
Submitted to the Annals of Applied Statistics

A SEMIPARAMETRIC APPROACH TO MIXED
OUTCOME LATENT VARIABLE MODELS: ESTIMATING

THE ASSOCIATION BETWEEN COGNITION AND
REGIONAL BRAIN VOLUMES∗

By Jonathan Gruhl,
Elena A. Erosheva and Paul K. Crane

University of Washington

Multivariate data that combine binary, categorical, count and
continuous outcomes are common in the social and health sciences.
We propose a semiparametric Bayesian latent variable model for mul-
tivariate data of arbitrary type that does not require specification of
conditional distributions. Drawing on the extended rank likelihood
method by Hoff (2007), we develop a semiparametric approach for
latent variable modeling with mixed outcomes and propose associ-
ated Markov chain Monte Carlo estimation methods. Motivated by
cognitive testing data, we focus on bifactor models, a special case of
factor analysis. We employ our semiparametric Bayesian latent vari-
able model to investigate the association between cognitive outcomes
and MRI-measured regional brain volumes.

1. Introduction. Multivariate outcomes are common in medical and
social studies. Latent variable models provide means for studying the inter-
dependencies among multiple outcomes perceived as measures of a common
concept or concepts. These outcomes in many cases may be of mixed types
in the sense that some may be binary, others may be counts, and yet oth-
ers may be continuous. Most common latent variable models, however, have
been developed for outcomes of the same type. For example, standard fac-
tor analysis models (Bartholomew, Knott and Moustaki, 2011) assume nor-
mally distributed outcomes, item response theory models (Van der Linden
and Hambleton, 1997) are typically applied to binary responses, and graded
response (Samejima, 1969) and generalized partial credit models (Muraki,
1992) have been developed specifically for ordered categorical data.

Existing research on latent variable models for mixed outcomes is largely
focused on two parametric approaches. The first approach is to specify a
different generalized linear model for each outcome that best suits its type
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2 GRUHL, EROSHEVA AND CRANE

(e.g. binary, count, ordered categorical) and include shared latent variables
as predictors that induce dependence among the outcomes. Sammel, Ryan
and Legler (1997) and Moustaki and Knott (2000) developed this approach
referred to as generalized latent trait modeling, employing the EM algo-
rithm for estimation. In a Bayesian framework, Dunson (2003) extended the
generalized latent trait models to allow for repeated measurements, serial
correlations in the latent variables and individual-specific response behavior.
The second approach to analyzing mixed discrete and continuous outcomes
with latent variables is the underlying latent response approach where ob-
served mixed outcomes are assumed to have underlying latent responses
that are continuous and normally distributed. Introduction of the continu-
ous latent responses enables one to proceed with the analysis as one might
for any multivariate normal data. To map the underlying latent responses
to observed mixed outcomes, one must estimate threshold parameters. In
this context, Shi and Lee (1998) employed Bayesian estimation for factor
analysis with polytomous and continuous outcomes. However, as noted by
Dunson (2003), the underlying latent response approach is limited in that
some observed outcome types such as counts may not be easily linked to
underlying continuous responses.

Generalized latent trait models can be extended to account for additional
types of outcomes (Skrondal and Rabe-Hesketh, 2004), including censored
and duration outcomes. However, accommodating many possible types of
outcomes that one may encounter in practice may be time-consuming, sus-
ceptible to misspecification, and of little interest in its own right.

Our motivating example is a data set from a large multicenter study called
the Subcortical Ischemic Vascular Dementia (SIVD) Program Project Grant
(Chui et al., 2006). The SIVD study collects serial imaging and neuropsycho-
logical data from a large group of study participants. One major study goal
is to further elucidate relationships between brain structure (as measured
by MRI imaging) and function (as measured by performance on neuropsy-
chological tests). In particular, investigators were especially interested in
cerebrovascular disease as manifested on MRI. Thus, we focus our analysis
on one particular cognitive domain, namely, executive functioning, that is
thought to be particularly susceptible to cerebrovascular disease (Hachinski
et al., 2006). Executive functioning refers to higher order cognitive tasks
(“executive” tasks) such as working memory, set shifting, inhibition, and
other frontal lobe-mediated functions. The SIVD study follows individuals
longitudinally until death, collecting results from repeated neuropsychologi-
cal testing and brain imaging. In this paper, we are concerned with relating
individual levels of executive functioning at the initial SIVD study visit
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to the concurrent MRI-measured amount of white matter hyperintensities
(WMH) located in the frontal lobe of the brain. Executive functioning ca-
pabilities may be particularly sensitive to white matter hyperintensities in
this region (Kuczynski et al., 2010).

The SIVD neuropsychological battery includes 21 distinct indicators that
can be conceptualized as measuring some facet of executive functioning. We
refer to the executive functioning-related outcomes as “indicators” as they
include some elements that are scales by themselves, and other elements that
are subsets of scales. Observed responses to the SIVD neuropsychological
tests items are diverse in their types. In addition to binary and ordered
categorical outcomes, the SIVD neuropsychological indicators include count
as well as censored count data.

In this paper, we develop a semiparametric approach to mixed outcome
latent variable models that avoids specification of outcome conditional dis-
tributions given the latent variables. Following the extended rank likelihood
approach of Hoff (2007), we start by assuming the existence of continuous
latent responses underlying each observed outcome. We then make use of
the fact that the ordering of the underlying latent responses is assumed to
be consistent with the ordering of the observed outcomes. This approach is
similar to that of Shi and Lee (1998) but does not require estimating un-
known thresholds. When the data are continuous, our approach is analogous
to the use of a rank likelihood (Pettitt, 1982). When the data are discrete,
our approach relies on the assumption that the ordering of the latent re-
sponses is consistent with the partial ordering of the observed outcomes.
Hoff (2007) introduced this general approach for estimating parameters of
a semiparametric Gaussian copula model with arbitrary marginal distribu-
tions and designated the resulting likelihood as the extended rank likelihood.
Dobra and Lenkoski (2011) applied the extended rank likelihood methods
to the estimation of graphical models for multivariate mixed outcomes.

