Review Handout 1 - long version
 Math/Stat 491: Introduction to Stochastic Processes

Wellner; 10/25/2013

Part 1: Terminology and Definitions

1. sigma field:
a collection \mathcal{F} of subsets of the sample space Ω satisfying: (a) $\Omega \in \mathcal{F}$; (b) if $A \in \mathcal{F}$, then $A^{c}=\Omega \backslash A \in \mathcal{F}$; (c) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $\cup_{n=1}^{\infty} A_{n} \in \mathcal{F}$.
2. probability measure:
a function $P: \mathcal{F} \rightarrow[0,1]$ for a sigma-field \mathcal{F} of subsets of Ω satisfying: (a) $P(A) \geq 0$ for all $A \in \mathcal{F}$ and (b) $P\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$ for any collection of sets $\left\{A_{n}\right\}$ with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.
3. probability space:
a triple (Ω, \mathcal{F}, P) where Ω is some non-empty set (the sample space), \mathcal{F} is sigma - field of subsets of Ω, and P is a probability measure defined on \mathcal{F}.
4. random variable:
a real valued function defined on Ω that is $\mathcal{F}-\mathcal{B}$ measurable: that is, $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$, the Borel sigma-field on \mathbb{R}.
5. independent events A_{1}, \ldots, A_{n}; independent random variables X_{1}, \ldots, X_{n}. events A_{1}, \ldots, A_{n} are independent if $P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right)$ for any choice of $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.
random variables X_{1}, \ldots, X_{n} are independent if $E\left\{g_{1}\left(X_{1}\right) \cdots g_{n}\left(X_{n}\right)\right\}=$ $E\left\{g_{1}\left(X_{1}\right)\right\} \cdots E\left\{g_{n}\left(X_{n}\right)\right\}$ for all Borel functions $g_{i}, i=1, \ldots, n$.
6. stochastic process (sample path of a stochastic process):
a stochastic process $\left\{X_{t}: t \in T\right\}$ for some index set T is a collection of random variables $X_{t}: \Omega \rightarrow \mathbb{R}$ for each $t \in T$.
the sample paths of $\left\{X_{t}: t \in T\right\}$ are the functions $t \mapsto X_{t}(\omega)$ for $\omega \in \Omega$ fixed.
7. Borel function:

A Borel function g is a $\mathcal{B}-\mathcal{B}$-measurable function g from \mathbb{R} to \mathbb{R}; that is, $g^{-1}(B) \in \mathcal{B}$ for every $B \in \mathcal{B}$.
8. characteristic function of a random variable; joint characteristic function of random variables X_{1}, \ldots, X_{n} :
The characteristic function of a random variable X is defined by $\phi_{X}(t)=$ $E\left\{e^{i t X}\right\}$.
The characteristic function of X_{1}, \ldots, X_{n} is defined by $\phi_{X_{1}, \ldots, X_{n}}\left(t_{1}, \ldots, t_{n}\right)=E\left\{\exp \left(i \sum_{j=1}^{n} t_{j} X_{j}\right)\right\}$.
9. conditional expectation (in terms of fundamental identity):

The expectation $E(Y \mid X)$ is a measurable function of X satisfying

$$
E\{g(X) E(Y \mid X)\}=E\{g(X) Y\}
$$

for every bounded Borel function g.
10. martingale, sub-martingale, super-martingale:

A process $\left\{X_{n}: n \geq 0\right\}$ is a martingale if $E\left|X_{n}\right|<\infty$ and $E\left(X_{n+1} \mid X_{n}\right)=$ X_{n} for all $n \geq 0$. It is a sub-martingale if $E\left(X_{n+1} \mid X_{n}\right) \geq X_{n}$ for all $n \geq 0$; and it is a super-martingale if $E\left(X_{n+1} \mid X_{n}\right) \leq X_{n}$ for all $n \geq 0$.
11. stopping time: T is a stopping time relative to σ-fields $\{\mathcal{F}\}_{n}$ if $[T \leq$ $n] \in \mathcal{F}_{n}$ for each n.
12. predictable process:

A process A_{n} is predictable with respect to $\sigma-$ fields \mathcal{F}_{n} if A_{n} is \mathcal{F}_{n-1} measurable for each n.
13. random walk: If Y_{1}, Y_{2}, \ldots are independent then $S_{n}=\sum_{j=1}^{n} Y_{j}, n \geq 1$ is a random walk.

