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This dedication to my parents is offered as a permanent gift to my family,
so that my parents’ basic history may not be lost.

To my Father—who loved me

• Theodore James Shorack (August 20, 1904–July 31, 1983) Charleston, WV

• With only a third-grade education, he taught me that mathematics is fun.

• Effie, Minnesota; the Aleutian Islands; Eugene, Oregon. Homesteader, boxer,
carpenter and contractor. He loved the mathematics of his carpenter’s square.

• He loved his children with all his being.

To my Mother—who praised me

• Marcella (Blaha) Shorack (November 4, 1902–April 25, 1987) St. Paul, MN

• “What you don’t have in your head, son, you’ll have to have in your feet.”

• Effie, Minnesota; Battle Creek, Michigan; Flagstaff, Arizona; Eugene, Oregon.
Homesteader and dedicated teacher. She had a heart for her troubled students.

• She cared dearly about who and what her children would become.

Theodore J. Shorack and Marcella (Blaha) Shorack, wed 6/12/1929

We, their descendents, are entrusted with their memory.

1. Theodore James Shorack Jr. (1929–1966; Vietnam pilot, my boyhood hero)
and Elva (Buehler) Shorack (1925)

Candace (1953).
Helen (1989)–Vietnam

Kathleen (1955), and Walter Petty (1953)
Elizabeth (1987), Angela (1990)

Theodore III (or Todd) (1957), and Karie (Lott) Shorack (1960)
Theodore IV (1985), Wesley (1988)

John (1960), and Birgit (Funck) Shorack (1958)
Johanna (1990), Marna (1993), John Mark (1995)

2. Charlene (or Chari) Rose Boehnke (1931)
and George Boehnke (1931)

Michael (1956), and Betsy Foxman (1955)
David (1985), Kevin (1987), Richard (1989)

Richard (1958–1988)
Barbara (1961), and Terrance Aalund (1952)

Katherine (1989), Daniel (1991), Gary (1995)

3. Roger Allen Shorack (1934) daughter Stefani (1968)
and Heather (Cho) Shorack (1949)

4. Galen Richard Shorack (1939; the author)
and Marianne (Crabtree) Shorack (1938); Sandra Ney Wood (1943)

Galen (or GR) (1964), and Lanet (Benson) Shorack (1967)
Nikolai (1999), Luca (2002), Nadia (2005)

Bart (1966), and Kerri (Winkenweder) Shorack (1968)
Landon (1995), Kyle (1998), Titus (2001)

Matthew (1969), and Julie (Mitchell) Shorack (1969)
(Isaac (1999), Thomas (2000), Alexia (2001))–Uganda, Tessa (2005)
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My grandparents’ generation

• Peter Shorack and Anna Miliči (immigrants from Miliči, near Karlovatz)
(They married in 1890, and came to the US in 1898.)
Nicholas died by age 10
Annie to Ivan Harrington (Archie (wed Ellen; 5) + 9)
William to Kate (William Jr. (wed Virginia; 2))
Amelia to Charlie Lord
Theodore James Shorack (my father)
Jenny to Godfrey Knight (5)

• Frank Blaha Jr. (Chicago 3/24/1893, cooper) and Marcella Nekola (immigrant from the
Prague area as a child)
Marcella Barbara Blaha (my mother)
Marie (1904) to Carlos Halstead (Carlos, Gilbert, Christine)
George (1906) (my father’s dear friend) to Carmen Jirik
Julia (1908) to Lyle Dinnell
Nan (1911) (first child born on the Effie, Minnesota homestead)
Rose (1913)
Helen (1916)
Carol (twin) (1918) to Ashley Morse (Leigh (wed Kent; 2), Laurel)
Don (twin) (1918) to Jean Dora

Frank J. Blaha Sr. (1850, lumber mill and railroad) wed Rose Hřda (1852) 1/30/1872. They
had immigrated separately to the US in their twenties; he from the Prague area. (Frank Jr.
(my mother’s father, homesteader), James (married Aunt Anna Nekola, printer), Joseph, Agnes.)
Frank Jr. was an inept farmer, but he enjoyed his books and raised educated daughters.