Motivated by SIVD cognitive testing data, we specify a bifactor latent
structure for the semiparametric latent variable model. The bifactor struc-
ture assumes existence of a general factor and some secondary factors that
account for residual dependency among groups of items (Holzinger and
Swineford, 1937; Reise, Morizot and Hays, 2007). The bifactor model is
a useful tool for modeling the neuropsychological battery used in the SIVD
study, as it retains a single underlying executive functioning factor while
accounting for local dependencies among groups of related items. The orig-
inal idea for this work was presented earlier by Gruhl, Erosheva and Crane
(2010, 2011). Murray et al. (2011) recently proposed a closely related factor
analytic model for mixed data.
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4 GRUHL, EROSHEVA AND CRANE

The remainder of this paper is organized as follows. We review the semi-
parametric Gaussian copula model and introduce the new semiparametric la-
tent variable model in Section 2. We develop Bayesian estimation approaches
for the semiparametric latent variable model in Section 3. We extend the
model hierarchically to include covariates in Section 4. In Section 5, we
briefly demonstrate the performance of the model using simulated data be-
fore focusing on the analysis of the SIVD data.

2. Semiparametric Latent Variable Model for Mixed Outcomes.

2.1. Model Formulation. Let i = 1, . . . , I denote the ith participant, and
let j = 1, . . . , J denote the jth outcome. Let yij denote the observed response
of participant i on outcome j with marginal distribution Fj , then yij can
be represented as yij = F−1j (uij) where uij is a uniform (0,1) random vari-

able. An equivalent representation is yij = F−1j [Φ(zij)] where Φ(·) denotes
the normal CDF and zij is distributed standard normal. The unobserved
variables zij are latent responses underlying each observed response yij . As-
suming that the correlation of zij with zij′ , 1 ≤ j < j′ ≤ J , is specified by
the J × J correlation matrix C, the Gaussian copula model is

z1, . . . , zn|C ∼ i.i.d. N(0,C)(1)

yij = F−1j [Φ(zij)] .(2)

Here, zi is the J-length vector of latent responses zij for participant i.
In some analyses, the primary focus is on the estimation of the correlation

matrix C and not the estimation of the marginal distributions F1, . . . , FJ .
If the latent responses zij were known, estimation of C could proceed using
standard methods. Although the latent responses are unknown, Hoff (2007)
noted that we do have rank information about the latent responses through
the observed responses because yij < yij′ implies zij < zij′ . If we denote the
full set of latent responses by Z = (z1, . . . , zI)

T and the full set of observed
responses by Y = (y1, . . . ,yI)

T , then Z ∈ D(Y) where

D(Y) = {Z ∈ RI×J : max
k
{zkj : ykj < yij} < zij < min

k
{zkj : yij < ykj}∀i, j}.

(3)

One can then construct a likelihood for C that does not depend on the
specification of the marginal distributions F1, . . . , FJ by focusing on the
probability of the event, Z ∈ D(Y):

Pr(Z ∈ D(Y)|C, F1, . . . , FJ) =

∫
D(Y)

p(Z|C) dZ

= Pr(Z ∈ D(Y)|C).(4)
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Equation (3) enables the following decomposition of the density of Y:

p(Y|C, F1, . . . , FJ) = p (Y,Z ∈ D(Y)|C, F1, . . . , FJ)

= Pr (Z ∈ D(Y)|C, F1, . . . , FJ)× p(Y|Z ∈ D(Y),C, F1, . . . , FJ)

= Pr (Z ∈ D(Y)|C)× p (Y|Z ∈ D(Y),C, F1, . . . , FJ) .

This decomposition uses the fact that the probability of the event Z ∈ D(Y)
does not depend on the marginal distributions F1, . . . , FJ and that the event
Z ∈ D(Y) occurs whenever Y is observed. By using Pr (Z ∈ D(Y)|C) as the
likelihood function, the dependence structure of Y can be estimated through
C without any knowledge or assumptions about the marginal distributions.
More details on the semiparametric Gaussian copula model can be found in
Hoff (2007, 2009).

In the context of latent variable modeling, the main interest is not just
in estimating the correlations among observed variables C but in charac-
terizing the interdependencies in multivariate observed responses through a
latent variable model. Latent variable models, in turn, place constraints on
the matrix of correlations among the observed responses and seek a more
parsimonious description of the dependence structure. Factor analysis is the
most common type of latent variable model with continuous latent variables
and continuous outcomes.

To develop a semiparametric approach for factor analysis with mixed
outcomes, assume Q factors, let ηi be a vector of factor scores for individual
i and H = (η1, . . . ,ηI)

T be the I × Q factor matrix. Let Λ denote the
J×Q matrix of factor loadings. We define our semiparametric latent variable
model as

ηi ∼ N(0, IQ)(5)

zi|Λ,ηi ∼ N(Ληi, IJ)(6)

yij = gj(zij)(7)

Here, we define gj(zij) = F−1j

(
Φ
[
zij/

√
1 + λTj λj

])
, where λj denotes the

j-th row of Λ and the marginal distribution Fj remains unspecified. Note
that the functions gj(·) are nondecreasing and preserve the orderings. The
model given by equations (5)-(7) does not rely on the unrestricted correlation
matrix C as does the Gaussian copula model. Assuming that a factor ana-
lytic model is appropriate for the data, it constrains the dependencies among
the elements of zi to be consistent with the functional form of IJ +ΛΛT . As
a result, the proposed semiparametric latent variable model is a structured
case of the semiparametric Gaussian copula model and can be viewed as a
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6 GRUHL, EROSHEVA AND CRANE

semiparametric form of copula structure analysis (Klüppelberg and Kuhn,
2009).

The general framework of the semiparametric latent variable model given
by equations (5)-(7) can be used for any special cases of factor analysis.
In this paper, motivated by the substantive background information on the
SIVD cognitive testing data, we focus on bifactor models. We define bifactor
models as having a specific structure on the loading matrix, Λ, where each
outcome loads on the primary factor and may load on one or more of the
secondary factors (Reise, Morizot and Hays, 2007). Most commonly, bifactor
models are applied such that an outcome loads on at most one secondary
factor.

