
\square Basis
\square Penalty matrix
\square Penalty strength
- Still need to choose K and associated locations. RoT (Ruppert et al 2003):

$$
K=\min \left(\frac{1}{4} \times \# \text { unique } x_{i}, 35\right) \quad \xi_{k} \text { at } \frac{k+1}{K+2} t h \text { points of } x_{i}
$$

PRS Example \#1 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\tau} D \beta$

- Cubic B-spline basis + penalty
- For this penalty, the matrix D is given by
- Leads to

- B-spline basis + penalty
- For this penalty, the matrix D is given by
- Leads to

PRS Example \#3 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\tau} D \beta$

- Cubic spline using truncated power basis
+ penalty on truncated power coefficients
- For this penalty, the matrix D is given by

A Brief Spline Summary

- Smoothing spline - contains n knots
- Cubic smoothing spline - piecewise cubic
- Natural spline - linear beyond boundary knots
- Regression spline - spline with $K<n$ knots chosen
- Penalized regression spline - imposes penalty (various choices) on coefficients associated with piecewise polynomial
- The \# of basis functions depends on
\square \# of knots
\square Degree of polynomial
\square A reduced number if a natural spline is considered (add constraints)

Reading

- Hastie, Tibshirani, Friedman: 5.1-5.5 (skipping 5.3), Ch. 5 appendix
- Wakefield: 11.1.1-11.2.6

What you should know...

- Regression splines
\square Cubic splines, natural cubic splines, ...
\square Interpretation as a linear smoother
\square Degrees of freedom
- Smoothing splines
\square Arising from penalized regression setting with smoothness penalty
\square Cubic spline basis with knots at every data point
- Natural splines
\square Linear beyond boundary points
- B-splines
\square Basis functions with compact support
- Penalized regression splines
\square Choose knots as in regression splines, but penalize associated coefficients

