Probability Basics: Handout 3

Math/Stat 394: Probability I
Wellner; 1/21/2000
SUMMARY SHEET: THE BERNOULLI PROCESS
$X_{i} \equiv \quad($ success or failure indicator for i-th trial $) \sim \operatorname{Bernoulli}(p)$. $P\left(X_{i}=k\right)=p^{k}(1-p)^{1-k}, k=0,1$.
$T_{n} \equiv X_{1}+\cdots+X_{n}=($ the total number of successes in the first n trials $)$ $\sim \operatorname{Binomial}(n, p)$
$Y_{i} \equiv \quad($ the i-th interarrival time $) \sim \operatorname{Geometric}(p)$ $P\left(Y_{i}=k\right)=q^{k-1} p$ for $k=1,2, \cdots$ with $E\left(Y_{i}\right)=1 / p$ and $\operatorname{Var}(Y)=q / p^{2}$.
$W_{r} \equiv Y_{1}+\cdots+Y_{r}$ (the waiting time until the r-th success)
\sim NegativeBinomial(r, p);
$P\left(W_{r}=k\right)=\binom{k-1}{r-1} q^{k-r} p^{r}$, for $k=r, r+1, \cdots$
with $E\left(W_{r}\right)=r / p$ and $\operatorname{Var}\left(W_{r}\right)=r q / p^{2}$.
We must have exactly $r-1$ failures in the first $k-1$ trials, and we must have a sucess on the k-trial. There are $\binom{r-1}{k-1}$ such sequences of 0 's and 1 's, and each one has probability $q^{k-r} p^{r}$.

- Key fact: $\left[W_{r}>n\right]=\left[T_{n}<r\right]$.
- Binomial facts:
(a) The basic Bernoulli rv X has mean $\mu_{X}=p$ and variance $\sigma_{X}^{2}=$ $p(1-p) \equiv p q$.
(b) The rv T_{n} has mean $\mu_{n}=n p$ and variance $\sigma_{n}^{2}=n p q$.
(c) The rv

$$
Z_{n} \equiv \frac{T_{n}-\mu_{n}}{\sigma_{n}}=\frac{T_{n}-n p}{\sqrt{n p q}}
$$

is approximately $N(0,1)$.
(d) If $T_{m} \sim \operatorname{Binomial}(m, p)$ and $S_{n} \sim \operatorname{Binomial}(n, p)$ are independent, then $T_{m}+S_{n} \sim \operatorname{Binomial}(m+n, p)$.
(e) Given that $T_{n} \equiv X_{1}+\ldots+X_{n}=m$, for an integer i with $1 \leq i \leq n, T_{i} \sim$ Hypergeometric $(i, n, m) ;\left(T_{i} \mid T_{n}=m\right) \sim$ Hypergeometric (i, n, m). See HO \#1 for the notation Hypergeometric (R, N, n).

- Negative Binomial facts:
(a) The basic rv Y has mean $\mu_{Y}=1 / p$ and variance $\sigma_{Y}^{2}=q / p^{2}$.
(b) The rv W_{r} has mean $\mu_{r}=r / p$ and variance $\sigma_{r}^{2}=r q / p^{2}$.
(c) The rv

$$
Z_{r} \equiv \frac{W_{r}-\mu_{r}}{\sigma_{r}}=\frac{W_{r}-r / p}{\sqrt{r q / p^{2}}}
$$

is approximately $N(0,1)$.
(d) If $W_{r} \sim \operatorname{NegativeBinomial}(r, p)$ and $W_{s} \sim \operatorname{NegativeBinomial}(s, p)$ are independent, then $W_{r}+W_{s} \sim \operatorname{NegativeBinomial}(r+s, p)$.

- Geometric facts:
(a) $P(Y>k)=q^{k} p+q^{k+1} p+q^{k+2} p+\cdots=q^{k} p /(1-q)=q^{k}$ for $k=1,2, \ldots$
(b) $P(Y>i+k \mid Y>i)=P(Y>i+k) / P(Y>i)=q^{k+i} / q^{i}=q^{k}=$ $P(Y>k)$. This is the memoryless property of the Geometric distribution.
- Also

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid X_{1}+\cdots+X_{n}=m\right)= \begin{cases}1 /\binom{n}{m} & \text { if } x_{1}+\cdots x_{n}=m \\ 0 & \text { if not. }\end{cases}
$$

That is, given the number of successes, their location is random and does not depend on p.