2.2. Model Identification. The lack of identifiability of factor analysis
models that is due to rotational invariance is well known (Jöreskog, 1969;
Dunn, 1973; Jennrich, 1978; Anderson, 2003). If we define new factor load-
ings and new factor scores by Λ̃ = ΛT and η̃i = T−1ηi, where T is an
orthonormal Q×Q matrix, then the model

zi|Λ,ηi ∼ N(Λ̃η̃i, IJ)(8)

is indistinguishable from the model in equation (6). In the case where the
covariance of ηi is not restricted to the identity matrix, any nonsingular
Q × Q matrix T results in the same indeterminacy. In this more general
case, we must place Q2 constraints to prevent this rotational invariance.
When we restrict the covariance of ηi to the identity matrix, this restric-
tion places 1

2Q(Q + 1) constraints on the model. We are then left with
1
2Q(Q − 1) additional constraints to place on the model. We may satisfy
this requirement by assuming a bifactor structure with 1

2Q(Q− 1) zeros in
the matrix of loadings Λ (Anderson, 2003). While these restrictions may
resolve rotational invariance, the issue of reflection invariance typically re-
mains (Dunn, 1973; Jennrich, 1978). Reflection invariance results from the
the fact that the signs of the loadings in any column in Λ may be switched.
Thus, if D is a diagonal matrix of 1’s and -1’s precipitating the sign changes,

HΛT = HDDΛT = H̃Λ̃
T

.
Geweke and Zhou (1996) proposed an approach that addresses identifi-

ability of factor models by constraining all upper diagonal elements in the
matrix of factor loadings to zero and requiring all diagonal elements to be
positive. This approach has been used successfully in Bayesian exploratory
factor analysis (Lopes and West, 2004; Ghosh and Dunson, 2008, 2009),
but can not be used with bifactor models because the placement of struc-
tural zeros in most cases will be incompatible with fixing all upper diagonal
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elements of the matrix of loadings to zero. Congdon (2003) and Congdon
(2006) suggested the use of a prior that would place additional constraints
on the signs of some of the factor loadings to resolve the issue of reflection
invariance. However, it has been shown that different choices of parameters
for constraint placement could have a serious impact on model fit in complex
factor models (Millsap, 2001), Thus, in our work, we rely on the relabeling
algorithm proposed by Erosheva and Curtis (2011) to resolve reflection in-
variance. This algorithm relies on a decision-theoretic approach and resolves
the sign-switching behavior in Bayesian factor analysis in a similar fashion to
the relabeling algorithm introduced to address the label-switching problem
in mixture models (Stephens, 2000). It does not require making preferential
choices among variables for constraint placement.

In the semiparametric latent variable model, unlike the standard factor
analysis model, specific means and variances are not identifiable. Let

z̃ij = µj + σjzij(9)

where µj and σj are the specific mean and variance for item j. Moreover, if
Z̃ ∈ RI×J denotes the matrix of elements z̃ij and

D̃(Y) = {Z̃ : max{z̃kj : ykj < yij} < z̃ij < min{z̃kj : yij < ykj}},(10)

then

Pr(Z̃ ∈ D̃(Y)|Λ,H,µ,Σ) = Pr(Z ∈ D(Y)|Λ,H).(11)

Thus, shifts in location and scale of the latent responses will not alter the
probability of belonging to the set of feasible latent response values implied
by orderings of the observed responses. As such, we set the specific means
at µ = 0 and the specific variances at Σ = IJ .

3. Estimation. We employ a parameter expansion approach (Liu, Ru-
bin and Wu, 1998; Liu and Wu, 1999) for Markov chain Monte Carlo (MCMC)
sampling, following the work of Ghosh and Dunson (2009) on efficient com-
putation for Bayesian factor analysis. We found that this method outper-
forms a Gibbs sampling algorithm with standard semi-conjugate priors for
factor analysis (Shi and Lee, 1998; Ghosh and Dunson, 2009) in that it
reduces autocorrelation among the MCMC draws and results in greater ef-
fective sample sizes.

3.1. Parameter Expansion Approach. The central idea behind the pa-
rameter expansion approach, using the terminology of Ghosh and Dunson

imsart-aoas ver. 2011/12/06 file: SPLVM-AOAS-rev-final.tex date: July 30, 2013



8 GRUHL, EROSHEVA AND CRANE

(2009), is to start with a working model that is an overparameterized version
of the initial inferential model. After proceeding through MCMC sampling, a
transformation is used to relate the draws from the working model to draws
from the inferential model. For our application, the overparameterized model
is

z∗i ∼ N (Λ∗η∗i ,Σ) ,(12)

η∗i ∼ N (0,Ψ) ,(13)

where Σ and Ψ are diagonal matrices that are no longer restricted to identity
matrices. The latent responses z∗i , the latent variables η∗i and the loadings
Λ∗ are unidentified in this working model. The transformations from the
working model to the inferential model are then specified as

ηi = Ψ−1/2η∗i ,

zi = Σ−1/2z∗i ,(14)

Λ = Σ−1/2Λ∗Ψ1/2.

To sample from the working model, we must specify priors for the diagonal
elements of Ψ and Σ as well as for Λ∗. We specify these priors in terms of the
precisions ψ−2q and σ−2j . In addition, we denote by λ∗′j the non-zero elements

of the j-th row of Λ∗. The prior on λ′j is then induced through the priors

on ψ−2q , σ−2j and λ∗′j , rather than being specified directly. Our priors are

ψ−2q ∼ Gamma(φψ, νψ),

σ−2j ∼ Gamma(φσ, νσ),(15)

λ∗′j ∼ N(mλ∗′j
,Sλ∗′j ).

