Haar function construction of Brownian bridge and Brownian motion

Wellner; 10/30/2008

Existence of Brownian motion and Brownian bridge as continuous processes on $C[0,1]$

The aim of this subsection to convince you that both Brownian motion and Brownian bridge exist as continuous Gaussian processes on $[0,1]$, and that we can then extend the definition of Brownian motion to $[0, \infty)$.
Definition 1. Brownian motion (or standard Brownian motion, or a Wiener process) \mathbb{S} is a Gaussian process with continuous sample functions and:
(i) $\mathbb{S}(0)=0$;
(ii) $E(\mathbb{S}(t))=0, \quad 0 \leq t \leq 1$;
(iii) $E\{\mathbb{S}(s) \mathbb{S}(t)\}=s \wedge t, \quad 0 \leq s, t \leq 1$.

Definition 2. A Brownian bridge process \mathbb{U} is a Gaussian process with continuous sample functions and:
(i) $\mathbb{U}(0)=\mathbb{U}(1)=0$;
(ii) $E(\mathbb{U}(t))=0, \quad 0 \leq t \leq 1$;
(iii) $E\{\mathbb{U}(s) \mathbb{U}(t)\}=s \wedge t-s t, \quad 0 \leq s, t \leq 1$.

Theorem 1. Brownian motion \mathbb{S} and Brownian bridge \mathbb{U} exist.
Proof. We first construct a Brownian bridge process \mathbb{U}. Let

$$
h_{00}(t) \equiv h(t) \equiv \begin{cases}t & 0 \leq t \leq 1 / 2 \tag{1}\\ 1-t & 1 / 2 \leq t \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

For $n \geq 1$ let

$$
\begin{equation*}
h_{n j}(t) \equiv 2^{-n / 2} h\left(2^{n} t-j\right), \quad j=0, \ldots, 2^{n}-1 \tag{2}
\end{equation*}
$$

For example, $h_{10}(t)=2^{-1 / 2} h(2 t), h_{11}(t)=2^{-1 / 2} h(2 t-1)$, while

$$
\begin{array}{lr}
h_{20}(t)=2^{-1} h(4 t), & h_{21}(t)=2^{-1} h(4 t-1), \\
h_{22}(t)=2^{-1} h(4 t-2), & h_{23}(t)=2^{-1} h(4 t-3) .
\end{array}
$$

Note that $\left|h_{n j}(t)\right| \leq 2^{-n / 2} 2^{-1}$.
The functions $\left\{h_{n j}: j=0, \ldots, 2^{n}-1, \quad n \geq 0\right\}$ are called the Schauder functions; they are integrals of the orthonormal (with respect to Lebesgue
measure on $[0,1]$) family of functions $\left\{g_{n j}: j=0, \ldots, 2^{n}-1, \quad n \geq 0\right\}$ called the Haar functions defined by

$$
\begin{aligned}
& g_{00}(t) \equiv g(t) \equiv 21_{[0,1 / 2]}(t)-1, \\
& g_{n j}(t) \equiv 2^{n / 2} g_{00}\left(2^{n} t-j\right), \quad j=0, \ldots, 2^{n}-1, \quad n \geq 1 .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\int_{0}^{1} g_{n j}^{2}(t) d t=1, \quad \int_{0}^{1} g_{n j}(t) g_{n^{\prime} j^{\prime}}(t) d t=0 \quad \text { if } \quad n \neq n^{\prime}, \text { or } j \neq j^{\prime} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{n j}(t)=\int_{0}^{t} g_{n j}(s) d s, \quad 0 \leq t \leq 1 . \tag{4}
\end{equation*}
$$

Furthermore, the family $\left\{g_{n j}\right\}_{j=0, n \geq 0}^{2^{n}-1} \cup\{g(\cdot / 2)\}$ is complete: any $f \in L_{2}(0,1)$ has an expansion in terms of the g 's. In fact the Haar basis is the simplest wavelet basis of $L_{2}(0,1)$, and is the starting point for further developments in the area of wavelets.

