Handout 10: Math/Stat 394: Probability I The Central Limit Theorem (CLT)
 Wellner; 3/3/2000

Independent Repetitions: (Sampling With Replacement is a Special Case).

- The basic X experiment has mean μ and standard deviation σ.
- Let $T_{n} \equiv X_{1}+\cdots+X_{n}$ for independent repetitions X_{1}, \ldots, X_{n}.
- T_{n} has mean $n \mu$ and standard deviation $\sqrt{n} \sigma$.
- \bar{X}_{n} has mean μ and standard deviation σ / \sqrt{n}.
- The standardized random variable

$$
Z_{n} \equiv \frac{T_{n}-n \mu}{\sqrt{n} \sigma}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}
$$

has mean 0 and standard deviation 1.
CLT: The distribution of Z_{n} converges to the $N(0,1)$ distribution: for any real numbers $a<b$

$$
P\left(a<Z_{n}<b\right) \rightarrow P(a<Z<b)
$$

where $Z \sim N(0,1)$.
Sampling Without Replacement: from an a_{1}, \ldots, a_{N} urn with $\mu=\bar{a}=$ $\sum_{1}^{N} a_{i} / N$ and $\sigma=\sigma_{a}^{2}=N^{-1} \sum_{1}^{N}\left(a_{i}-\bar{a}\right)^{2}$.

- One draw from the urn has mean $\mu=\bar{a}$ and standard deviation σ_{a}.
- Let $T_{n} \equiv X_{1}+\cdots+X_{n}$ for the dependent repetitions X_{1}, \ldots, X_{n}.
- T_{n} has mean $n \bar{a}$ and standard deviation $\sqrt{n} \sigma_{a} \sqrt{1-(n-1) /(N-1)}$.
- \bar{X}_{n} has mean \bar{a} and standard deviation $\left(\sigma_{a} / \sqrt{n}\right) \sqrt{1-(n-1) /(N-1)}$.
- The standardized random variable

$$
Z_{n} \equiv \frac{T_{n}-n \bar{a}}{\sqrt{n} \sigma_{a} \sqrt{1-(n-1) /(N-1)}}=\frac{\bar{X}_{n}-\bar{a}}{(\sigma / \sqrt{n}) \sqrt{1-(n-1) /(N-1)}}
$$

has mean 0 and standard deviation 1.
Finite Sampling CLT: The distribution of Z_{n} converges to the $N(0,1)$ distribution provided $n \rightarrow \infty$ and $N-n \rightarrow \infty$ and σ_{a}^{2} does not converge to 0 as $N \rightarrow \infty$: for any real numbers $a<b$

$$
P\left(a<Z_{n}<b\right) \rightarrow P(a<Z<b)
$$

where $Z \sim N(0,1)$.

Convolution formulas: Suppose that X, Y are independent.
Let $T \equiv X+Y$.
Then

$$
\begin{array}{ll}
p_{T}(t)=\sum_{\text {all }} p_{X}(x) p_{Y}(t-x) & \text { or }=\sum_{\text {all }{ }_{y} p_{Y}(y) p_{X}(t-y) \text { (discrete case) }} \begin{array}{ll}
f_{T}(t) & =\int_{\text {all }} f_{X} f_{X}(x) f_{Y}(t-x) d x
\end{array} \\
\text { or }=\int_{\text {all }}^{y} f_{Y}(y) f_{X}(t-y) d y \text { (continuous case }
\end{array}
$$

Proof: Discrete case:

$$
\begin{aligned}
p_{T}(t) & =P(T=t)=\sum_{x} P(X=x, T=X+Y=t)=\sum_{x} P(X=x, Y=t-x) \\
& =\sum_{x} P(X=x) P(Y=t-x) \quad \text { by independence of } X, Y \\
& =\sum_{x} p_{X}(x) p_{Y}(t-x)
\end{aligned}
$$

Continuous case: in this case we first compute the distribution of T Using the independence of X, Y it follows that the joint density of X, Y is given by the product of the marginal densities: $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. Then

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t)=P(X+Y \leq t)=\iint_{(x, y): x+y \leq t} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{t-x} f_{X}(x) f_{Y}(y) d y d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x)\left(\int_{y=-\infty}^{t-x} f_{Y}(y) d y\right) d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x) F_{Y}(t-x) d x
\end{aligned}
$$