The structural zeros in the matrix of loadings Λ are specified in accor-
dance with our substantive understanding of the research problem at hand.
However, we must have enough zeros so that the model can be identified
since we rely on the placement of these structural zeros to resolve rotational
invariance (Jöreskog, 1969; Dunn, 1973; Jennrich, 1978; Loken, 2005). For-
mally, we specify the prior for these structural zero elements as

λ∗jq ∼ δ0,(16)

where δ0 is a distribution with its point mass concentrated at 0. We estimate
loadings with no additional constraints on their signs. As discussed in Sec-
tion 2, we then deal with potential multiple modes of the posterior that are
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due to reflection invariance by applying the relabeling algorithm proposed
by Erosheva and Curtis (2011).

We now develop the parameter-expanded Gibbs algorithm for sampling
factors H and loadings Λ. Because the extended rank likelihood
Pr (Z∗ ∈ D(Y)|Λ∗,H∗,Σ) involves a complicated integral, any expressions
involving it will be difficult to compute. We avoid having to compute this
integral by drawing from the joint posterior of (Z∗,H∗,Λ∗,Σ,Ψ) via Gibbs
sampling. Given Z∗ = z∗ and Z∗ ∈ D(Y), the full conditional density of Λ∗

can be written as

p (Λ∗|H∗,Z∗ = z∗,Z∗ ∈ D(Y),Σ) = p(Λ∗|H∗,Z∗ = z∗,Σ)

because the current draw values Z∗ = z∗ imply Z∗ ∈ D(Y). A similar
simplification may be made with the full conditional density of H∗. Given
Λ∗,H∗,Z∗ ∈ D(Y),Σ and Z∗(−i)(−j), the full conditional density of zij is

proportional to a normal density with mean
(
λ∗j
)T

η∗i and variance σ2j that
is restricted to the region specified by D(Y). Our Gibbs sampling procedure
for the working model proceeds according to the following steps.

1. Draw latent responses Z∗. For each i and j, sample z∗ij from a
truncated normal distribution according to:

z∗ij ∼ TN(z∗l ,z
∗
u)

((
λ∗j
)T

η∗i , σ
2
j

)
,(17)

where TN denotes truncated normal and z∗l , z
∗
u define the lower and

upper truncation points:

z∗l = max
k
{z∗kj : ykj < yij}(18)

z∗u = min
k
{z∗kj : ykj > yij}.(19)

2. Draw latent variables H∗. For each i, draw directly from the full
conditional distribution for η∗i as follows:

η∗i ∼ N

((
Ψ−1 + (Λ∗)T Σ−1Λ∗

)−1
(Λ∗)T Σ−1z∗i ,

(
Ψ−1 + (Λ∗)T Σ−1Λ∗

)−1)
.

(20)

3. Draw loadings Λ∗. For each j, draw from the full conditional distri-
bution for the non-zero loadings λ∗′j :

λ∗′j ∼ N

((
S−1
λ′
j

+ σ−2
j

(
H∗′j

)T
H∗′j

)−1 (
S−1
λ′
j
mλ′

j
+ σ−2

j

(
H∗′j

)T
z∗j

)
,
(
S−1
λ′
j

+ σ−2
j

(
H∗′j

)T
H∗j ′

)−1
)(21)
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10 GRUHL, EROSHEVA AND CRANE

where H∗′j is a matrix comprised of the columns of H∗ for which there
are non-zero loadings in λj .

4. Draw inverse covariance matrix Ψ−1. For each q, draw the diag-
onal element ψ−2q of Ψ−1 from the full conditional distribution:

ψ−2q ∼ Gamma

(
φψ + I/2, νψ +

1

2

∑
i

η2iq

)
,(22)

where I is the number of participants.
5. Draw inverse covariance matrix Σ−1. For each j, draw the diag-

onal element σ−2j of Σ−1 from the full conditional distribution:

σ−2j ∼ Gamma

(
φσ + I/2, νσ +

1

2
(zj −Hλj)

T (zj −Hλj)

)
.(23)

After discarding some number of initial draws as burn-in, we transform
the remaining draws using equations (14) as part of a postprocessing step
to obtain posterior draws from our inferential model. The only remaining
steps are to apply the relabeling algorithm of Erosheva and Curtis (2011),
assess convergence and calculate posterior summaries for the parameters in
the inferential model.

Our application of parameter expansion to factor analysis models induces
prior distributions that are different from standard semi-conjugate priors in
factor analysis. If the prior covariance matrix on λ′j is diagonal, the prior
induced on λ′jq by the parameter expansion is the product of the normal
distribution prior on λ∗′jq and the square root of a ratio of gamma distribution

priors on σ−2j and ψ−2q . The ratio of gamma distributed random variables
has a compound gamma distribution which is a form of the generalized beta
prime distribution with the shape parameter fixed to 1. If we integrate out
this ratio, the prior for λjq is a scale mixture of normals (West, 1987) with
a compound gamma mixing density.

The induced prior on the matrix Λ results in correlations among elements
of the same column and elements of the same row. As discussed in Ghosh and
Dunson (2009), prior dependence in the factor loadings for the qth factor will
result from the shared parameter ψ2

q in their respective prior distributions in
the parameter expanded formulation. Similarly, the shared parameter σ2j in
the prior distributions for the factor loadings related to the jth outcome in
the parameter expanded approach will induce prior dependence across rows
of the factor loadings matrix.

In both the simulation and applied settings considered below, sensitivity
analyses demonstrated that posterior estimates did not change meaningfully
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for various hyperparmater values for σ−2j and ψ−2q . For values of νσ = 1, φσ =
2, νψ = 1/2, φψ = 2, the induced prior on the non-zero elements of Λ will
have mean, variance and 2.5% and 97.5% quantiles close to that of a standard
normal distribution. In their comparable model, Murray et al. (2011) use a
shrinkage prior, explore its properties and develop a parameter-expanded
approach with optimality properties.

