Statistics 491, Problem Set 4

Wellner; 10/16/13

Reading: Ross; Chapter 4, pages 191-230
Durrett; Chapter 1, pages 1-40.
Due: Wednesday, October 23, 2013.

1. Suppose that X_{1}, X_{2}, \ldots be i.i.d. random variables with $P\left(X_{i}=2\right)=1 / 3$ and $P\left(X_{i}=1 / 2\right)=2 / 3$. Let $M_{0} \equiv 1$ and $M_{n}=\prod_{i=1}^{n} X_{i}$ for $n \geq 1$.
(a) Show that M_{n} is a martingale with respect to $\mathcal{F}_{n} \equiv \sigma\left\{M_{0}, M_{1}, \ldots, M_{n}\right\}$.
(b) Use the weak (or strong) law of large numbers to how that $M_{n} \rightarrow_{p} 0$ (or $\left.\rightarrow_{a . s} 0\right)$.
(c) Show that $\sup _{n \geq 1} E\left(M_{n}^{r}\right)=\infty$ for every $r>1$. (This gives an example of a martingale which converges almost surely, but which is not closed at infinity: i.e. $\left\{M_{n}: n \in\{0,1, \ldots, \infty\}\right\}$ is not a martingale.
2. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d. Poisson(1), and let $N_{n}=\sum_{i=1}^{n} Y_{i}$. Thus by the central limit theorem

$$
Z_{n}=\frac{N_{n}-n}{\sqrt{n}} \rightarrow Z \sim N(0,1)
$$

that is $P\left(Z_{n} \leq z\right) \rightarrow P(Z \leq z)=\Phi(z)=\int_{-\infty}^{z}(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x$.
(a) Show that

$$
E\left(\frac{n-N_{n}}{\sqrt{n}} 1_{\left[N_{n} \leq n\right]}\right)=\frac{\sqrt{n}}{n!}\left(\frac{n}{e}\right)^{n} .
$$

(b) Argue that $-Z_{n} \rightarrow-Z \stackrel{d}{=} Z \sim N(0,1)$, so by a integrability argument

$$
E\left(\frac{n-N_{n}}{\sqrt{n}} 1_{\left[n-N_{n} \geq 0\right]}\right) \rightarrow E\left(Z 1_{[Z \geq 0]}\right)=\frac{1}{\sqrt{2 \pi}}
$$

(c) Conclude that

$$
\frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!} \rightarrow 1 .
$$

The resulting approximation, $n!\sim \sqrt{2 \pi n}(n / e)^{n}$ is known as Stirling's formula.
3. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. Poisson (λ) random variables.
(a) Find the moment generating function of the X_{i} 's, $\phi(s) \equiv E \exp \left(s X_{1}\right)$.
(b) Find the form of the exponential martingale $M_{n}=\exp \left(s \sum_{j=1}^{n} X_{j}\right) / \phi(s)^{n}$.
(c) Consider another value of the Poisson parameter, $\mu>0$ say, and the likelihood ratio $p(x ; \mu) / p(x ; \lambda)$ where $p(x ; \gamma)=e^{-\gamma} \gamma^{x} / x$! is the probability mass function for the Poisson (γ) distribution. Show that for some choice of s in (b) the exponential martingale becomes exactly the likelihood ratio martingale

$$
Z_{n} \equiv \prod_{i=1}^{n} \frac{p\left(X_{i} ; \mu\right)}{p\left(X_{i} ; \lambda\right)}
$$

