Statistics 492, Problem Set 4

Wellner; 1/28/14

Reading: Klebaner, chapter 4, pages 102-116, Klebaner, chapter 7, pages 169-177.

Reminder: No Problem Set 5 next week;
Problems Set 5 will be handed out on Tuesday 18 February.
Lectures by Shuliu Yuan on February 4, 6, 11 will cover renewal theory ... based on Durrett, chapter 3; Karlin and Taylor, chapter 5 Please work on your projects during the next two weeks.

Due: Tuesday, 4 February 2014.

1. Klebaner, Exercise 4.1, page 114: Let $\tau_{1}<\tau_{2}$ be stopping times with respect to the natural filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ of Brownian motion B on $[0, T]$. Show that $X(t)=1_{\left(\tau_{1}, \tau_{2}\right]}(t)$ is a simple predictable process.
2. Klebaner, Exercise 4.5, page 115: Show that if $X(t, s)$ is a non-random function of both s and t with $\int_{0}^{t} X^{2}(t, s) d s<\infty$, then $Y(t)=\int_{0}^{t} X(t, s) d B(s)$ is a Gaussian random variable $Y(t)$, and the process $\{Y(t): 0 \leq t \leq T\}$ is a Gaussian process with zero mean and covariance function given by $\operatorname{Cov}(Y(t), Y(t+v))=$ $\int_{0}^{t} X(t, s) X(t+v, s) d s$ for $v \geq 0$.
3. Let B be standard Brownian motion and let $x \in \mathbb{R}$. Define a new process Y_{t} by

$$
Y_{t}=e^{-t / 2} x+e^{-t / 2} \int_{0}^{t} e^{s / 2} d B_{s}
$$

(i) Show that $\left\{Y_{t}: t \geq 0\right\}$ is a Gaussian process with mean $e^{-t / 2} x$ and variance $1-e^{-t}$.
(ii) Now let $Z \sim N(0,1)$ be independent of B and define $\tilde{Y}(t)$ by

$$
\tilde{Y}_{t}=e^{-t / 2} Z+e^{-t / 2} \int_{0}^{t} e^{s / 2} d B_{s}
$$

Show that \tilde{Y} is a mean 0 Gaussian process with variance 1, and show that $Y(t) \stackrel{d}{=}$ $e^{-t / 2} x+e^{-t / 2} B\left(e^{t}-1\right)$. Thus with $Z(t) \equiv \int_{0}^{t} e^{s / 2} d B(s), Z(t) \stackrel{d}{=} B\left(e^{t}-1\right)$ as processes, or, equivalently, $Z(\log (t+1)) \stackrel{d}{=} B(t)$.
(iii) Compute the covariance of the process \tilde{Y}. The processes Y and \tilde{Y} are known as Ornstein-Uhlenbeck processes.
4. Let X_{n} be a sequence of random variables with normal distributions $N\left(\mu_{n}, \sigma_{n}^{2}\right)$ and suppose that $X_{n} \rightarrow_{d} X$. (i) Show that the distribution of X is either normal or degenerate (i.e. $P\left(X=x_{0}\right)=1$ for some $x_{0} \in \mathbb{R}$).
(ii) Show that if $E\left(X_{n}\right) \rightarrow \mu$ and $\operatorname{Var}\left(X_{n}\right) \rightarrow \sigma^{2}>0$, then the limiting distribution (of X) is $N\left(\mu, \sigma^{2}\right)$.
(iii) Since convergence in probability implies convergence in distribution, deduce convergence of Itô integrals of simple deterministic processes to a Gaussian limit.
5. Use the Itô isometry to calculate the variances of

$$
\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s} \quad \text { and } \quad \int_{0}^{t}\left(B_{s}+s\right)^{2} d s
$$

6. Optional bonus problem: The integrals

$$
I_{1}=\int_{0}^{t} B(s) d s \quad \text { and } \quad I_{2}=\int_{0}^{t} B(s)^{2} d s
$$

are not stochastic integrals, although they are random variables (and define natural stochastic processes). For each ω the integrands are nice continuous functions of s and the $d s$ integration is just the traditional calculus integration. Find the mean and variance of the the random variables I_{1} and I_{2}.

