Review Handout 2: Markov chains Math/Stat 491: Introduction to Stochastic Processes Wellner; 11/18/2013

Part 1: Terminology and Definitions

1. Markov property: a discrete time stochastic process $X = \{X_n : n \ge 0\}$ is a Markov process if

$$P(X_{n+1} = y | X_n = x, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n+1} = y | X_n = x).$$

- 2. probability transition matrix: $P(X_{n+1} = j | X_n = i) = P(i, j)$ for $i, j \in \mathbb{E}$.
- 3. n-step transition matrix: the n-step transition matrix is $P^m(i, j) = P(X_{m+n} = j | X_n = i)$, the m-th power of the 1-step transition matrix $\mathbf{P} = (P(i, j) : i, j \in \mathbb{E}).$
- 4. temporally homogeneous process: a Markov process is temporally homogeneous if the transition probability $P(X_{n+1} = j | X_n = i) = P(i, j)$ does not depend on n.
- 5. the Chapman-Kolmogorov equation: $P^{m+n}(i,j) = \sum_{k \in \mathbb{E}} P^m(i,k) P^n(k,j)$.
- 6. first return time $T_j, j \in \mathbb{E}$: $T_j = \min\{n \ge 1 : X_n = j\}$.
- 7. strong Markov property: If T is a stopping time and $\{X_n : n \ge 0\}$ is a Markov chain, then conditional on T and X_T the process $\{X_{T+k} : k \ge 0\}$ has the same distribution as the Markov chain itself started at the initial state X_T . (Informally: the process starts over at stopping times.)
- 8. an absorbing state: A state $j \in \mathbb{E}$ is an absorbing state if P(j, j) = 1.
- 9. a state *i* communicates with a state *j* and we write $i \to j$ if there is a positive probability of reaching *j* starting from *i*: $\rho_{i,j} = P_i(T_j < \infty) > 0$.
- 10. transient state: A state $j \in \mathbb{E}$ is transient if $\rho_{jj} = P_j(T_j < \infty) < 1$.

- 11. recurrent state: A state $j \in \mathbb{E}$ is recurrent if $\rho_{jj} = P_j(T_j < \infty) = 1$.
- 12. an irreducible set of states: A set $B \subset \mathbb{E}$ is irreducible if for any $i, j \in B$ we have $i \to j$ (and $j \to i$); that is, $\rho_{ij} \equiv P_i(T_j < \infty) > 0$; or, equivalently $P^n(i, j) > 0$ for some $n \ge 1$
- 13. a closed set of states: A set of states $A \subset \mathbb{E}$ is closed if for any $i \in A$ and $j \in A^c$, the transition probability P(i, j) = 0.
- 14. a stationary distribution: a probability distribution $\underline{\pi}$ on the state space \mathbb{E} is a stationary distribution if $\underline{\pi}\mathbf{P} = \underline{\pi}$ (where $\underline{\pi}$ is a row vector on both sides of the equation).
- 15. a stationary measure: If $\underline{\pi}$ satisfies $\underline{\pi}\mathbf{P} = \underline{\pi}$ and $\pi_j \ge 0$, then $\underline{\pi}$ is a stationary measure. (It need not have total mass 1.)
- 16. the period of a state j is the greatest common divisor of the set $I_j = \{n \ge 1 : P^n(j,j) > 0\}.$
- 17. an aperiodic Markov chain is a Markov chain with all states having period 1.
- 18. the detailed balance condition: A probability distribution $\underline{\pi}$ on \mathbb{E} satisfies the detailed balance condition if $\pi_i P(i, j) = \pi_j P(j, i)$ for all $i, j \in \mathbb{E}$.
- 19. a doubly stochastic Markov chain: both $\sum_{j \in \mathbb{E}} P(i, j) = 1$ for every $i \in \mathbb{E}$ and $\sum_{i \in \mathbb{E}} P(i, j) = 1$ for every $j \in \mathbb{E}$ hold.
- 20. the Metroplis-Hastings algorithm: given a transition probability matrix Q on \mathbb{E} and a probability distribution $\underline{\pi}$ on \mathbb{E} , the new matrix P(i, j) = Q(i, j)R(i, j) with

$$R(i,j) \equiv \min\left\{\frac{\pi(j)Q(j,i)}{\pi(i)Q(i,j)}, 1\right\}$$

is the transition probability matrix of a Markov chain $\{X_n : n \ge 0\}$ on \mathbb{E} which has $\underline{\pi}$ as its stationary distribution.

