
Review Handout 2: Markov chains

Math/Stat 491: Introduction to Stochastic Processes
Wellner; 11/18/2013

Part 1: Terminology and Definitions

1. Markov property: a discrete time stochastic process X = {Xn : n ≥ 0}
is a Markov process if

P (Xn+1 = y|Xn = x,Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = y|Xn = x).

2. probability transition matrix: P (Xn+1 = j|Xn = i) = P (i, j) for i, j ∈
E.

3. n−step transition matrix: the n−step transition matrix is Pm(i, j) =
P (Xm+n = j|Xn = i), the m−th power of the 1-step transition matrix
P = (P (i, j) : i, j ∈ E).

4. temporally homogeneous process: a Markov process is temporally ho-
mogeneous if the transition probability P (Xn+1 = j|Xn = i) = P (i, j)
does not depend on n.

5. the Chapman-Kolmogorov equation: Pm+n(i, j) =
∑

k∈E P
m(i, k)P n(k, j).

6. first return time Tj, j ∈ E: Tj = min{n ≥ 1 : Xn = j}.

7. strong Markov property: If T is a stopping time and {Xn : n ≥ 0} is
a Markov chain, then conditional on T and XT the process {XT+k :
k ≥ 0} has the same distribution as the Markov chain itself started at
the initial state XT . (Informally: the process starts over at stopping
times.)

8. an absorbing state: A state j ∈ E is an absorbing state if P (j, j) = 1.

9. a state i communicates with a state j and we write i→ j if there is a
positive probability of reaching j starting from i: ρi,j = Pi(Tj <∞) >
0.

10. transient state: A state j ∈ E is transient if ρjj = Pj(Tj <∞) < 1.
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11. recurrent state: A state j ∈ E is recurrent if ρjj = Pj(Tj <∞) = 1.

12. an irreducible set of states: A set B ⊂ E is irreducible if for any
i, j ∈ B we have i→ j (and j → i); that is, ρij ≡ Pi(Tj <∞) > 0; or,
equivalently P n(i, j) > 0 for some n ≥ 1

13. a closed set of states: A set of states A ⊂ E is closed if for any i ∈ A
and j ∈ Ac, the transition probability P (i, j) = 0.

14. a stationary distribution: a probability distribution π on the state space
E is a stationary distribution if πP = π (where π is a row vector on
both sides of the equation).

15. a stationary measure: If π satisfies πP = π and πj ≥ 0, then π is a
stationary measure. (It need not have total mass 1.)

16. the period of a state j is the greatest common divisor of the set Ij =
{n ≥ 1 : P n(j, j) > 0}.

17. an aperiodic Markov chain is a Markov chain with all states having
period 1.

18. the detailed balance condition: A probability distribution π on E satis-
fies the detailed balance condition if πiP (i, j) = πjP (j, i) for all i, j ∈ E.

19. a doubly stochastic Markov chain: both
∑

j∈E P (i, j) = 1 for every
i ∈ E and

∑
i∈E P (i, j) = 1 for every j ∈ E hold.

20. the Metroplis-Hastings algorithm: given a transition probability matrix
Q on E and a probability distribution π on E, the new matrix P (i, j) =
Q(i, j)R(i, j) with

R(i, j) ≡ min

{
π(j)Q(j, i)

π(i)Q(i, j)
, 1

}
is the transition probability matrix of a Markov chain {Xn : n ≥ 0}
on E which has π as its stationary distribution.

21. a reflecting random walk: a Markov chain with state space E = {0, 1, 2, . . .}
and transition probability matrix given by P (i, i + 1) = p for i ≥ 0,
P (i, i− 1) = 1− p for i ≥ 1, and P (0, 0) = 1− p for some p ∈ (0, 1).
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22. a Galton-Watson branching process: A Markov chain with state space
E = {0, 1, 2, . . .} and with transition probability matrix given by P (i, j) =
P (
∑i

k=1 Yk = j) where Y1, Y2, . . . are independent and identically dis-
tributed random variables with offspring distribution {pk} on {0, 1, 2, . . .}.

23. a renewal chain: a Markov chain with state space E = {0, 1, 2, . . .}
and transition probability matrix given by P (0, i) = pi for i ≥ 0 with∑∞

i=0 pi = 1 and P (i, i− 1) = 1 for i > 0.

24. an aging chain: a Markov chain with state space E = {0, 1, 2, . . .} with
transition matrix given by P (i, i + 1) = pi for each i, P (i, 0) = 1− pi,
and P (i, j) = 0 for j /∈ {i+ 1, 0}.

Part 2: Results and theorems

1. Theorem: If C ⊂ E is a finite closed and irreducible set, then all states
in C are recurrent.

2. Theorem: If the state space E of a Markov chain is finite, then E can
be decomposed as a disjoint union of the transient states T and a finite
number of closed, irreducible, and recurrent sets of states.

3. Theorem: A state j ∈ E is recurrent if and only if
∑∞

n=1 P
n(j, j) =

Ej[N(j)] =∞.

4. martingales connected with Markov chains: If Pf = λf then Mn =
λ−nf(Xn) is a martingale.

5. Theorem: (existence of a stationary distribution, finite state space): If
the state space E is finite and P is irreducible, then there is a unique
solution to πP = π with

∑
j πj = 1 and we have πj > 0 for all j.

6. Proposition: If {Xn : n ≥ 0} is a Markov chain with finite state space,
N = # of states in E, and P is doubly stochastic, then π = (1/N)1 =
(1/N, . . . , 1/N) is a stationary distribution.

7. Proposition: A Markov chain with transition matrix given by the
Metropolis-Hastings algorithm satisfies the detailed balance condition.

8. Convergence Theorem 1: If I, A, and S hold, then P n(i, j) → πj for
all i, j ∈ E.
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9. Theorem: If I and R hold, then there is a stationary measure with
µ(j) > 0 for all j.

10. Convergence Theorem 2: Suppose I and R hold. If

Nn(y) =
n∑
k=1

1{Xk = y},

then

n−1Nn(y)→p
1

EyTy

and this also holds with probability 1.

11. Convergence theorem corollary: If I and S (and hence also R) holds,
then

n−1Nn(y)→p
1

EyTy
= πy,

and this also holds with probability 1.

12. Convergence Theorem 3: Suppose that I and S hold and that
∑

j |f(j)|π(j) =
Eπ|f(X)| <∞. Then

n−1
n∑
k=1

f(Xk)→p Eπf(X) =
∑
j

f(j)π(j).

and this also holds with probability 1.
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