Review Handout 1 – long version Math/Stat 491: Introduction to Stochastic Processes Wellner; 10/25/2013

Part 1: Terminology and Definitions

1. sigma field:

a collection \mathcal{F} of subsets of the sample space Ω satisfying: (a) $\Omega \in \mathcal{F}$; (b) if $A \in \mathcal{F}$, then $A^c = \Omega \setminus A \in \mathcal{F}$; (c) if $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

2. probability measure:

a function $P : \mathcal{F} \to [0, 1]$ for a sigma-field \mathcal{F} of subsets of Ω satisfying: (a) $P(A) \ge 0$ for all $A \in \mathcal{F}$ and (b) $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ for any collection of sets $\{A_n\}$ with $A_i \cap A_j = \emptyset$ for $i \ne j$.

3. probability space:

a triple (Ω, \mathcal{F}, P) where Ω is some non-empty set (the sample space), \mathcal{F} is sigma - field of subsets of Ω , and P is a probability measure defined on \mathcal{F} .

- 4. random variable: a real valued function defined on Ω that is $\mathcal{F} - \mathcal{B}$ measurable: that is, $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$, the Borel sigma-field on \mathbb{R} .
- 5. independent events A_1, \ldots, A_n ; independent random variables X_1, \ldots, X_n . events A_1, \ldots, A_n are independent if $P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$ for any choice of $1 \le i_1 < i_2 < \cdots < i_k \le n$. random variables X_1, \ldots, X_n are independent if $E\{g_1(X_1) \cdots g_n(X_n)\} = E\{g_1(X_1)\} \cdots E\{g_n(X_n)\}$ for all Borel functions $g_i, i = 1, \ldots, n$.
- 6. stochastic process (sample path of a stochastic process): a stochastic process $\{X_t : t \in T\}$ for some index set T is a collection of random variables $X_t : \Omega \to \mathbb{R}$ for each $t \in T$. the sample paths of $\{X_t : t \in T\}$ are the functions $t \mapsto X_t(\omega)$ for $\omega \in \Omega$ fixed.

7. Borel function:

A Borel function g is a $\mathcal{B} - \mathcal{B}$ -measurable function g from \mathbb{R} to \mathbb{R} ; that is, $g^{-1}(B) \in \mathcal{B}$ for every $B \in \mathcal{B}$.

- 8. characteristic function of a random variable; joint characteristic function of random variables X₁,...,X_n: The characteristic function of a random variable X is defined by φ_X(t) = E{e^{itX}}. The characteristic function of X₁,...,X_n is defined by φ_{X1,...,Xn}(t₁,...,t_n) = E{exp(i Σⁿ_{j=1} t_jX_j)}.
- 9. conditional expectation (in terms of fundamental identity): The expectation E(Y|X) is a measurable function of X satisfying

$$E\{g(X)E(Y|X)\} = E\{g(X)Y\}$$

for every bounded Borel function g.

- 10. martingale, sub-martingale, super-martingale: A process $\{X_n : n \ge 0\}$ is a martingale if $E|X_n| < \infty$ and $E(X_{n+1}|X_n) = X_n$ for all $n \ge 0$. It is a sub-martingale if $E(X_{n+1}|X_n) \ge X_n$ for all $n \ge 0$; and it is a super-martingale if $E(X_{n+1}|X_n) \le X_n$ for all $n \ge 0$.
- 11. stopping time: T is a stopping time relative to σ -fields $\{\mathcal{F}\}_n$ if $[T \leq n] \in \mathcal{F}_n$ for each n.
- 12. predictable process: A process A_n is predictable with respect to σ - fields \mathcal{F}_n if A_n is \mathcal{F}_{n-1} measurable for each n.
- 13. random walk: If Y_1, Y_2, \ldots are independent then $S_n = \sum_{j=1}^n Y_j, n \ge 1$ is a random walk.