3.2. Generating Replicated Data for Posterior Predictive Model Checks.
Following Hoff (2007), we obtain posterior predictive distributions that in-
corporate uncertainty in estimation of the univariate marginal distributions.
Let the superscript (m) denote the m-th replicate from the the m-th poste-
rior draw of the parameter. We generate a new vector of latent responses,

z
(m)
I+1, in addition to I sets drawn as part of the Gibbs sampling algorithm,

according to:

z
(m)
I+1 ∼ N

(
0, IJ + Λ(m)

(
Λ(m)

)T)
.(24)

If z
(m)
(I+1)j falls between two latent responses, z

(m)
ij and z

(m)
i′j , that share the

same value on the original data scale (i.e., yij = yi′j), then y
(m)
(I+1)j must

also take this value as gj(·) is monotonic. If z
(m)
(I+1)j falls between two latent

responses, z
(m)
ij and z

(m)
i′j , that do not share the same value on the original

data scale, then we select the value, yij or yi′j , corresponding to the la-

tent response to which z
(m)
(I+1)j is closest. In the case of continuous observed

responses, we use linear interpolation to obtain a value for y
(m)
(I+1)j .

4. Hierarchical Semiparametric Latent Variable Model. To re-
late covariates of interest to the primary factor, we extend the proposed
model hierarchically. Previously, we assumed that

ηi ∼ N (mηi ,Ψ)(25)

where mηi = 0,Ψ = IQ. We now replace the first element of mηi with a
function of the covariates of interest denoted by the P -length vector xi:

mηi =
(
xTi β, 0, . . . , 0

)T
.(26)

When we employ a parameter expansion approach for estimation,

η∗i ∼ N (mηi ,Ψ) ,(27)

mηi =
(
xTi β

∗, 0, . . . , 0
)T
,(28)
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12 GRUHL, EROSHEVA AND CRANE

where the diagonal elements of Ψ are no longer restricted during MCMC.
For β∗, we specify the semi-conjugate prior:

β∗ ∼ N (mβ,Sβ) .(29)

Moreover, to further facilitate efficient computation, we add an additional
working parameter, α, as suggested by Ghosh and Dunson (2009), so that

mηi =
(
α+ xTi β

∗, 0, . . . , 0
)T
.(30)

Relaxing the restriction on the mean of the latent variable promotes better
mixing of the regression coefficients. For α, we use the semi-conjugate prior:

α ∼ N
(
mα, s

2
α

)
.(31)

To estimate the hierarchical model (equations (25), (26)), we modify the
steps for drawing ηi

∗ and Ψ in the sampling algorithm from Section 3 to
account for the inclusion of covariates and the additional working parameter,
α, in mηi . We sample β∗ and α according to their full conditionals:

β∗ ∼ N

((
ψ−2

1 XTX + S−1
β

)−1 (
ψ−2

1 XT (
η∗q=1 − 1Iα

)
+ S−1

β mβ

)
,
(
ψ−2

1 XTX + S−1
β

)−1
)
,

(32)

α ∼ N
((
ψ−2

1 I + s−2
α

)−1
(
ψ−2

1 1TI
(
η∗q=1 −Xβ∗

)
+ s−2

α mα

)
,
(
ψ−2

1 I + s−2
α

)−1
)
.

(33)

where X is an I×P matrix of covariates and η∗q=1 is a vector of the primary
factor scores, the first column of H∗. In the post-processing stage for the
parameter expansion approach, we make the transformations:

ηi = Ψ−1/2 (η∗i −α) ,(34)

β = β∗ψ−11 ,(35)

where α = (α, 0, . . . , 0)T .

5. Simulation Data Example and Application to SIVD Data.

5.1. Simulated Data Example. To test the semiparametric latent variable
model, we examined the model’s ability to recover data generating param-
eters using simulated data for I = 500 individuals on J = 15 outcomes.
We applied three estimation approaches: the parameter expansion approach
from Section 3, a variation of the parameter expansion approach where only
the diagonal elements of Ψ are unrestricted during estimation, and a more
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standard Gibbs sampling approach (Shi and Lee, 1998; Ghosh and Dunson,
2009). The data generating process assumed a bifactor form with two sec-
ondary factors in addition to the primary factor. All outcomes loaded on the
general factor; outcomes 1, 13, 14 and 15 loaded on one secondary factor;
and outcomes 3, 4, 6 and 8 loaded on the other secondary factor. For each in-
dividual, we simulated ηi ∼ N(0, IQ). We subsequently generated a matrix
of latent responses, Z, with mean HTΛ. Finally, we randomly drew cutoffs
for each outcome in order to produce discretized “observed” responses from
the continuous latent responses so that the number of unique values for each
outcome ranged from 2 (outcome 1) to 30 (outcome 9).

To fit the model to the simulated data, we employed each estimation
approach to generate 50,000 MCMC draws, the first 10,000 of which we
discarded as burn-in. In addition, we thinned the posterior samples, keeping
only every 10th draw. All estimation approaches did a good job of recovering
the data generating values but the parameter expansion estimation approach
described in Section 3 displayed better mixing, less autocorrelation, and
larger effective sample sizes, sometimes by a factor of ten or more compared
to a standard Gibbs sampling approach. We note that because the target
distributions are not the same for the three approaches, measures such as
effective sample size are not directly comparable. However, as in Ghosh and
Dunson (2009), we use these measures as indicators of the quality of mixing
using the different approaches. Finally, as discussed in Section 3 different
choices for hyperparameter values did not result in meaningful differences
in the posterior estimates.

5.2. Application To SIVD Data. Participants were recruited to fill six
broad groups in the Subcortical Ischemic Vascular Dementia (SIVD) study
(Chui, 2007), comprised by three levels of cognitive functioning and two
levels (absence vs. presence) of subcortical lacunes. Lacunes are small ar-
eas of dead brain tissue caused by blocked or restricted blood supply. The
three levels of cognitive functioning groups were normal, mildly impaired
and demented as determined by the Clinical Dementia Rating total score,
a numerical rating that is based on medical history and clinical examina-
tion as well as other forms of assessment (Morris, 1993, 1997). Among the
data collected by SIVD are neuropsychological test results and standardized
magnetic resonance imaging (MRI) scans of the participants’ brains (Mungas
et al., 2005). A computerized segmentation algorithm classified pixels from
the MRI scans into different components, including white matter hyperin-
tensities (Cardenas et al., 2001).

