
Statistics 491, Problem Set 4

Wellner; 10/16/13

Reading: Ross; Chapter 4, pages 191 - 230
Durrett; Chapter 1, pages 1-40 .

Due: Wednesday, October 23, 2013.

1. Suppose that X1, X2, . . . be i.i.d. random variables with P (Xi = 2) = 1/3 and
P (Xi = 1/2) = 2/3. Let M0 ≡ 1 and Mn =

∏n
i=1Xi for n ≥ 1.

(a) Show that Mn is a martingale with respect to Fn ≡ σ{M0,M1, . . . ,Mn}.
(b) Use the weak (or strong) law of large numbers to how that Mn →p 0 (or
→a.s 0).
(c) Show that supn≥1E(M r

n) =∞ for every r > 1. (This gives an example of a
martingale which converges almost surely, but which is not closed at infinity: i.e.
{Mn : n ∈ {0, 1, . . . ,∞}} is not a martingale.

2. Suppose that Y1, Y2, . . . , Yn are i.i.d. Poisson(1), and let Nn =
∑n

i=1 Yi. Thus by
the central limit theorem

Zn =
Nn − n√

n
→ Z ∼ N(0, 1);

that is P (Zn ≤ z)→ P (Z ≤ z) = Φ(z) =
∫ z
−∞(2π)−1/2e−x

2/2dx.
(a) Show that

E

(
n−Nn√

n
1[Nn≤n]

)
=

√
n

n!

(n
e

)n
.

(b) Argue that −Zn → −Z
d
= Z ∼ N(0, 1), so by a integrability argument

E

(
n−Nn√

n
1[n−Nn≥0]

)
→ E(Z1[Z≥0]) =

1√
2π
.

(c) Conclude that √
2πn(n

e
)n

n!
→ 1.

The resulting approximation, n! ∼
√

2πn(n/e)n is known as Stirling’s formula.

3. Suppose that X1, X2, . . . , Xn are i.i.d. Poisson(λ) random variables.
(a) Find the moment generating function of the Xi’s, φ(s) ≡ E exp(sX1).
(b) Find the form of the exponential martingale Mn = exp(s

∑n
j=1Xj)/φ(s)n.
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(c) Consider another value of the Poisson parameter, µ > 0 say, and the likelihood
ratio p(x;µ)/p(x;λ) where p(x; γ) = e−γγx/x! is the probability mass function for
the Poisson(γ) distribution. Show that for some choice of s in (b) the exponential
martingale becomes exactly the likelihood ratio martingale

Zn ≡
n∏
i=1

p(Xi;µ)

p(Xi;λ)
.

4. Suppose that U ∼ Uniform(0, 1). For n ≥ 1 let Zn,k ≡ 1(k−1)/2n,k/2n](U) for
k ∈ {1, . . . , 2n}, and write Zn ≡ (Zn,1, . . . , Zn,2n). Now let f be a function

defined on [0, 1] with
∫ 1

0
f 2(x)dx <∞ and define Y∞ ≡ f(U).

(a) Show that E(Y 2) <∞.
(b) Compute Yn ≡ E(Y |Zn) = E(Y |Zn,1, . . . , Zn,2n) explicitly as a function of

Zn.
(c) Show that {Yn : n ≥ 1} is a martingale.
(d) Find a predictable process An = 〈Y 〉n such that Y 2

n − 〈Y 〉n is a martingale.
(e) Can you show that E(Y − Yn)2 → 0?

5. Suppose that Xi are i.i.d as 2Bernoulli(p) − 1 (so P (Xi = 1) = p and P (Xi =
−1) = q = 1 − p). Let Sn ≡

∑n
i=1Xi, and let Tb ≡ T ≡ min{n ≥ 1 : Sn = b}.

(a) If p = 1/3, compute pb = P (maxn≥1 Sn ≥ b), E(Tb), and E(maxn≥1 Sn). In
particular find pb and E(Tb) for b ∈ {1, 2, 3, 4}.
(b) Repeat the calculations in (a) when p = 9/19.

6. Now suppose that the Xi’s are as in the previous problem with p = 1/2, define
Sn =

∑n
i=1Xi, and let

T = min{n ≥ 1 : Sn = 1}.

Let Fn = σ{S0, S1, . . . , Sn}. Then T is a stopping time and by our exponential
martingale example 4, with

φ(θ) = (1/2)eθ + (1/2)e−θ = cosh(θ),

and hence

Mn = exp(θSn)/φ(θ)2 =
eθSn

cosh(θ)n
= (sechθ)neθSn

is a martingale with respect to Fn: E(Mn+1|Fn) = Mn.
(a) Use the optional sampling theorem applied to the martingale {Mn} and the
bounded stopping time T ∧ k to find an identity for EMT∧k.
(b) Use the result of (a) to find an identity for EMT and hence an expression
for E{(sechθ))T} when θ > 0
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(c) Show that (sechθ)T ↗ 1 as θ ↘ 0 if T <∞, and that (sechθ)T ↗ 0 as θ ↘ 0
if T =∞. Use these to show that P (T <∞) = E1[T<∞] = 1.
(d) Take α = sech(θ) in the identity in (b); then show that on the one hand

E(αT ) =
∞∑
n=1

αnP (T = n) = e−θ (1)

while on the other hand g(α) ≡ E(αT ) satisfies

g(α) =
1

2
α +

1

2
αg(α)2 (2)

and hence g(α) = E(αT ) = α−1(1 −
√

1− α2). (Show this by conditioning on
X1.)
(e) Use the result of (d) to show that P (T = 2m− 1) = (−1)m+1

(
1/2
m

)
for m ≥ 1

where for x ∈ R and r ∈ N(
x

r

)
≡ x(x− 1) · · · (x− r + 1)

r!
.

(f) Use the result in (e) to show that E(T ) =∞.
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