Handout 9: Math/Stat 394: Probability I
 Expectation Summary

Wellner; 2/23/2000

Definition 1. Random outcome X, Y yields payoff $g(X, Y)$ with average value

$$
E g(X, Y) \equiv \begin{cases}\sum_{\sum_{a l l x, y}} g(x, y) p_{X, Y}(x, y) & \text { (discrete rv's) } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y & \text { (continuous rv's) }\end{cases}
$$

Example 1.

$\mu_{X} \equiv E X$ and $\sigma_{X}^{2} \equiv \operatorname{Var}(X) \equiv E(X-E X)^{2}$.
$\mu_{Y} \equiv E Y$ and $\sigma_{Y}^{2} \equiv \operatorname{Var}(Y) \equiv E(Y-E Y)^{2}$.
μ_{X} and σ_{X} measure "center" and "spread" of X;
μ_{Y} and σ_{Y} measure "center" and "spread" of Y;
$\sigma_{X, Y} \equiv \operatorname{Cov}(X, Y) \equiv E[(X-E X)(Y-E Y)]$
and $\rho_{X, Y} \equiv \operatorname{Corr}(X, Y) \equiv \sigma_{X, Y} /\left(\sigma_{X} \sigma_{Y}\right)$
measure the relationship between X and Y.

Theorem 1.

$$
\begin{array}{ll}
E(a)=a & \\
E(a X+b)=a E(X)+b & \text { or } \mu_{a X+b}=a \mu_{X}+b \\
E(a X+b Y+c)=a E(X)+b E(Y)+c & \text { or } \mu_{a X+b Y+c}=a \mu_{X}+ \\
E(X+Y)=E(X)+E(Y) & \text { or } \mu_{X+Y}=\mu_{X}+\mu_{Y} \\
& \\
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) & \text { or } \sigma_{a X+b}=|a| \sigma_{X} \\
\operatorname{Var}(X)=0 \text { iff } P\left(X=\mu_{X}\right)=1 & \\
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) & \text { or } \sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2} \\
\text { if } X \text { and } Y \text { are independent } & \text { if } X \text { and } Y \text { are ind } \\
\operatorname{Var}(X+Y) & \text { or } \sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2} \\
=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) & \text { always } \\
\text { always } & \\
\operatorname{Var}(a X+b Y+c) & \text { or } \sigma_{a X+b Y+c}^{2}=a^{2} \sigma_{X}^{2} \\
=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y) &
\end{array}
$$

$$
\text { or } \mu_{a X+b Y+c}=a \mu_{X}+b \mu_{Y}+c \text { always }
$$

$$
\text { or } \sigma_{a X+b}=|a| \sigma_{X}
$$

or $\sigma_{a X+b Y+c}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \sigma_{X, Y}$

Computing Formulas:
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E X)^{2} \quad$ or $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$
$\operatorname{Cov}(X, Y)=E(X Y)-E X \cdot E Y \quad$ or $\sigma_{X, Y}=E(X Y)-\mu_{X} \mu_{Y}$
$\operatorname{Var}(X)=\operatorname{Cov}(X, X)$
$\operatorname{Cov}(X, Y)=0$ whenever X and Y
are independent
The key fact in all this:
$E\{g(X) h(Y)\}=E\{g(X)\} \cdot E\{h(Y)\}$ for any $g(\cdot)$ and $h(\cdot)$ whenever X and Y are independent.
Thus $\operatorname{Cov}(X, Y)=E\left\{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right\}=E\left(X-\mu_{X}\right) \cdot E\left(Y-\mu_{Y}\right)=0 \cdot 0=0$ when X and Y are independent.

$$
\begin{aligned}
& \operatorname{Cov}\left[\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left[X_{i}, Y_{j}\right] \\
& \operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]+\sum \sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& \operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum \sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& =n \operatorname{Var}\left(X_{1}\right)+n(n-1) \operatorname{Cov}\left[X_{1}, X_{2}\right] \\
& \quad \text { if all variances and covariances are equal. }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]= & \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \quad \text { if the } X_{i}^{\prime} s \text { are independent } \\
& =n \operatorname{Var}\left(X_{1}\right) \quad \text { if all the variances are equal } .
\end{aligned}
$$