Part 2: Results and theorems

- 1. Properties of conditional expectation:
 - (a) E(Y|X) is unique up to a set with probability 0;
 - (b) E(E(Y|X)) = E(Y);
 - (c) E(Y|X) = E(Y) if X and Y are independent;
 - (d) $E\{\phi(X)Y|X\} = \phi(X)E(Y|X);$
 - (e) $E\{Y + Z | X\} = E(Y | X) + E(Z | X);$
 - (f) $E\{E(Y|X,Z)|X\} = E(Y|X);$
 - (g) If $Y \ge 0$ then $E(Y|X) \ge 0$.
- 2. Variance decomposition:

(a) $Var(Y) = E\{Var(Y|X)\} + Var\{E(Y|X)\}$; (b) proof; (c) geometric interpretation in terms of orthogonal components

- 3. martingales connected with sums of independent random variables: $S_n = \sum_{i=1}^n X_i$ with X_i independent with $E(X_i) = 0$; $S_n^2 - n\sigma^2$ if the X_i 's are i.i.d. with $E(X_i) = 0$ and $Var(X_i) = \sigma^2$; $\exp(\lambda S_n)/\phi(\lambda)^n$ if X_i are i.i.d. with moment generating function $\phi(\lambda) = Ee^{\lambda X_1}$.
- 4. martingales connected with products: (products of independent mean 1 random variables; exponential/mgf martingales; likelihood ratio martingales)
- 5. Doob's optional sampling theorem:
 If {X_n : n ≥ 0} is a martingale and T is a stopping time, then {X₀, X_T} is a martingale (and hence E(X_T) = E(X₀)) if any of the following hold:
 (i) T ≤ N < ∞ with probability 1 for some fixed integer N.
 (ii) {X_n} is bounded (so |X_n| ≤ K < ∞ for all n) and P(T < ∞) = 1.
 - (iii) $E(T) < \infty$ and $|X_n X_{n-1}| \le K$ for all *n* with probability 1.
- 6. Expected number of visits to origin for (simple) random walk. For a simple random walk in \mathbb{R}^1 , $E\{V_0(1, 1/2)\} = \infty$ where $V_0(1, p) = \sum_{n=0}^{\infty} \mathbb{1}_{[S_{2n}=0]}$. For a simple random walk in \mathbb{R}^2 , $E\{V_0(2, 1/2)\} = \infty$ where $V_0(2, p) = \sum_{n=0}^{\infty} \mathbb{1}_{[\underline{S}_{2n}=\underline{0}]}$. For a simple random walk in \mathbb{R}^d , $d \geq 3$, $E\{V_0(d, 1/2)\} < \infty$ where $V_0(d, p) = \sum_{n=0}^{\infty} \mathbb{1}_{[\underline{S}_{2n}=\underline{0}]}$.

- 7. Doob's decomposition of a submartingale: If $\{X_n : n \ge 0\}$ is a submartingale, then $X_n = (X_n - A_n) + A_n = Y_n + A_n$ where $\{Y_n : n \ge 0\}$ is a martingale and A_n is a predictable and increasing process: A_n is measurable with respect to \mathcal{F}_{n-1} for each n and $A_0 \le A_1 \le \cdots \le A_n$.
- 8. Jensen's inequality for Eg(X) with g convex: $E\{g(X)\} \ge g(E(X))$ if g is convex.
- 9. Jensen's inequality for conditional expectation $E\{g(Y)|X\}$ with g convex: $E\{g(Y)|X\} \ge g(E(Y|X))$.

Part 3: Facts and calculations to know:

- 1. Binomial and Bernoulli process facts: see 394 Handouts $\# \ {\rm x}$ and $\# \ {\rm y}.$
- 2. Poisson process facts: see 394 Handouts # 3 and #4.
- 3. the distribution of $X \sim N(\mu, \sigma^2)$ distribution: the density of X is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

4. bivariate Gaussian distribution of $(X, Y) \sim N_2((\mu, \nu), \Sigma)$ distribution with

$$\Sigma = \left(\begin{array}{cc} \sigma^2 & \rho \sigma \tau \\ \rho \sigma \tau & \tau^2 \end{array}\right).$$

Marginal and conditional distributions of bivariate Gaussian distribution:

The joint density is given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma\tau(1-\rho^2)^{1/2}} \exp\left(-\frac{1}{2}\left(\frac{(x-\mu)^2}{\sigma^2} - \frac{2\rho(x-\mu)(y-\nu)}{\sigma\tau} + \frac{(y-\nu)^2}{\tau^2}\right)\right)$$

When $\mu = \nu = 0$, $(Y|X=x) \sim N(\rho x, 1-\rho^2)$ and $X \sim N(0,1)$.

- 5. Stirling's formula: $n! \sim \sqrt{2\pi n} (n/e)^n$
- 6. Newton's binomial formula and Newton's series: $(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k};$

$$(1+t)^a = 1 + {a \choose 1}t + {a \choose 2}t^2 + {a \choose 3}t^3 + \dots = \sum_{m=0}^{\infty} {a \choose m}t^m.$$