Thomas Nekola (wagon maker in the Prague area) married Mary Tomǎsek. (Barbara, Anna
(married Uncle James), Marcella (my mother’s mother), Albert, Pete, Frances)

Peter Shorack (an only child) seems to have been “on the move” when he arrived in Miliči, but
his origin is unclear. Was he fleeing a purge in the east (he said) or Austro–Hungarian conscription
(his wife said)? His parentage is unknown. He died from alcohol when my father was nine.

Anna Miliči was the fourth of five children of Maximo and Martha Miliči. Maximo (appropri-
ately 6’9”) came to the US, but fled home when two attackers did not survive. Later, his neighbors
there banded together and killed him with pitchforks. Anna visited Miliči with her children when
my father was five, but had to leave her children there for one year. She had hidden enough to get
herself home, thus thwarting Peter’s efforts to strand his family. A hard woman in most ways, she
used her gun to run off robbers (when linguistic Peter was running a railroad gang) and poachers
(after she was alone on the homestead).

My father worked in logging camps as a young kid; his mother and older brother would not

allow him to go to school. He hopped a freight when he was bigger, but “hammer toes” allowed

him to negate his mistake of an army enlistment. Back home, he trained religiously as a boxer and

a fighter. He thus “survived” his older brother, boxed the county fairs with George, defended his

interests in my mother, won two professional fights (but lost two teeth), fought (with some success)

for his full winter logging earnings (each spring the same companies would go bankrupt, leaving

their debts unpaid). WW II construction work on the Al-Can Highway and in the Aleutian Islands,

gave him the nestegg to get us out of that country. With boxing and the gym for entertainment,

he lived entirely off a whiskey allotment sold late in each month, every full paycheck came home—

and he learned carpentry. On to Oregon! After ten years he was building his own houses on

speculation, in spite of his financial raw fear common to so many of that depression generation.

But that gave his sons jobs to go to college, and he sent his daughter. He took incredible pride in

even the smallest of the accomplishments of any of us. Part of him died with my brother, flying

cover on a pilot pickup. My mother provided the stability in our family, not an easy task. She

provided the planning, tried to challenge us, watched for opportunities to expand our horizons.

A shy woman, she defended the value of her son’s life by following the anti-Vietnam circuit and

challenging all speakers. Her’s was the quiet consistency that I beter appreciated after having a

family of my own.



Preface

Chapters 1–5 and Appendix B provide the mathematical foundation for the rest
of the text. Then Chapters 6–7 hone some tools geared to probability theory.
Appendix A provides a brief introduction to elementary probability theory, that
could be useful for some mathematics students. (The appendices begin on page 425.)

The classical weak law of large numbers (WLLN) and strong law of large numbers
(SLLN) as presented in Sections 8.2–8.4 are particularly complete, and they also
emphasize the important role played by the behavior of the maximal summand.
Presentation of good inequalities is emphasized in the entire text, and this chapter is
a good example. Also, there is an (optional) extension of the WLLN in Appendix C
that focuses on the behavior of the sample variance, even in very general situations.
It will be appealed to in the optional Section 10.5 and Chapter 11.

The classical central limit theorem (CLT) and its Lindeberg and Liapunov and
Berry–Esseen generalizations are presented in Chapter 10 using the characteristic
function (chf) methods introduced in Chapter 9. Conditions for both the weak boot-
strap and the strong bootstrap are also developed in Chapter 10, as is a universal
bootstrap CLT based on light trimming of the sample. This approach emphasizes a
statistical perspective. Gamma and Edgeworth approximations appear at the end
of Chapter 11.

Both distribution functions (dfs F (·)) and quantile functions (qfsK(·) ≡ F−1(·))
are emphasized throughout (quantile functions are important to statisticians). In
Chapter 6 much general information about both dfs and qfs and the Winsorized vari-
ance is developed. The text includes presentations showing how to exploit the in-
verse transformation X ≡ K(ξ) with ξ ∼= Uniform(0, 1). In particular, Appendix C
inequalities relating the qf and the Winsorized variance to some empirical process
results of Chapter 12 were used in the first edition to treat trimmed means and
L-statistics, rank and permutation tests, sampling from finite populations.