We are interested in relating the individuals’ level of executive functioning
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14 GRUHL, EROSHEVA AND CRANE

to the white matter hyperintensity volume located in the frontal lobe at
individuals’ first visit. White matter hyperintensities are areas of increased
signal intensity that are commonly associated with older age. Among the
outcomes available at first visit, we identified 21 indicators of executive
functioning in the SIVD neuropsychological battery. These items included
Digit Span, Visual Span, Verbal Fluency, Stroop Test, and Mattis Dementia
Rating Scale (MDRS) test items. We excluded MDRS outcomes M and N as
everyone except one participant received full credit on these outcomes. As a
result, we used 19 of the 21 executive functioning outcomes in our analysis.

Table 1 displays basic information for the 19 outcomes as well as some
summary statistics observed in the data for I = 341 participants. For this
analysis, we considered only participants with a complete set of responses
to the 19 executive functioning outcomes as well as a concurrent set of brain
MRI measurements. We defined concurrent as within six months (before
or after) of the neuropsychological testing date. As one can see from the
summary statistics, the outcomes vary greatly in their number of categories
as well as in their difficulty. For many of the binary outcomes as well as the
MDRS outcomes E and V, the mean and median scores are very close to
the largest possible score.

Table 1
Summary statistics for I = 341 responses to 19 SIVD executive functioning outcomes as
well as outcome type assignment. ’RC Count’ denotes a right-censored count outcome.

Range Mean Median Outcome Type

Digit Span Forward 3-12 7.69 8 Count
Digit Span Backwards 1-12 5.97 6 Count
Visual Span Forward 0-13 7.15 7 Count
Visual Span Backwards 0-12 6.18 6 Count
Verbal Fluency Letter F 1-26 11.8 12 Count
Verbal Fluency Letter A 0-40 10.2 10 Count
Verbal Fluency Letter S 0-50 12.4 12 Count
MDRS E 2-20 16.64 19 RC Count
MDRS G 0-1 0.96 1 Binary
MDRS H 0-1 0.98 1 Binary
MDRS I 0-1 0.95 1 Binary
MDRS J 0-1 0.97 1 Binary
MDRS K 0-1 0.98 1 Binary
MDRS L 0-1 0.79 1 Binary
MDRS O 0-1 0.94 1 Binary
MDRS V 9-16 14.9 16 RC Count
MDRS W 0-8 6.44 7 Ordered Cat.
MDRS X 0-3 2.66 3 Ordered Cat.
MDRS Y 0-3 2.93 3 Ordered Cat.
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Fig 1: Histograms of scores for MDRS E and W items.

To illustrate the challenges of modeling cognitive outcomes from the SIVD
study parametrically, we describe two items in more detail. For MDRS out-
come E, participants are given one minute and are asked to name as many
items found in supermarkets as they can. The participant’s score is the num-
ber of valid items named, censored at 20. A histogram of observed scores
for this outcome in Figure 1a shows some evidence of a ceiling effect for this
item. Similarly, Figure 1b depicts a histogram of observed scores for MDRS
outcome W that asks a participant to compare words and identify similari-
ties. Although the description in this case does not suggest right-censoring,
there is also some evidence of a ceiling effect in the histogram. We might
treat MDRS outcome W as right-censored rather than an ordered categor-
ical outcome in a parametric approach. These are just two examples that
illustrate ambiguities in specifying appropriate parametric distributions for
each cognitive outcome in the SIVD study. To bypass this specification, yet
still model the interdependencies among test items, we used the hierarchical
semiparametric latent variable model.

We are interested in modeling the relationship between the primary factor
and the volume of white matter hyperintensities located in the frontal lobe
of the brain. Controlling for other covariates, we specified the mean of the
primary factor as

E [ηi1] = β1Sexi + β2Educi + β3Agei + β4Voli + β5WMHi,(36)

where Sex is the participant’s sex (Female=1, Male=0), Educ is the number
of years of education, Vol is the total brain volume of the participant, and
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16 GRUHL, EROSHEVA AND CRANE

WMH is the frontal white matter hyperintensity volume. We used standard-
ized versions of the continuous predictor variables. Table 2 displays some
summary statistics for these covariates by different levels of frontal white
matter hyperintensity volume.

Table 2
Mean and SD for covariates by level of frontal WMH. The range of frontal WMH

measurements was partitioned to obtain three similarly sized groups.

Frontal WMH (cc)
0-5 >5-11 >11

No. Participants 113 112 116

Age (Yrs) 68.49 (8.65) 74.82 (6.72) 79.44 (6.23)
Education (Yrs) 15.36 (2.95) 15.12 (3.01) 14.32 (3.12)
Total Brain Volume (cc) 1196.2 (115.81) 1231.65 (114.78) 1218.34 (138.13)

One-factor semiparametric model. We started our analysis by examining
the Q = 1 model with a single latent factor explaining interdependencies
among the test items. To estimate the model, we utilized the parameter-
expanded Gibbs sampling algorithm. Even though we found this approach
to be more efficient than the standard Gibbs sampler, we still observed
high autocorrelation within the chains for factor loadings. We drew 50,000
MCMC samples and discarded the first half as burn-in. We used trace plots
and the Geweke (Geweke, 1992) and Raftery-Lewis (Raftery and Lewis,
1995) diagnostic tests to assess convergence.

Table 4 displays posterior summaries for the regression coefficients, β.
We observed a negative relationship between the primary factor and frontal
white matter hyperintensity volume. The accompanying 95% posterior cred-
ible interval (-0.466, -0.205) did not contain zero, suggesting a negative asso-
ciation between frontal white matter hyperintensity volume and the primary
factor.

