Statistics 492, Problem Set 5

Wellner; 2/18/14

Reading: Klebaner, chapter 5, pages 123-149, Klebaner, chapter 6, pages 151-167.

Due: Tuesday, 25 February 2014.

1. Let X denote an Itô process. Obtain the formula

$$
[X, X](t)=X^{2}(t)-X^{2}(0)-2 \int_{0}^{t} X(s) d X(s)
$$

for the quadratic variation of X by applying Itô's formula to $X^{2}(t)$.
2. Klebaner, Exercise 4.7, page 121. Suppose that $X(t)$ has a stochastic differential with $\mu(x)=b x+c$ and $\sigma^{2}(x)=4 x$. Assuming $X(t) \geq 0$, find the stochastic differential for the process $Y(t)=\sqrt{X(t)}$.
3. Klebaner, Exercise 4.9, page 121. Suppose that $X(t)$ has a stochastic differential with $\mu(x)=c x$ and $\sigma^{2}(x)=x^{a}, c>0$. Let $Y(t)=X(t)^{b}$. What choice of b will give a constant diffusion coefficient for Y ?
4. Optional bonus problem: Klebaner, Exercise 4.8, page 121. A process $X(t)$ on $(0,1)$ has a stochastic differential with $\sigma(x)=x(1-x)$. Assuming $0<X(t)<1$, show that the process defined by $Y(t)=\log (X(t) /(1-X(t))$ has a constant diffusion coefficient.
5. Optional bonus problem: Klebaner, Exercise 4.10, page 121. Let $X(t)=t B(t)$ and $Y(t)=e^{B(t)}$. Find $d(X(t) / Y(t))$.