Part 2: Results and theorems

1. Properties of conditional expectation:
(a) $E(Y \mid X)$ is unique up to a set with probability 0 ;
(b) $E(E(Y \mid X))=E(Y)$;
(c) $E(Y \mid X)=E(Y)$ if X and Y are independent;
(d) $E\{\phi(X) Y \mid X\}=\phi(X) E(Y \mid X)$;
(e) $E\{Y+Z \mid X\}=E(Y \mid X)+E(Z \mid X)$;
(f) $E\{E(Y \mid X, Z) \mid X\}=E(Y \mid X)$;
(g) If $Y \geq 0$ then $E(Y \mid X) \geq 0$.
2. Variance decomposition:
(a) $\operatorname{Var}(Y)=E\{\operatorname{Var}(Y \mid X)\}+\operatorname{Var}\{E(Y \mid X)\}$; (b) proof; (c) geometric interpretation in terms of orthogonal components
3. martingales connected with sums of independent random variables:
$S_{n}=\sum_{i=1}^{n} X_{i}$ with X_{i} independent with $E\left(X_{i}\right)=0$;
$S_{n}^{2}-n \sigma^{2}$ if the X_{i} 's are i.i.d. with $E\left(X_{i}\right)=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$;
$\exp \left(\lambda S_{n}\right) / \phi(\lambda)^{n}$ if X_{i} are i.i.d. with moment generating function $\phi(\lambda)=$ $E e^{\lambda X_{1}}$.
4. martingales connected with products:
(products of independent mean 1 random variables; exponential/mgf martingales; likelihood ratio martingales)
5. Doob's optional sampling theorem:

If $\left\{X_{n}: n \geq 0\right\}$ is a martingale and T is a stopping time, then $\left\{X_{0}, X_{T}\right\}$ is a martingale (and hence $E\left(X_{T}\right)=E\left(X_{0}\right)$) if any of the following hold:
(i) $T \leq N<\infty$ with probability 1 for some fixed integer N.
(ii) $\left\{X_{n}\right\}$ is bounded (so $\left|X_{n}\right| \leq K<\infty$ for all n) and $P(T<\infty)=1$.
(iii) $E(T)<\infty$ and $\left|X_{n}-X_{n-1}\right| \leq K$ for all n with probability 1 .
6. Expected number of visits to origin for (simple) random walk. For a simple random walk in $\mathbb{R}^{1}, E\left\{V_{0}(1,1 / 2)\right\}=\infty$ where $V_{0}(1, p)=$ $\sum_{n=0}^{\infty} 1_{\left[S_{2 n}=0\right]}$.
For a simple random walk in $\mathbb{R}^{2}, E\left\{V_{0}(2,1 / 2)\right\}=\infty$ where $V_{0}(2, p)=$ $\sum_{n=0}^{\infty} 1_{\left[\underline{S}_{2 n}=0\right]}$.
For a simple random walk in $\mathbb{R}^{d}, d \geq 3, E\left\{V_{0}(d, 1 / 2)\right\}<\infty$ where $V_{0}(d, p)=\sum_{n=0}^{\infty} 1_{\left[\underline{S}_{2 n}=\underline{0}\right]}$.
7. Doob's decomposition of a submartingale: If $\left\{X_{n}: n \geq 0\right\}$ is a submartingale, then $X_{n}=\left(X_{n}-A_{n}\right)+A_{n}=Y_{n}+A_{n}$ where $\left\{Y_{n}: n \geq 0\right\}$ is a martingale and A_{n} is a predictable and increasing process: A_{n} is measurable with respect to \mathcal{F}_{n-1} for each n and $A_{0} \leq A_{1} \leq \cdots \leq A_{n}$.
8. Jensen's inequality for $E g(X)$ with g convex: $E\{g(X)\} \geq g(E(X))$ if g is convex.
9. Jensen's inequality for conditional expectation $E\{g(Y) \mid X\}$ with g convex: $E\{g(Y) \mid X\} \geq g(E(Y \mid X))$.

Part 3: Facts and calculations to know:

1. Binomial and Bernoulli process facts: see 394 Handouts \# x and \# y.
2. Poisson process facts: see 394 Handouts \# 3 and \#4.
3. the distribution of $X \sim N\left(\mu, \sigma^{2}\right)$ distribution:
the density of X is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

4. bivariate Gaussian distribution of $(X, Y) \sim N_{2}((\mu, \nu), \Sigma)$ distribution with

$$
\Sigma=\left(\begin{array}{ll}
\sigma^{2} & \rho \sigma \tau \\
\rho \sigma \tau & \tau^{2}
\end{array}\right)
$$

Marginal and conditional distributions of bivariate Gaussian distribution:
The joint density is given by
$f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma \tau\left(1-\rho^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(\frac{(x-\mu)^{2}}{\sigma^{2}}-\frac{2 \rho(x-\mu)(y-\nu)}{\sigma \tau}+\frac{(y-\nu)^{2}}{\tau^{2}}\right)\right)$.
When $\mu=\nu=0,(Y \mid X=x) \sim N\left(\rho x, 1-\rho^{2}\right)$ and $X \sim N(0,1)$.
5. Stirling's formula: $n!\sim \sqrt{2 \pi n}(n / e)^{n}$
6. Newton's binomial formula and Newton's series: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$;

$$
(1+t)^{a}=1+\binom{a}{1} t+\binom{a}{2} t^{2}+\binom{a}{3} t^{3}+\cdots=\sum_{m=0}^{\infty}\binom{a}{m} t^{m} .
$$

