Handout 7: Math/Stat 394: Probability I
 Joint Probability Distributions, Continuous Case

Wellner; 2/16/2000

Joint Probability Distributions, Continuous Case: Suppose that X, Y are two random variables defined on the same sample space. Then the joint density function $f_{X, Y}$ of (X, Y) is a function satisfying the following properties:
(i) $f_{X, Y}(x, y) \geq 0$ for all x, y.
(ii) $\iint f_{X, Y}(x, y) d x d y=1$.
(iii) $P((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y$.

The marginal probability density functions f_{X} and f_{Y} of X and Y respectively, are obtained from the joint mass function by integratinging out:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \quad \text { and } \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

The joint distribution function (or bivariate $C D F) F_{X, Y}$ of (X, Y) is the function

$$
F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

Note that from the definition of $F_{X, Y}$ it follows that we can recover the joint density function $f_{X, Y}$ in the continuous case by differentiating the joint distribution function $F_{X, Y}$:

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)
$$

Furthermore, we can recover the marginal distribution functions F_{X} and F_{Y} of X and Y respectively from the joint distribution function $F_{X, Y}$:

$$
F_{X}(x)=P(X \leq x)=P(X \leq x, Y \leq \infty)=F_{X, Y}(x, \infty),
$$

and

$$
F_{Y}(y)=P(Y \leq y)=P(X \leq \infty, Y \leq y)=F_{X, Y}(\infty, y)
$$

Analogously to the definition of conditional mass functions in the discrete case, we define $f_{Y \mid X}$, the conditional density of Y given X, and $f_{X \mid Y}$, the conditional density of X given Y, by

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)} \quad \text { if } \quad f_{X}(x)>0
$$

and

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad \text { if } \quad f_{Y}(y)>0
$$

The conditional mean functions (or regression functions) $E(Y \mid X=x)$ and $E(X \mid Y=y)$ are defined simply as the (conditional) expectations with respect to the conditional densities $f_{Y \mid X}$ and $f_{X \mid Y}$ respectively:

$$
m(x) \equiv E(Y \mid X=x)=\int y f_{Y \mid X}(y \mid x) d y
$$

and

$$
E(X \mid Y=y)=\int x f_{X \mid Y}(x \mid y) d x
$$

Example 1. Suppose that X and Y have a uniform density on the triangle $T \equiv\{(x, y): 0 \leq y \leq x \leq 1\}$. Since the area of T is $1 / 2$, we find that

$$
f_{X, Y}(x, y)=2 \cdot 1_{T}(x, y)
$$

See Figures 1 and 2. Recall that

$$
1_{T}(x, y)= \begin{cases}1, & (x, y) \in T \\ 0, & (x, y) \notin T\end{cases}
$$

We proceed to find the corresponding marginal densities f_{X}, f_{Y}, the conditional densities $f_{Y \mid X}, f_{X \mid Y}$, and the joint distribution function $F_{X, Y}$. First the marginal densities:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{x} 2 d y=2 x
$$

if $0 \leq x \leq 1$; otherwise the marginal density is 0 . Thus $f_{X}(x)=2 x 1_{[0,1]}(x)$. Similarly,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{y}^{1} 2 d x=2(1-y)
$$

if $0 \leq y \leq 1$; otherise the marginal density of Y is 0 . Hence $f_{Y}(y)=$ $2(1-y) 1_{(0,1)}(y)$. Now we can compute the conditional densities:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{2}{2 x} \quad \text { if } \quad 0 \leq y \leq x \leq 1
$$

Thus we have

$$
f_{Y \mid X}(y \mid x)=\frac{1}{x} 1_{(0, x)}(y) ;
$$

i.e. $(Y \mid X=x) \sim \operatorname{Uniform}(0, x)$. Similarly,

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{2}{2(1-y)} \quad \text { if } 0 \leq y \leq x \leq 1
$$

Thus we have

$$
f_{X \mid Y}(x \mid y)=\frac{1}{1-y} 1_{(y, 1)}(x) ;
$$

i.e. $(X \mid Y=y) \sim \operatorname{Uniform}(y, 1)$. As a consequence, it is easy to compute the conditional mean functions:

$$
E(Y \mid X=x)=\int y f_{Y \mid X}(y \mid x) d y=\int_{0}^{x} y \frac{1}{x} d y=\frac{x}{2}
$$

and

$$
E(X \mid Y=y)=\int x f_{X \mid Y}(x \mid y) d x=\int_{y}^{1} x \frac{1}{1-y} d x=\frac{1+y}{2} .
$$

See figure 1 for a plot of $E(Y \mid X=x)$. Finally the joint distribution function $F_{X, Y}$ is computed as follows: for $(x, y) \in T$ where T is the triangle where the joint density is positive,

$$
\begin{aligned}
F_{X, Y}(x, y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& =\int_{0}^{x} \int_{0}^{y} 2 \cdot 1_{T}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& =2\left(\left(y^{2} / 2+y(x-y)\right)=2 x y-y^{2}\right.
\end{aligned}
$$

by decomposing the region into the triangle with base of length y and height y, and the remaining square with area $y(x-y)$. Note that for other values
of (x, y) we can easily compute the joint distribution function $F_{X, Y}$ from its values on the boundary of the triangle T : for $0<x<y<\infty$ we have

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=P(X \leq x, Y \leq x)=F_{X, Y}(x, x)=x^{2}
$$

and for $1<x<\infty, 0<y \leq 1$,

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=P(X \leq 1, Y \leq y)=F_{X, Y}(1, y)=2 y-y^{2} .
$$

On the other hand, for $1<x<\infty$ and $1<y<\infty$,
$F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=P(X \leq 1, Y \leq 1)=F_{X, Y}(1,1)=2-1^{2}=1$.
See Figure 3 for a plot of $F_{X, Y}$ (and note that the marginal distribution functions F_{X} and F_{Y} do appear in the plot). Note that we do recover the marginal distribution functions:

$$
F_{X}(x)=x^{2}=F_{X, Y}(x, \infty)=F_{X, Y}(x, x)
$$

for $0 \leq x \leq 1$ and

$$
F_{Y}(y)=1-(1-y)^{2}=2 y-y^{2}=F_{X, Y}(\infty, y)
$$

for $0 \leq y \leq 1$.

Figure 1: Plot of Triangle T and $E(Y \mid X=x)$.

Figure 2: Plot of joint density $f_{X, Y}$.

Figure 3: Plot of joint distribution function $F_{X, Y}$.

