Statistics 492, Problem Set 2

Wellner; 1/14/14

Reading: Karlin and Taylor, chapter 7, pages 340-365
Karlin and Taylor, chapter 6, section 8, pages 313-325.
Klebaner, chapter 3, pages 55-86,
Klebaner, chapter 8, pages 169-177.
Reminder: Preliminary project titles and descriptions due Thursday, 23 January
Due: Tuesday, 21 January 2014.

1. Show that the transition density for Brownian motion, $p_{t}(x, y)=(2 \pi t)^{-1 / 2} \exp \left(-(y-x)^{2} /(2 t)\right)$, satisfies the "heat equation"

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \frac{\partial^{2} p}{\partial t^{2}}
$$

2. Klebaner, Exercise 3.12, page 86: Formulate the law of large numbers and the law of the iterated logarithm for Brownian motion near zero. [Hint: Use the fact that if B is standard Brownian motion, then $W(t)=t B(1 / t), t>0$, and $W(0)=0$ is also Brownian motion.]
3. (i) Let $f(x, t) \equiv x^{4}-6 x^{2} t+3 t^{2}$ and let B denote standard Brownian motion. Show that $\{f(B(t), t): t \geq 0\}$ is a martingale. [Hint: Use the exponential martingale $Y_{c}(t) \equiv \exp \left(c B(t)-c^{2} t / 2\right)$ and compute $\left.\left(\partial^{4} / \partial c^{4}\right)\left(Y_{c}\right)\right|_{c=0}$.]
(ii) Show that $f(x, t)$ given in (i) satisfies the "backwards heat equation"

$$
\frac{\partial f}{\partial t}=-\frac{1}{2} \frac{\partial^{2} f}{\partial t^{2}} .
$$

It turns out that for any polynomial function f in x and t which satisfies the backwards heat equation, $f(B(t), t)$ is a martingale.
4. Derive the joint distribution of $B(t)$ and $m(t) \equiv \min _{0 \leq s \leq t} B(s)$. [Hint: Consider the process $-B$ and the joint distribution of $(B(t), M(t))$ where $M(t) \equiv$ $\max _{0 \leq s \leq t} B(s)$.]
5. Optional bonus problem: Let $T_{a} \equiv \inf \left\{t>0: B_{t} \notin(-a, a)\right\}$. Show that $E\left(T_{a}\right)=a^{2}$ and that $E\left(T_{a}^{2}\right)=5 a^{4} / 3$. Conclude that $\operatorname{Var}\left(T_{a}\right)=2 a^{4} / 3$. [Hint: Use the martingale in problem 3 above.