21. a reflecting random walk: a Markov chain with state space $\mathbb{E} = \{0, 1, 2, ...\}$ and transition probability matrix given by P(i, i + 1) = p for $i \ge 0$, P(i, i - 1) = 1 - p for $i \ge 1$, and P(0, 0) = 1 - p for some $p \in (0, 1)$.

- 22. a Galton-Watson branching process: A Markov chain with state space $\mathbb{E} = \{0, 1, 2, \ldots\}$ and with transition probability matrix given by $P(i, j) = P(\sum_{k=1}^{i} Y_k = j)$ where Y_1, Y_2, \ldots are independent and identically distributed random variables with offspring distribution $\{p_k\}$ on $\{0, 1, 2, \ldots\}$.
- 23. a renewal chain: a Markov chain with state space $\mathbb{E} = \{0, 1, 2, ...\}$ and transition probability matrix given by $P(0, i) = p_i$ for $i \ge 0$ with $\sum_{i=0}^{\infty} p_i = 1$ and P(i, i-1) = 1 for i > 0.
- 24. an aging chain: a Markov chain with state space $\mathbb{E} = \{0, 1, 2, ...\}$ with transition matrix given by $P(i, i + 1) = p_i$ for each $i, P(i, 0) = 1 p_i$, and P(i, j) = 0 for $j \notin \{i + 1, 0\}$.

Part 2: Results and theorems

- 1. Theorem: If $C \subset \mathbb{E}$ is a finite closed and irreducible set, then all states in C are recurrent.
- 2. Theorem: If the state space \mathbb{E} of a Markov chain is finite, then \mathbb{E} can be decomposed as a disjoint union of the transient states T and a finite number of closed, irreducible, and recurrent sets of states.
- 3. Theorem: A state $j \in \mathbb{E}$ is recurrent if and only if $\sum_{n=1}^{\infty} P^n(j,j) = E_j[N(j)] = \infty$.
- 4. martingales connected with Markov chains: If $\mathbf{P}f = \lambda f$ then $M_n = \lambda^{-n} f(X_n)$ is a martingale.
- 5. Theorem: (existence of a stationary distribution, finite state space): If the state space \mathbb{E} is finite and \mathbf{P} is irreducible, then there is a unique solution to $\underline{\pi}\mathbf{P} = \underline{\pi}$ with $\sum_{j} \pi_{j} = 1$ and we have $\pi_{j} > 0$ for all j.
- 6. Proposition: If $\{X_n : n \ge 0\}$ is a Markov chain with finite state space, N = # of states in \mathbb{E} , and \mathbf{P} is doubly stochastic, then $\underline{\pi} = (1/N)\underline{1} = (1/N, \ldots, 1/N)$ is a stationary distribution.
- 7. *Proposition:* A Markov chain with transition matrix given by the Metropolis-Hastings algorithm satisfies the detailed balance condition.
- 8. Convergence Theorem 1: If I, A, and S hold, then $P^n(i,j) \to \pi_j$ for all $i, j \in \mathbb{E}$.

- 9. Theorem: If I and R hold, then there is a stationary measure with $\mu(j) > 0$ for all j.
- 10. Convergence Theorem 2: Suppose I and R hold. If

$$N_n(y) = \sum_{k=1}^n 1\{X_k = y\},\$$

then

$$n^{-1}N_n(y) \to_p \frac{1}{E_y T_y}$$

and this also holds with probability 1.

11. Convergence theorem corollary: If I and S (and hence also R) holds, then

$$n^{-1}N_n(y) \to_p \frac{1}{E_y T_y} = \pi_y,$$

and this also holds with probability 1.

12. Convergence Theorem 3: Suppose that I and S hold and that $\sum_{j} |f(j)| \pi(j) = E_{\pi} |f(X)| < \infty$. Then

$$n^{-1} \sum_{k=1}^{n} f(X_k) \to_p E_{\pi} f(X) = \sum_j f(j) \pi(j).$$

and this also holds with probability 1.