MATH / STAT 492 (498): Introduction to Stochastic Processes
Winter Quarter 2014: Syllabus (last updated 12/9/2013)
Course personnel:
- Professor: Jon A. Wellner
- B320 Padelford Hall
- Phone: 543-6207
- Office hours: 1:30 - 3:30 MWF; or by appointment
-  
- Teaching Assistant: Shuliu Yuan
- B224 Padelford Hall
- Office hours: 10:30-12:30, Tuesday and Thursday
Administrative Information:
- Time(s): TTh 10:30 - 12:00
- Place: CSSS Conference Room, Padelford C14A
Prerequisites:
- Probability Math/Stat 395 and successful completion of Math/Stat 491
- An interest in stochastic processes
Required Texts:
-
Essentials of Stochastic Processes, 2nd Edition, by Richard Durrett.
-
A First Course in Stochastic Processes, 2nd Edition, by S. Karlin and H. Taylor
Supplemental texts:
-
Breiman, L. (1969). Probability and stochastic processes with a view toward
applications. Houghton Mifflin, Boston.
-
Cinlar, E. (1975). Introduction to stochastic processes. Prentice-Hall,
Englewood Cliffs, N.J.
-
Hoel, P.G., Port, S.C., and Stone, C.J. (1972).
Introduction to stochastic processes.
Houghton Mifflin, Boston.
-
Karlin, S. and Taylor, H. M. (1981).
A second course in stochastic processes
Academic Press, New York.
-
Lawler, G. F. (2006).
Introduction to stochastic processes.
Chapman and Hall, Boca Raton, Florida.
-
Resnick, S. (1992).
Adventures in stochastic processes.
Birkhauser, Boston.
-
Ross, S. M. (1996).
Stochastic processes. Wiley, New York.
Grading:
- Homework: 20%
- Midterm: 20%: Thursday, February 13 (in class).
- Project: 20% (due Friday 14 March).
- Final: 40%
(Scheduled time & date:
Monday, March 17, 10:30-12:20)
Lectures:
- Chapter 1. Renewal theory (Ross chapter 3; Karlin & Taylor chapter 5)
- Chapter 2. Martingales revisited; Karlin and Taylor, chapter 6
- Chapter 3. Brownian motion; introduction, chapter 7
- Chapter 4. Brownian motion; connections with analysis: Kac's formula
- Chapter 5. Stationary processes; Karlin and Taylor chapter 9
Click here to return to Jon Wellner's home page.
Click here
to return to the Statistics Dept. home page.
Click here
to return to the University of Washington home page.