Now let $\left\{Z_{n j}\right\}_{j=0, n \geq 0}^{2^{n}-1}$ be independent identically distributed $N(0,1)$ random variables; if we wanted, we could construct all these random variables on the probability space $\left([0,1], \mathcal{B}_{[0,1]}, \lambda\right)$. Define

$$
\begin{aligned}
& V_{n}(t, \omega)=\sum_{j=0}^{2^{n}-1} Z_{n j}(\omega) h_{n j}(t), \\
& U_{m}(t, \omega)=\sum_{n=0}^{m} V_{n}(t, \omega)
\end{aligned}
$$

For $m>k$

$$
\begin{equation*}
\left|U_{m}(t, \omega)-U_{k}(t, \omega)\right|=\left|\sum_{n=k+1}^{m} V_{n}(t, \omega)\right| \leq \sum_{n=k+1}^{m}\left|V_{n}(t, \omega)\right| \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|V_{n}(t, \omega)\right| \leq \sum_{j=0}^{2^{n}-1}\left|Z_{n j}(\omega)\right|\left|h_{n j}(t)\right| \leq 2^{-(n / 2+1)} \max _{0 \leq j \leq 2^{n}-1}\left|Z_{n j}(\omega)\right| \tag{6}
\end{equation*}
$$

since the $h_{n j}, j=0, \ldots, 2^{n}-1$ are $\neq 0$ on disjoint t intervals.

Now $P\left(Z_{n j}>z\right)=1-\Phi(z) \leq z^{-1} \phi(z)$ for $z>0$ (by "Mill's ratio") so that

$$
\begin{equation*}
P\left(\left|Z_{n j}\right| \geq 2 \sqrt{n}\right)=2 P\left(\left(Z_{n j} \geq 2 \sqrt{n}\right) \leq \frac{2}{\sqrt{2 \pi}}(2 \sqrt{n})^{-1} e^{-2 n}\right. \tag{7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P\left(\max _{0 \leq j \leq 2^{n}-1}\left|Z_{n j}\right| \geq 2 \sqrt{n}\right) \leq 2^{n} P\left(\left|Z_{00}\right| \geq 2 \sqrt{n}\right) \leq \frac{2^{n}}{\sqrt{2 \pi}} n^{-1 / 2} e^{-2 n} \tag{8}
\end{equation*}
$$

since this is a term of a convergent series, by the Borel-Cantelli lemma $\max _{0 \leq j \leq 2^{n}-1}\left|Z_{n j}\right| \geq 2 \sqrt{n}$ occurs infinitely often with probability zero; i.e. except on a null set, for all ω there is an $N=N(\omega)$ such that $\max _{0 \leq j \leq 2^{n}-1}\left|X_{n j}(\omega)\right|<$ $2 \sqrt{n}$ for all $n>N(\omega)$. Hence

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|U_{m}(t)-U_{k}(t)\right| \leq \sum_{n=k+1}^{m} 2^{-n / 2} n^{1 / 2} \downarrow 0 \tag{9}
\end{equation*}
$$

for all $k, m \geq N^{\prime} \geq N(\omega)$. Thus $U_{m}(t, \omega)$ converges uniformly as $m \rightarrow \infty$ with probability one to the (necessarily continuous) function

$$
\begin{equation*}
\mathbb{U}(t, \omega) \equiv \sum_{n=0}^{\infty} V_{n}(t, \omega) \tag{10}
\end{equation*}
$$

Define $\mathbb{U} \equiv 0$ on the exceptional set. Then \mathbb{U} is continuous for all ω.
Now $\{\mathbb{U}(t): 0 \leq t \leq 1\}$ is clearly a Gaussian process since it is the sum of Gaussian processes. We now show that \mathbb{U} is in fact a Brownian bridge: by formal calculation (it remains only to justify the interchange of summation
and expectation),

$$
\begin{aligned}
E\{\mathbb{U}(s) \mathbb{U}(t)\} & =E\left\{\sum_{n=0}^{\infty} V_{n}(s) \sum_{m=0}^{\infty} V_{m}(t)\right\} \\
& =\sum_{n=0}^{\infty} E\left\{V_{n}(s) V_{n}(t)\right\} \\
& =\sum_{n=0}^{\infty} E\left\{\sum_{j=0}^{2^{n}-1} Z_{n j} \int_{0}^{s} g_{n j} d \lambda \sum_{k=0}^{2^{n}-1} Z_{n k} \int_{0}^{t} g_{n k} d \lambda\right\} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{2^{n}-1} \int_{0}^{s} g_{n j} d \lambda \int_{0}^{t} g_{n j} d \lambda \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{2^{n}-1} \int_{0}^{1} 1_{[0, s]} g_{n j} d \lambda \int_{0}^{1} 1_{[0, t]} g_{n j} d \lambda+s t-s t \\
& =\int_{0}^{1} 1_{[0, s]}(u) 1_{[0, t]}(u) d u-s t \\
& =s \wedge t-s t
\end{aligned}
$$

where the next to last equality follows from Parseval's identity. Thus \mathbb{U} is Brownian bridge.

