Statistics 492, Problem Set 7

Wellner; 3/4/14

Reading: Klebaner, chapter 6, pages 151-167, Klebaner, chapter 7, pages 185-212.

Due: Tuesday, 11 March 2014.

1. Klebaner, Exercise 4.18, page 122: Let $X(t)=t B(t)$. Find its quadratic variation $[X, X](t)$.
2. Klebaner, Exercise 4.19, page 122: Let $X(t)=\int_{0}^{t}(t-s) d B(s)$. Find $d X(t)$ and its quadratic variation $[X, X](t)$. Compare to the quadratic variation of Itô integrals. (This is connected to what is known at integrated Brownian motion, $\int_{0}^{t} B(s) d s$. Two-sided integrated Brownian motion. This arises in the limit theory of nonparametric estimation of convex functions: let f be a convex function on \mathbb{R}, and suppose that we observe $Y(t)$ where $d Y(t)=f(t) d t+\sigma d B(t)$. Then $Y(t)=\int_{0}^{t} f(s) d s+\sigma B(t) \equiv F(t)+\sigma B(t)$ and

$$
Z(t) \equiv \int_{0}^{t} Y(s) d s=\int_{0}^{t} F(s) d s+\sigma \int_{0}^{t} B(s) d s
$$

here the most interesting f for the limit theory is $12 t^{2}$. Then $F(t)=4 t^{3}$ and $\int_{0}^{t} F(s) d s=t^{4}$. See Groeneboom, Jongbloed, and Wellner, A canonical process for estimation of convex functions: the "invelope" of integrated Brownian motion $+t^{4}$. Ann. Statist. 29 (2001), 1620-1652.)
3. Klebaner, Exercise 5.5, page 149.
4. Optional bonus problem: Find another application of the Feynman-Kac formula. (Hints in lecture on $3 / 6 / 14$.)