Example 2. (Urn mean and variance). An urn contains N balls numbered a_{1}, \ldots, a_{N}. Let X denote the a-value of one ball drawn at random from the urn. Then

$$
\mu_{X}=\bar{a}_{N} \equiv \frac{1}{N} \sum_{i=1}^{N} a_{i}
$$

and

$$
\sigma_{X}^{2}=\sigma_{a}^{2} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(a_{i}-\bar{a}_{N}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}
$$

Example 3. (Sampling with replacement from an urn.) Let $T_{n} \equiv X_{1}+\cdots+$ X_{n}. Then

$$
E\left(T_{n}\right)=n \bar{a}_{N} \quad \text { and } \quad \operatorname{Var}\left(T_{n}\right)=n \sigma_{a}^{2},
$$

and hence for $\bar{X}_{n} \equiv T_{n} / n$,

$$
E\left(\bar{X}_{n}\right)=\bar{a}_{N} \quad \text { and } \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{n} \sigma_{a}^{2} .
$$

Note that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$ since the X_{i} 's are independent.
Example 4. (Sampling without replacement from an urn.) Let $T_{n} \equiv X_{1}+$ $\cdots+X_{n}$. Then

$$
E\left(T_{n}\right)=n \bar{a}_{N} \quad \text { and } \quad \operatorname{Var}\left(T_{n}\right)=n \sigma_{a}^{2}\left(1-\frac{n-1}{N-1}\right)
$$

and hence for $\bar{X}_{n} \equiv T_{n} / n$,

$$
E\left(\bar{X}_{n}\right)=\bar{a}_{N} \quad \text { and } \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{n} \sigma_{a}^{2}\left(1-\frac{n-1}{N-1}\right) .
$$

Here $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-\sigma_{a}^{2} /(N-1)$. The "correction factor" $(1-(n-1) /(N-$ $1)$) is due to the covariance no longer being 0 . It has the same value no matter what numbers a_{1}, \ldots, a_{N} are in the urn.

Proof.

$$
0=\operatorname{Var}\left(X_{1}+\cdots+X_{N}\right)=N \sigma_{a}^{2}+N(N-1) \operatorname{Cov}\left(X_{1}, X_{2}\right)
$$

so $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-\sigma_{a}^{2} /(N-1)$. Then

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) & =n \sigma_{a}^{2}+n(n-1) \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& =n \sigma_{a}^{2}+n(n-1)\left(-\frac{\sigma_{a}^{2}}{N-1}\right) \\
& =n \sigma_{a}^{2}\left(1-\frac{n-1}{N-1}\right) .
\end{aligned}
$$

Example 5. (Variance of Hypergeometric). If the numbers on the balls are $a_{1}=\ldots=a_{R}=1, a_{R+1}=\ldots=a_{N}=0$, then $T_{n}=X_{1}+\cdots+X_{n}=$ the number of red balls in the sample when the urn contains R red balls. Thus $T_{n} \sim \operatorname{Hypergeometric}(R, N, n)$. The results of Example 4 tell us in this special case that

$$
E\left(T_{n}\right)=n \bar{a}_{N}=n \frac{R}{N}
$$

and

$$
\operatorname{Var}\left(T_{n}\right)=\left(1-\frac{n-1}{N-1}\right) n \sigma_{a}^{2}=\left(1-\frac{n-1}{N-1}\right) n(R / N)(1-R / N)
$$

since

$$
\sigma_{a}^{2}=\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}=R / N-(R / N)^{2}=(R / N)(1-R / N) .
$$

Note that these expressions differ only by the finite sampling correction factor $(1-(n-1) /(N-1))$ from the comparable expressions for the mean and variance of T_{n} if the sampling is carried out with replacement: in that case $T_{n} \sim \operatorname{Binomial}(n, p=R / N)$ and

$$
E\left(T_{n}\right)=n p=n R / N, \quad \operatorname{Var}\left(T_{n}\right)=n p(1-p)=n(R / N)(1-R / N)
$$