We evaluated model fit using posterior predictive model checks. We began
by examining the fit of the marginal distributions. Figure 2 displays the
histograms of observed responses for Verbal Fluency outcome A and MDRS
outcome E along with posterior predictive summaries. In each case, the
model appeared to do a satisfactory job of approximating the data. We
found similarly good approximations of the marginal distributions in the
observed data for the other outcomes as well.

We assessed the model’s ability to replicate the observed dependence
structure in the data at a global level by examining the eigenvalues of the
observed rank correlation matrix (Figure 3a). The eigenvalues of correlation
matrices form the basis of heuristic tests in factor analysis such as the latent
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(a) Verbal Fluency A (b) MDRS E

Fig 2: Histograms of the observed scores for the Verbal Fluency A and MDRS
E. The black points indicate the mean count across replicated datasets for
each score. The black vertical segment indicates the interval from the 2.5%
to 97.5% quantiles across replicated datasets.

root criterion (Guttman, 1954) or the scree test (Cattell, 1966) that deter-
mine the number of factors to include in the model. The first eigenvalue was
well approximated by the model but the subsequent eigenvalues indicated
model misfit, suggesting that additional factors may be necessary to more
accurately represent the dependence structure in the data.

We reviewed the pairwise rank correlations to better understand the short-
comings of the single factor model and direct the next steps in our model
building process. Figures 4a and 4b display the pairwise correlation plots
for the MDRS J and Visual Span Backwards outcomes for the single factor
model. In both cases, the model fit the majority of the pairwise correla-
tions well. However, in each case, there were a few outcomes with poorly
fitted correlations. For MDRS J, the model did not appear to fully capture
the correlation with the conceptually-related MDRS I and K; all three of
these outcomes ask participants to repeat alternating movements of some
type. Likewise, for Visual Span Backwards, the correlation with Visual Span
Forwards was not accurately approximated by the single factor model. In
addition, the correlations between Visual Span Backwards and the MDRS
outcomes L and O were not well approximated. MDRS outcomes L and O
involve copying drawings and, in this sense, also incorporate a visual com-
ponent that may be the source of the residual correlation between the out-
comes. The observation that the lack of fit was present among conceptually
related outcomes (e.g., outcomes that are parts of a subtest or a subscale) is
consistent with the notion that possible secondary factors may impact item
correlations in addition to the general executive functioning factor. Thus,

imsart-aoas ver. 2011/12/06 file: SPLVM-AOAS-rev-final.tex date: July 30, 2013



18 GRUHL, EROSHEVA AND CRANE

(a) Q = 1 (b) Q = 4

Fig 3: Eigenvalue plots for the Q = 1 and Q = 4 models.The mean posterior
prediction (grey point) and 95% posterior prediction intervals (grey line
segment) of the top ten eigenvalues calculated using replicated data from
the single factor (Q = 1) and bifactor (Q = 4) models. Eigenvalues computed
from the observed data are denoted by a black “X”.

our next step was to consider the class of bifactor models.

Bifactor semiparametric model. To choose a secondary factors structure in
a bifactor model, we applied an iterative process. During one iteration, we
examined all pairwise correlations for the lack of fit, specified secondary fac-
tors to account for residual correlation, refit the model and checked the fit of
this new model. Ultimately, we specified a bifactor model with one general
cognitive ability factor and 3 secondary factors (for a total of Q = 4) as listed
in Table 3. It is important to note that, although we identified these sec-
ondary factors using the posterior predictive model checks, they nevertheless
have substantive interpretations as they link conceptually related outcomes.
The second factor loads on MDRS outcomes I, J and K, test items that all
involve repetition of alternating movements. The third factor loads on the
Visual Span outcomes and MDRS outcomes L, O and V. These test items all
include visual or drawing components. The fourth factor links three MDRS
outcomes that ask participants to identify similarities and dissimilarities.

For the semiparametric bifactor model with Q = 4, we drew 500,000
MCMC samples and discarded the first 50,000 as burn-in. We kept every
50th draw, leaving us with 9,000 posterior draws. As with the single factor
model, we checked convergence using trace plots and the Geweke (Geweke,
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(a) MDRS J, Q = 1 (b) Visual Span Backwards, Q = 1

(c) MDRS J, Q = 4 (d) Visual Span Backwards, Q = 4

Fig 4: Pairwise correlation plots for the single factor (Q = 1) and bifactor
models (Q = 4). Each pairwise correlation plot depicts the mean posterior
prediction (grey point) and 95% posterior prediction intervals (grey line
segment) for Kendall’s τ values calculated using replicated data. Kendall’s
τ values computed from the observed data are denoted by a black “X”.

1992) and Raftery-Lewis (Raftery and Lewis, 1995) diagnostic tests. Conver-
gence was satisfactory but, compared to the single factor model, the mixing
was considerably slower for a few of the secondary factors that exhibited
high levels of autocorrelation. We should also note that the speed of conver-
gence was influenced by the choice of hyperparameters for Σ and Ψ in the
parameter expanded model.

The bifactor model represented the dependence structure of the observed
responses better. Figure 3b shows that the bifactor model provided a good fit
to the observed eigenvalues well beyond the first eigenvalue. As can be seen
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Table 3
Proposed factor structure for SIVD executive functioning outcomes. ∗ indicates a

non-zero factor loading to be estimated.
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1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 0 0 ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 ∗ 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

in Figures 4c and 4d, the bifactor model did a better job of replicating the
pairwise rank correlations compared to the single factor model. In Figure 4c,
one may also notice the larger posterior credible intervals for the pairwise
rank correlations of MDRS I with MDRS J and MDRS K. Referring back to
Table 1, we see that almost all participants answered these items correctly.
As a result, there is less information to estimate the secondary factor that
accounts for the residual correlation among these three items and, in the
wide credible intervals, we see the subsequent imprecision.

