# Statistics 491, Problem Set 5 

Wellner; 10/23/13

Reminder: Midterm exam 1, Monday, October 28
Math/Stat 394 Probability Review notes at http://www.stat.washington.edu/jaw/COURSES/491-2/f13.394.ho.html

Reading: Ross; Chapter 4, pages 191-230
Durrett; Chapter 5, 185-207,
Due: Wednesday, October 30, 2013.

1. Durrett, chapter 1, page 75: problem 1.2.

Five white balls and five black balls are distributed in two urns in such a way that each urn contains five balls. At each step we draw one ball from each urn and exchange them. Let $X_{n}$ be the number of white balls in the left urn at time $n$. Compute the transition matrix for $X_{n}$.
2. Durrett, chapter 1, page 75: problem 1.5.

Consider a gambler's ruin chain (as in Durrett, Example 1.1, pages 1,2, Example 1.11, page 11) with $N=4$. That is, if $1 \leq i \leq 3, P(i, i+1)=0.4$ and $P(i, i-1)=$ 0.6 , but the endpoints are absorbing states $P(0,0)=1$ and $P(4,4)=1$. Compute $P^{3}(1,4)$ and $P^{3}(1,0)$.
3. Durrett, chapter 1, page 75: problem 1.6.

A taxicab driver moves between the airport $A$ and two hotels $B$ and $C$ according to the following rules. If he is at the airport, he will be at one of the two hotels next with equal probability. If at a hotel, then he returns to the airport with probability $3 / 4$ and goes to the other hotel with probability $1 / 4$.
(a) Find the transition matrix for the chain.
(b) Suppose the driver begins at the airport at time 0. Find the probability for each of his three possible locations at time 2 and the probability he is at hotel $B$ and time 3.
4. Durrett, chapter 1, page 84: problem 1.45:

Consider a general chain with state space $S=\{1,2\}$ and write the transition probability matrix as

$$
\mathbf{P}=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)
$$

where $0<a<1$ and $0<b<1$. Use the Markov property to show that

$$
P\left(X_{n+1}=1\right)-\frac{b}{a+b}=(1-a-b)\left\{P\left(X_{n}=1\right)-\frac{b}{a+b}\right\},
$$

and then conclude

$$
P\left(X_{n}=1\right)=\frac{b}{a+b}+(1-a-b)^{n}\left\{P\left(X_{0}=1\right)-\frac{b}{a+b}\right\} .
$$

This shows that if $0<a+b<2$, then $P\left(X_{n}=1\right)$ converges exponentially fast to its limiting value, $a+b$.