Now let Z be one additional $N(0,1)$ random variable independent of all the others used in the construction, and define

$$
\begin{equation*}
\mathbb{S}(t) \equiv \mathbb{U}(t)+t Z=\sum_{n=0}^{\infty} V_{n}(t)+t Z \tag{11}
\end{equation*}
$$

Then \mathbb{S} is also Gaussian with 0 mean and

$$
\begin{aligned}
\operatorname{Cov}[\mathbb{S}(s), \mathbb{S}(t)] & =\operatorname{Cov}[\mathbb{U}(s)+s Z, \mathbb{U}(t)+t Z] \\
& =\operatorname{Cov}[\mathbb{U}(s), \mathbb{U}(t)]+s t \operatorname{Var}(Z) \\
& =s \wedge t-s t+s t=s \wedge t .
\end{aligned}
$$

Thus \mathbb{S} is Brownian motion. Since \mathbb{U} has continuous sample paths, so does \mathbb{S}.

The following figures illustrate the construction given in the theorem.

Figure 1: The Schauder function h_{00}.

Here is the Mathematica code that produced the plots for the case $m=8$.

```
Needs["Histograms`"]
ndist = NormalDistribution[0, 1]
m = 8
Z = Table[RandomReal[ndist, 2^n], {n, 0, m}]
Histogram[Flatten[Z]]
h[t_] := t /; 0 <= t <= 1/2
h[t_] := 1 - t/; 1/2 < t <= 1
h[t_] := 0 /; t < 0 || t > 1
h1[t_, n_, j_] := 2^(-n/2)*h[2^n *t - j]
VO[t_] := Z[[1, 1]]*h[t]
V[t_, n_] := Sum[Z[[n + 1, j + 1]]*h1[t, n, j], {j, 0, 2^n - 1}]
U[t_, m_] := Sum[V[t, n], {n, 1, m}] + VO[t]
P1 = Plot[h[t], {t, 0, 1}]
P2 = Plot[h1[t, 1, 0], {t, 0, 1}]
P3 = Plot[h1[t, 1, 1], {t, 0, 1}]
Show[P2, P3]
P4 = Plot[h1[t, 2, 0], {t, 0, 1}, PlotRange -> {0, .5}]
P5 = Plot[h1[t, 2, 1], {t, 0, 1}, PlotRange -> {0, .5}]
P6 = Plot[h1[t, 2, 2], {t, 0, 1}, PlotRange -> {0, .5}]
```


Figure 2: The Schauder functions h_{10} and h_{11}.

P7 = Plot[h1[t, 2, 3], \{t, 0, 1\}, PlotRange -> \{0, .5\}]
Show[P4, P5, P6, P7]
Plot[VO[t], \{t, 0, 1\}]
Plot [V[t, 1], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.0, 0.0, 1.00]
Plot [V[t, 2], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.1, 0.00, .90]
Plot [V[t, 3], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.2, 0.00, . 80]
Plot [V[t, 4], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.3, 0.00, .70]
Plot[V[t, 5], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.4, 0.00, .60]
Plot [V[t, 6], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.5, 0.00, .50]
Plot[V[t, 7], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.6, 0.00, .40]
Plot [V[t, 8], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor [0.7, 0.00, .30]
Plot [U[t, 8], \{t, 0, 1\}, PlotStyle -> \{Thickness[1/200], RGBColor[0.0, 0.50, .50]

Figure 3: The Schauder functions $h_{20}, h_{21}, h_{22}, h_{23}$.

Figure 4: A sample path of the random function $V_{0}(t)$.

Figure 5: A sample path of the random function $V_{1}(t)$.

Figure 6: A sample path of the random function $V_{2}(t)$.

Figure 7: A sample path of the random function $V_{3}(t)$.

Figure 8: A sample path of the random function $V_{4}(t)$.

Figure 9: A sample path of the random function $V_{5}(t)$.

Figure 10: A sample path of the random function $V_{6}(t)$.

Figure 11: A sample path of the random function $V_{7}(t)$.

Figure 12: A sample path of the random function $V_{8}(t)$.

Figure 13: A sample path of the random function $U_{8}(t)$.

Figure 14: A sample path of the random function $S_{8}(t)$.