Table 4 displays posterior summaries for the regression parameters. We
saw little change in our estimate for the parameter of interest, β5, the coef-
ficient for frontal WMH in adding additional factors. Thus, our substantive
conclusion regarding the association between an individual’s executive func-
tioning and the volume of white matter hyperintensities in the frontal region
of the brain remains the same whether we use the one-factor model or the
better fitting bifactor model. Based on our semiparametric latent variable
model, we expect a 1SD increase in frontal white matter hyperintensity vol-
ume to be associated with a 0.335SD decrease in the primary factor. In
examining the other coefficients, we see that none of the 95% posterior cred-
ible intervals have shifted to the extent that we would alter our posterior
belief about whether zero is a plausible value for the parameter. However,
the coefficients for sex, age and total brain volume did decrease by 30-40%
in magnitude.

6. Discussion. In this paper, we have developed a semiparametric la-
tent variable model for multivariate mixed outcome data. This model, unlike
common parametric latent variable modeling approaches for mixed outcome
data (Sammel, Ryan and Legler, 1997; Moustaki and Knott, 2000; Dun-
son, 2003; Shi and Lee, 1998), does not require the specification of con-
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Table 4
Posterior summaries for regression coefficients for single factor, Q = 1, and bifactor,

Q = 4, models.

Q = 1 Q = 4
Coefficient Mean Median 95% CI Mean Median 95% CI

Sex 0.234 0.233 (-0.061, 0.516) 0.155 0.152 (-0.134, 0.440)
Education 0.354 0.354 (0.232, 0.479) 0.325 0.325 (0.206, 0.446)
Age -0.126 -0.126 (-0.246, 0.004) -0.078 -0.078 (-0.201, 0.044)
Total Brain Vol. 0.069 0.069 (-0.080, 0.215) 0.046 0.045 (-0.096, 0.194)
Frontal WMH Vol. -0.330 -0.328 (-0.466, -0.205) -0.335 -0.336 (-0.464, -0.208)

ditional distributions for each outcome given the latent variables. When a
data set combines a variety of mixed outcomes, picking appropriate condi-
tional distributions for each outcome encountered in real data, extending the
parametric models to account for all cases of distributions, and extending
estimation methods appropriately can be labor-intensive. Moreover, speci-
fication of outcome conditional distributions given the latent variables may
be of little interest by itself in any research setting where the main question
is in the relationship between a common factor (or factors) and a covariate
of interest. Our proposed semiparametric latent variable framework allows
one to model interdependencies among observed mixed outcome variables
by specifying an appropriate latent variable model while, at the same time,
avoiding the specification of outcome distributions conditional on the com-
mon latent variables. We have demonstrated this approach for the single-
factor and bifactor models, incorporating a covariate effect on the general
factor.

The extended rank likelihood can readily be employed with other latent
variable models, including item response theory models (Van der Linden and
Hambleton, 1997) and structural equation models (Bollen, 1989). In struc-
tural equation models, the focus is often on characterizing the relationship
between latent variables and/or between latent variables and fixed covari-
ates as in the case of our hierarchical model. In such cases where the focus is
not on the loadings or outcome-related parameters, the proposed semipara-
metric approach would be quite useful in dealing with mixed outcome data.
However, the extended rank likelihood may not be as useful in cases where
outcome-specific parameters on the scale of the observed outcomes are of
interest. In item response theory models, one is often interested in examin-
ing the item difficulty and discrimination parameters to better understand
the characteristics of individual test questions. The difficulty parameter, the
analogue to the specific mean in the factor model, is not directly identi-
fiable with the extended rank likelihood approach. Nonetheless, one could
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still carry out posterior inference by relying on the relationship between the
difficulty parameter and the latent trait. For example, in a two parame-
ter item response theory model for binary outcomes, the probability of a
positive response when the factor score is set to zero is a one-to-one func-
tion of the difficulty parameter. Such an alternative, however, may render
the semiparametric approach less convenient for a practitioner who is pri-
marily interested in parameters characterizing the properties of individual
outcomes.

We employed the semiparametric latent variable model to study the as-
sociation between the volume of white matter hyperintensities in the frontal
lobe and cognitive testing outcomes related to executive functioning from the
Subcortical Ischemic Vascular Dementia (SIVD) study. The semiparametric
latent variable model allowed us to analyze the mixed cognitive testing out-
comes without requiring the specification of parametric distributions for the
outcomes conditional on the latent variables. It has been hypothesized that
a greater volume of frontal lobe white matter hyperintensities will be associ-
ated with worse executive functioning. Consistent with this hypothesis, we
found a negative association between the primary factor in our model and
the volume of white matter hyperintensities.

Our model selection process was guided by substantive beliefs that asso-
ciations among items in the cognitive testing data are primarily driven by
the main latent factor but can potentially be influenced by secondary latent
factors due to local dependencies among groups of related items. Thus, we
started our model-building process by fitting the one-factor semiparametric
model and relied on posterior predictive model checks to evaluate model
misfit and to guide us in identifying a secondary factor structure for the
bifactor model. Our posterior predictive checks approach can therefore be
thought of as a method of exploratory bifactor analysis when the secondary
factor structure is not known in advance (Jennrich and Bentler, 2011). It
also provides a mechanism by which statistical methodologists can work
together with substantive experts to develop models that are theoretically
justified and that are consistent with the data. We note, however, that the
main conclusion about the association between executive functioning and re-
gional brain volumes was not affected much by the choice of a better fitting
bifactor model over the single factor model in our case.

While our proposed model selection process is somewhat ad-hoc, one could
explore the use of more formal model fit criteria, other model selection meth-
ods, or a fully Bayesian approach to determine the factor structure for our
semiparametric model. For example, one could use the methods of Knowles
and Ghahramani (2011) and Rai and Daumé III (2009) to incorporate the
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Indian Buffet Process prior to simultaneously estimate the loadings, the
loadings structure and the number of factors. Within the bifactor model
framework, Jennrich and Bentler (2011) recently proposed using a rotation
criterion to explore the secondary factor structure. Dunson et al. (2006)
presented a Bayesian model averaging approach that accounts for the un-
certainty in the number of factors.

Overall, in our work with the cognitive testing data, we found that the
semiparametric model was more elegant and much easier in implementation
than the standard parametric approaches for mixed outcome data.
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