Handout 4: THE POISSON PROCESS

Math/Stat 394: Probability I

Wellner; 1/24/2000
$N(t) \equiv \quad$ (the total count at time t) $\quad \sim \operatorname{Poisson}(\nu t)$
ν
$\theta \equiv \quad 1 / \nu$ will be seen to be the mean time between counts.
Examples: traffic accidents, telephone calls, defects per foot, ...
$Y_{i} \equiv \quad($ the i-th interarrival time) \sim Exponential (ν)
$f_{Y_{i}}(t)=\nu \exp (-\nu t) 1_{(0, \infty)}(t)$ with
$E\left(Y_{i}\right)=1 / \nu=\theta$ and $\operatorname{Var}(Y)=1 / \nu^{2}=\theta^{2}$.
$W_{r} \equiv \quad Y_{1}+\cdots+Y_{r}($ the waiting time until the r-th event $)$
$\sim \operatorname{Gamma}(r, \nu)$;
$\left.f_{W_{r}}(t)=(\nu t)^{r-1} / \Gamma(r)\right) \nu \exp (-\nu t) 1_{(0, \infty)}(t)$,
with $E\left(W_{r}\right)=r / \nu$ and $\operatorname{Var}\left(W_{r}\right)=r / \nu^{2}$.

- Key facts: $\left[Y_{1}>t\right]=[N(t)=0]$ and $\left[W_{r}>t\right]=[N(t)<r]$.
- Poisson facts:
(a) The $\operatorname{rv} N(t) \sim \operatorname{Poisson}(\nu t)$. $E(N(t))=\nu t$ and $\operatorname{Var}(N(t))=\nu t$.
(b) The rv

$$
Z_{t} \equiv \frac{N(t)-\mu_{t}}{\sigma_{t}}=\frac{N(t)-\nu t}{\sqrt{\nu t}}
$$

is approximately $N(0,1)$ for large values of νt.
(c) $N(s) \sim \operatorname{Poisson}(\nu s)$ and $N(t)-N(s) \sim \operatorname{Poisson}(\nu(t-s))$ are independent, and their sum, $N(t) \sim \operatorname{Poisson}(\nu t)$.
(e) Given that $N(t)=m$, for an integer $m \geq 1$, for $0<s<t$ $(N(s) \mid N(t)=m) \sim \operatorname{Binomial}(m, s / t)$.

- Gamma facts:
(a) The first waiting time rv $Y \equiv Y_{1}$ has mean $E(Y)=1 / \nu=\theta$ and variance $\operatorname{Var}(Y)=1 / \nu^{2}=\theta^{2}$.

Figure 1: Plot of $\operatorname{Gamma}(k, 1)$ densities $k=2,4,6,8,10$.
(b) The rv W_{r} has mean $E\left(W_{r}\right)=r / \nu=r \theta$ and variance $\operatorname{Var}\left(W_{r}\right)=$ $r / \nu^{2}=r \theta^{2}$.
(c) The rv

$$
Z_{r} \equiv \frac{W_{r}-E\left(W_{r}\right)}{\sigma_{r}}=\frac{W_{r}-r \theta}{\sqrt{r \theta^{2}}}
$$

is approximately $N(0,1)$.
(d) If $W_{r} \sim \operatorname{Gamma}(r, \nu)$ and $W_{s} \sim \operatorname{Gamma}(s, \nu)$ are independent, then $W_{r}+W_{s} \sim \operatorname{Gamma}(r+s, \nu)$.

- Exponential facts:
(a) If $Y \equiv Y_{1}, P(Y>t)=P\left(N(t)=0=e^{-\nu t}\right.$ for $t \geq 0$.

Hence $f_{Y}(t)=(d / d t) F_{Y}(t)=(d / d t)\left(1-e^{-\nu t}\right)=\nu e^{-\nu t}$ for $t \geq 0$.
(b) $P(Y>t+s \mid Y>s)=P(Y>t+s) / P(Y>s)=e^{-\nu(t+s)} / e^{-\nu s}=$ $e^{-\nu t}=P(Y>t)$. This is the memoryless property of the Exponential distribution.

Figure 2: Plots of standardized $\operatorname{Gamma}(k, 1)$ densities $k=2,4,8,16,32$.

- Conditional on either $N\left(t_{0}\right)=m$ or $W_{m+1}=t_{0}$, there are m arrivals uniformly distributed over $\left[0, t_{0}\right]$. That is, given the number m of events on or before a given time, the location is random and does not depend on ν.

