Statistics 491, Problem Set 10

Wellner; 11/27/13

Reading: Durrett; Chapter 2, pages 92-118.
Ross; Chapter 5, sections 5.1-5.4+Exercises, pages 291-370.

Due: Wednesday, December 4, 2013.

1. Durrett, chapter 2, problem 2.2, page 111.

The life time of a radio is exponentially distributed with mean 5 years. If Ted buys a 7 year-old radio, what is the probability it will be working 3 years later?
2. Durrett, chapter 2, problem 2.34, page 115 .

Edwin catches trout at times of a poisson process with rate 3 per hour. Suppose that the trout weigh an average of 4 pounds with a standard deviation of 2 pounds. Find the mean and standard deviation of the total weight of fish he catches in 2 hours.
3. Durrett, chapter 2, problem 2.38, page 115.

Let S_{t} be the price of a stock at time t and suppose that at times of a Poisson process with rate λ the price is multiplied by a random variable $X_{i}>0$ with mean μ and variance σ^{2}. That is,

$$
S_{t}=S_{0} \prod_{i=1}^{N(t)} X_{i}
$$

where the product is 1 if $N(t)=0$. Find $E\left(S_{t}\right)$ and $\operatorname{Var}\left(S_{t}\right)$ as functions of λ, t, μ, and σ^{2}.
4. Durrett, chapter 2, problems 2.57 and 2.58, page 118.
2.57: Suppose $N(t)$ is a Poisson process with rate 2. Compute the conditional probabilities: (a) $P(N(3)=4 \mid N(1)=1)$. (b) $P(N(1)=1 \mid N(3)=4)$.
2.58: For a Poisson process $N(t)$ with rate 2 compute:
(a) $P(N(2)=5)$. (b) $P(N(5)=8 \mid N(2)=3)$. (c) $P(N(2)=3 \mid N(5)=8)$.
5. Durrett, chapter 2, problem 2.32, page 114.

Let T be exponentially distributed with rate λ.
(a) Use the definition of conditional expectation to compute $E(T \mid T>c)$.
(b) Determine $E(T \mid T<c)$ from the identity

$$
E(T)=E(T \mid T<c) P(T<c)+E(T \mid T>c) P(T>c)
$$

6. Durrett, chapter 2, problem 2.39: Messages arrive to be transmitted across the internet at ties of a poisson process with rate λ. Let Y_{i} be the size of the i th message, measured in bytes, and let $G(z)=E\left(z^{Y_{i}}\right)$ be the generating function of Y_{i} (with assumptions as in Example 2.2 page 104). Let $N(t)$ be the number of arrivals by time t and let $S_{t}=Y_{1}+\cdots+Y_{N(t)}$ be the total size of the messages up to time t.
(a) Find the generating function $f(z)=E\left(z^{S_{t}}\right)$.
(b) Differentiate and set $z=1$ to find $E(S)$.
(c) Differentiate again and set $z=1$ to find $E\left\{S_{t}\left(S_{t}-1\right)\right\}$.
(d) Compute $\operatorname{Var}\left(S_{t}\right)$.
7. Optional bonus problem 1: Durrett, chapter 2, problem 2.32, page 115. (When did the chicken cross the road?) Suppose that traffic on a road follows a Poisson process with rate λ cars per minute. A chicken news a gap of length at least c minutes in the traffic to cross the road. To compute the time the chicken will have to wait to cross the road, let $\tau_{1}, \tau_{2}, \tau_{3}, \ldots$ be the inter arrival times for the cars and let $J \equiv \min \left\{j: \tau_{j}>c\right\}$. If $T_{n}=\tau_{1}+\cdots+\tau_{n}$, then the chicken will start to cross the road at time T_{J-1} and complete his (or her) journey at time $T_{J-1}+c$. Use the previous exercise to show that $E\left(T_{J-1}+c\right)=\left(e^{\lambda c}-1\right) / \lambda$.
8. Optional bonus problem 2: Durrett, chapter 2, problem 2.62, page 118.

Consider two independent Poisson processes $N_{1}(t)$ and $N_{2}(t)$ with rates λ_{1} and λ_{2}. What is the probability that the two-dimensional process $\left(N_{1}(t), N_{2}(t)\right)$ ever visits the point (i, j) ?
9. Optional bonus problem 3: From Serfling (1975), Annals of Probability 3, 726-731. Let $Y_{i} \sim \operatorname{Poisson}\left(p_{i}\right)$ and let $Z_{i} \sim \operatorname{Bernoulli}\left(1-e^{p_{i}}\left(1-p_{i}\right)\right)$ be independent of Y_{i}. Define

$$
X_{i}=1_{\left[Y_{i} \geq 1\right]}+1_{\left[Y_{i}=0\right]} \cdot 1_{\left[Z_{i}=1\right]} .
$$

(a) Show that $X_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)$.
(b) Show that $P\left(X_{i} \neq Y_{i}\right)=P\left(Y_{i} \geq 2\right)+P\left(X_{i}=1, Y_{i}=0\right)=p_{i}\left(1-e^{-p_{i}}\right) \leq p_{i}^{2}$. (c) Now let $S_{n} \equiv X_{1}+\cdots+X_{n}$ and $T_{n} \equiv \sum_{i=1}^{n} Y_{i}$. Use the computations in (a) and (b) to show that

$$
\left|P\left(S_{n} \in A\right)-P\left(T_{n} \in A\right)\right| \leq \sum_{i=1}^{n} p_{i}^{2}
$$

