Statistics 491, Problem Set 7

Wellner; 11/6/13

Reading: Ross; Chapter 4, pages 243 - 290 Durrett; Chapter 1, pages 58 - 91.

Due: Wednesday, November 13, 2013.

1. Durrett, chapter 1, problem 1.7, page 75.

- Suppose that the probability that it rains today is 0.3 if neither of the last 2 days was rainy, but 0.6 if at least one of the last 2 days was rainy. Let the weather on day n, W_n , be R for rain, or S for sun. W_n is not a Markov chain, but the weather for the last two days, $X_n = (W_{n-1}, W_n)$ is a Markov chain with 4 states $\{RR, RS, SR, SS\}$. (a) Compute its transition probability matrix. (b) Compute the two-step transition probability matrix. (c) What is the probability it will rain on Wednesday given that it did not rain on Sunday and Monday?
- Durrett, chapter 1, problem 1.8, pages 75-76. Consider the following transition matrices. Identify the transient and recurrent states, and the irreducible closed sets in the Markov chains. Give reasons for your answers.

(a)	1	2	3	4	5	(b)	1	2	3	4	5	6
1	0.4	0.3	0.3	0	0	1	0.1	0	0	0.4	0.5	0
2	0	0.5	0	0.5	0	2	0.1	0.2	0.2	0	0.5	0
3	0.5	0	0.5	0	0	3	0	0.1	0.3	0	0	0.6
4	0	0.5	0	0.5	0	4	0.1	0	0	0.9	0	0
5	0	0.3	0	0.3	0.4	5	0	0	0	0.4	0	0.6
						6	0	0	0	0	0.5	0.5
(c)	1	2	3	4	5	(d)	1	2	3	4	5	6
1	0	0	0	0	1	1	0.8	0	0	0.2	0	0
2	0	0.2	0	0.8	0	2	0	0.5	0	0	0.5	0
3	0.1	0.2	0.3	0.4	0	3	0	0	0.3	0.4	0.3	0
4	0	0.6	0	0.4	0	4	0.1	0	0	0.9	0	0
5	0.3	0	0	0	0.7	5	0	0.2	0	0	0.8	0
						6	0.7	0	0	0.3	0	0

3. Durrett, chapter 1, problem 1.41, page 83. (Reflecting random walk on the line) Consider the points 1, 2, 3, 4 to be marked on a straight line. Let X_n be a Markov

chain that moves to the right with probability 2/3 and to the left with probability 1/3, but subject this time to the rule that if X_n tries to go to the left from 1 or to the right from 4 it stays put. Find: (a) the transition probability matrix for the chain, and (b) the limiting amount of time the chain spends at each site.

- 4. Durrett, chapter 1, problem 1.74, page 91.
 Consider the aging chain on {0,1,2,...} in which for any n ≥ 0 the individual gets 1 day older from n to n+1 with probability p_n (with ∑_{n=0}[∞] p_n = 1), but dies and returns to age 0 with probability p_n. Find conditions that guarantee that:
 (a) 0 is recurrent; (b) positive recurrent. (c) Find the stationary distribution.
- 5. Durrett, chapter 1, problem 1.75, page 91. The opposite of the aging chain is the renewal chain with state space $\{0, 1, 2, ...\}$ in which P(i, i 1) = 1 when i > 0. The only nontrivial part of the transition probability matrix is $P(0, i) = p_i$ (with $\sum_{i=0}^{\infty} p_i = 1$). Show that this chain is always recurrent, but is positive recurrent if and only if $\sum_{n=0}^{\infty} np_n < \infty$.
- 6. Durrett, chapter 1, problem 1.77, page 91. Consider a branching process as defined in Example 1.8 in which each family has a number of children that follows a shifted geometric distribution $p_k = p(1-p)^k$ for $k \ge 0$ (which counts the number of failures before the first success when success has probability p). Compute the probability that starting from one individual the chain will be absorbed at 0.