Statistics 492, Problem Set 1

Wellner; 1/07/14

Reading: Karlin and Taylor, chapter 7, pages 340-365
Karlin and Taylor, chapter 6, section 8, pages 313-325.
Due: Tuesday, 14 January 2014.

1. Let $\{B(t): t \geq 0\}$ be Brownian motion started at x. We showed in class that

$$
\left.P_{x}\left(B\left(t_{1}\right) \leq x_{1}, B\left(t_{2}\right) \leq x_{2}\right)=\int_{-\infty}^{x_{1}}\left(\int_{-\infty}^{x_{2}} p_{t_{2}-t_{1}}\left(y_{1}, y_{2}\right) d y_{2}\right)\right) p_{t_{1}}\left(x, y_{1}\right) d y_{1}
$$

where $p_{t}(x, y)$ is the transition probability density for Brownian motion. Generalize this formula to $m \geq 3$ time points with $0 \leq t_{1} \leq \cdots \leq t_{m}$ and levels x_{1}, \ldots, x_{m}.
2. Let B denote standard Brownian motion starting from 0 at time 0 , and let $\alpha \in \mathbb{R}$. Show that $Y_{\alpha}(t) \equiv \exp (-\alpha t) B\left(e^{2 \alpha t}\right)$ is a Gaussian process and compute its covariance function.
3. Let B denote standard Brownian motion. Show that $\{U(t)=B(t)-t B(1): 0 \leq$ $t \leq 1\}$ is a Gaussian process. Find the covariance function of the process U.
4. Let B denote Brownian motion, and define a new process V by $V(t)=(1-$ $t) B(t /(1-t))$ for $0 \leq t \leq 1$. Show that V is a Gaussian process and compute the covariance function of the process V. (The process V is a Brownian bridge process on $[0,1]$.)
5. Let $\{U(t): 0 \leq t \leq 1\}$ be a Brownian bridge process on $[0,1]$, and consider the process $W(t)=(1+t) U\left(\frac{t}{1+t}\right)$ for $0 \leq t<\infty$. Show that W is a Brownian motion process on $[0, \infty)$. (This is called Doob's transformation.)
6. Let $B(t)$ denote standard Brown motion, let $t_{j}=j / m$ for $j=0, \ldots, m$, and consider the Riemann sums $Y_{m}=\sum_{j=0}^{m} B\left(t_{j}\right)\left(t_{j+1}-t_{j}\right)$ approximating $\int_{0}^{1} B(t) d t$. Compute $\operatorname{Var}\left(Y_{m}\right) \equiv \sigma_{m}^{2}$ and show that $\lim _{m \rightarrow \infty} \sigma_{m}^{2}=1 / 3$.
7. Optional bonus problem: Karlin and Taylor, page 384, problem 9: If B denotes standard Brownian motion, derive the conditional distribution of $W=$ $\int_{0}^{t} B(s) d s$ given that $B(t)=x$.