Now by differentiating across this identity and interchanging the derivative and the integral on the right side we find that

$$
f_{T}(t)=F_{T}^{\prime}(t)=\int_{-\infty}^{\infty} f_{X}(x) F_{Y}^{\prime}(t-x) d x=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(t-x) d x
$$

Normal Distribution Facts:

A. If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y \sim N\left(\nu, \tau^{2}\right)$ are independent, then $X+Y \sim N\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$.
B. If X_{1}, \ldots, X_{n} are i.i.d. $N\left(\mu, \sigma^{2}\right)$, then

- $T_{n} \equiv X_{1}+\cdots+X_{n} \sim N\left(n \mu, n \sigma^{2}\right)$, and
- $\bar{X}_{n} \equiv n^{-1} T_{n} \sim N\left(\mu, \sigma^{2} / n\right)$.

The Chi-Square Distribution:

A. If $Z \sim N(0,1)$, then
$X \equiv Z^{2} \sim \operatorname{Gamma}(1 / 2,1 / 2)=$ Chi-square(1) with density

$$
f_{X}(x)=\frac{(x / 2)^{-1 / 2}}{2 \sqrt{\pi}} e^{-x / 2} 1_{(0, \infty)}(x) .
$$

B. If Z_{1}, \cdots, Z_{r} are independent $N(0,1)$, then
$T_{r} \equiv Z_{1}^{2}+\cdots+Z_{r}^{2} \sim \operatorname{Gamma}(r / 2,1 / 2)=\operatorname{Chi}-$ square (r)
with density

$$
f_{T_{r}}(x)=\frac{(x / 2)^{r / 2-1}}{2 \Gamma(r / 2)} e^{-x / 2} 1_{(0, \infty)}(x)
$$

C. If $X=Z^{2}$ with $Z \sim N(0,1)$ (so that $X \sim$ Chi-square(1)), then $E(X)=$ $E\left(Z^{2}\right)=1$ and $\operatorname{Var}(X)=E\left(Z^{4}\right)-\left(E\left(Z^{2}\right)\right)^{2}=3-1=2$. Thus for $T_{r} \sim$ Chisquare $(r), E\left(T_{r}\right)=r$ and $\operatorname{Var}\left(T_{r}\right)=2 r$.
Proof of A and B:

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x)=P\left(Z^{2} \leq x\right)=P(-\sqrt{x} \leq Z \leq \sqrt{x}) \\
& =2(P(Z \leq \sqrt{x})-P(Z \leq 0))=2 \Phi(\sqrt{x})-1
\end{aligned}
$$

Thus for $x>0$,

$$
f_{X}(x)=2 \phi(\sqrt{x})(1 / 2) x^{-1 / 2}=\frac{x^{-1 / 2}}{\sqrt{2 \pi}} e^{-x / 2}
$$

This is the $\operatorname{Gamma}(1 / 2,1 / 2)$ density, and this gets the special name Chisquare(1). B follows from A and the duplication property of the Gamma distribution. The only thing new in C is $E\left(Z^{4}\right)=3$. But we have

$$
\begin{aligned}
E\left(Z^{4}\right) & =\int_{-\infty}^{\infty} z^{4} \phi(z) d z=2 \int_{0}^{\infty} \frac{z^{4}}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& =2 \int_{0}^{\infty} \frac{(2 t)^{3 / 2}}{\sqrt{2 \pi}} e^{-t} d t
\end{aligned}
$$

Figure 1: Plot of Chi-square $(k, 1)$ densities $k=1,3,6,8,10,12$.

$$
\begin{aligned}
& =\frac{2^{2}}{\sqrt{\pi}} \int_{0}^{\infty} t^{5 / 2-1} e^{-t} d t \\
& =\frac{2^{2}}{\sqrt{\pi}} \Gamma(5 / 2) \\
& =3
\end{aligned}
$$

using

$$
\Gamma(5 / 2)=(3 / 2) \Gamma(3 / 2)=(3 / 2)(1 / 2) \Gamma(1 / 2)=(3 / 2)(1 / 2) \sqrt{\pi} ;
$$

see Kelly pages 490-491.

Figure 2: Plot of Standardized Chi-square $(k, 1)$ densities $k=$ $1,4,8,16,32,64$.