4. Suppose that $U \sim \operatorname{Uniform}(0,1)$. For $n \geq 1$ let $Z_{n, k} \equiv 1_{\left.(k-1) / 2^{n}, k / 2^{n}\right]}(U)$ for $k \in\left\{1, \ldots, 2^{n}\right\}$, and write $\underline{Z}_{n} \equiv\left(Z_{n, 1}, \ldots, Z_{n, 2^{n}}\right)$. Now let f be a function defined on $[0,1]$ with $\int_{0}^{1} f^{2}(x) d x<\infty$ and define $Y_{\infty} \equiv f(U)$.
(a) Show that $E\left(Y^{2}\right)<\infty$.
(b) Compute $Y_{n} \equiv E\left(Y \mid \underline{Z_{n}}\right)=E\left(Y \mid Z_{n, 1}, \ldots, Z_{n, 2^{n}}\right)$ explicitly as a function of \underline{Z}_{n}.
(c) Show that $\left\{Y_{n}: n \geq 1\right\}$ is a martingale.
(d) Find a predictable process $A_{n}=\langle Y\rangle_{n}$ such that $Y_{n}^{2}-\langle Y\rangle_{n}$ is a martingale.
(e) Can you show that $E\left(Y-Y_{n}\right)^{2} \rightarrow 0$?
5. Suppose that X_{i} are i.i.d as $2 \operatorname{Bernoulli}(p)-1$ (so $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=\right.$ $-1)=q=1-p)$. Let $S_{n} \equiv \sum_{i=1}^{n} X_{i}$, and let $T_{b} \equiv T \equiv \min \left\{n \geq 1: S_{n}=b\right\}$. (a) If $p=1 / 3$, compute $p_{b}=P\left(\max _{n \geq 1} S_{n} \geq b\right), E\left(T_{b}\right)$, and $E\left(\max _{n \geq 1} S_{n}\right)$. In particular find p_{b} and $E\left(T_{b}\right)$ for $b \in\{1,2,3,4\}$.
(b) Repeat the calculations in (a) when $p=9 / 19$.
6. Now suppose that the X_{i} 's are as in the previous problem with $p=1 / 2$, define $S_{n}=\sum_{i=1}^{n} X_{i}$, and let

$$
T=\min \left\{n \geq 1: S_{n}=1\right\}
$$

Let $\mathcal{F}_{n}=\sigma\left\{S_{0}, S_{1}, \ldots, S_{n}\right\}$. Then T is a stopping time and by our exponential martingale example 4 , with

$$
\phi(\theta)=(1 / 2) e^{\theta}+(1 / 2) e^{-\theta}=\cosh (\theta)
$$

and hence

$$
M_{n}=\exp \left(\theta S_{n}\right) / \phi(\theta)^{2}=\frac{e^{\theta S_{n}}}{\cosh (\theta)^{n}}=(\operatorname{sech} \theta)^{n} e^{\theta S_{n}}
$$

is a martingale with respect to $\mathcal{F}_{n}: E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n}$.
(a) Use the optional sampling theorem applied to the martingale $\left\{M_{n}\right\}$ and the bounded stopping time $T \wedge k$ to find an identity for $E M_{T \wedge k}$.
(b) Use the result of (a) to find an identity for $E M_{T}$ and hence an expression for $\left.E\{(\operatorname{sech} \theta))^{T}\right\}$ when $\theta>0$
(c) Show that $(\operatorname{sech} \theta)^{T} \nearrow 1$ as $\theta \searrow 0$ if $T<\infty$, and that $(\operatorname{sech} \theta)^{T} \nearrow 0$ as $\theta \searrow 0$ if $T=\infty$. Use these to show that $P(T<\infty)=E 1_{[T<\infty]}=1$.
(d) Take $\alpha=\operatorname{sech}(\theta)$ in the identity in (b); then show that on the one hand

$$
\begin{equation*}
E\left(\alpha^{T}\right)=\sum_{n=1}^{\infty} \alpha^{n} P(T=n)=e^{-\theta} \tag{1}
\end{equation*}
$$

while on the other hand $g(\alpha) \equiv E\left(\alpha^{T}\right)$ satisfies

$$
\begin{equation*}
g(\alpha)=\frac{1}{2} \alpha+\frac{1}{2} \alpha g(\alpha)^{2} \tag{2}
\end{equation*}
$$

and hence $g(\alpha)=E\left(\alpha^{T}\right)=\alpha^{-1}\left(1-\sqrt{1-\alpha^{2}}\right)$. (Show this by conditioning on X_{1}.)
(e) Use the result of (d) to show that $P(T=2 m-1)=(-1)^{m+1}\binom{1 / 2}{m}$ for $m \geq 1$ where for $x \in \mathbb{R}$ and $r \in \mathbb{N}$

$$
\binom{x}{r} \equiv \frac{x(x-1) \cdots(x-r+1)}{r!} .
$$

(f) Use the result in (e) to show that $E(T)=\infty$.