I have learned much through my association with David Mason, and I would like
to acknowledge that here. Especially (in the context of this text), Theorem 12.4.3
is a beautiful improvement on Theorem 12.10.3, in that it still has the potential
for necessary and sufficient results. I really admire the work of Mason and his
colleagues. It was while working with David that some of my present interests
developed. In particular, a useful companion to Theorem 12.10.3 is knowledge of
quantile functions. Section 7.6 and Sections C.2–C.X present what I have compiled
and produced on that topic while working on various applications, partially with
David.

Jon Wellner has taught from several versions of this text. In particular, he
typed an earlier version and thus gave me a major critical boost. That head start is
what turned my thoughts to writing a text for publication. Sections 14.2, and the
Hoffman–Jorgensen inequalities came from him. He has also formulated a number of
exercises, suggested various improvements, offered good suggestions and references
regarding predictable processes, and pointed out some difficulties. My thanks to
Jon for all of these contributions. (Obviously, whatever problems may remain lie
with me.)
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My thanks go to John Kimmel for his interest in this text, and for his help and
guidance through the various steps and decisions. Thanks also to Lesley Poliner,
David Kramer, and the rest at Springer-Verlag. It was a very pleasant experience.

This is intended as a textbook, not as a research manuscript. Accordingly, the
main body is lightly referenced. There is a section at the end that contains some
discussion of the literature.

Galen R. Shorack
Seattle, Washington
April 14, 2000
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6. Identically Distributed RVs 261
7. A Converse of the Classical CLT 265
8. Bootstrapping 267
9. Bootstrapping with Slowly ր W̃insorization 269

Chapter 11. Infinitely Divisible and Stable Distributions
1. Infinitely Divisible Distributions 273
2. Stable Distributions 281
3. Characterizing Stable Laws 284
4. The Domain of Attraction of a Stable Law 286
5. Gamma Approximation 288
6. Edgeworth Expansions 295

Chapter 12. Brownian Motion and Empirical Processes
1. Special Spaces 301
2. Existence of Processes on (C, C) and (D,D) 304
3. Brownian Motion and Brownian Bridge 308
4. Stopping Times 312
5. Strong Markov Property 316
6. Embedding a RV in Brownian Motion 319
7. Barrier Crossing Probabilities 322
8. Embedding the Partial Sum Process 326
9. Other Properties of Brownian Motion 331
10. Various Empirical Processes 333
11. Inequalities for the Various Empirical Processes 341
12. Applications 346

Chapter 13. Martingales
1. Basic Technicalities for Martingales 349
2. Simple Optional Sampling Theorem 354
3. The Submartingale Convergence Theorem 355
4. Applications of the S-mg Convergence Theorem 363
5. Decomposition of a Submartingale Sequence 369
6. Optional Sampling 374
7. Applications of Optional Sampling 381
8. Introduction to Counting Process Martingales 383
9. CLTs for Dependent RVs 393



viii CONTENTS

Chapter 14. Convergence in Law on Metric Spaces
1. Convergence in Distribution on Metric Spaces 395
2. Metrics for Convergence in Distribution 404

Chapter 15. Asymptotics Via Empirical Processes
0. Introduction 409
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Use of This Text

The University of Washington is on the quarter system, so my description will
reflect this fact. My thoughts are offered as a potential guide to an instructor.
They certainly do not comprise an essential recipe.

The reader will note that the exercises are interspersed with the text. It is
important to read all of the exercises as they are encountered, as most of them
contain some worthwhile contribution to the story.

Chapters 1–5 provide the measure-theoretic background that is necessary for
the rest of the text. Many of our students have had at least some kind of an
undergraduate exposure to part of this subject. Still, it is important that I present
the key parts of this material rather carefully. I feel it is useful for all of them.

Chapter 1 (measures; 5 lectures)
Emphasized in my presentation are generators, the monotone property of measures,
the Carathéodory extension theorem, completions, the approximation lemma, and
the correspondence theorem. Presenting the correspondence theorem carefully is
important, as this allows one the luxury of merely highlighting some proofs in
Chapter 5. [The minimal monotone class theorem of Section 1.1, claim 8 of the
Carathédory extension theorem proof, and most of what follows the approximation
lemma in Section 1.2 would never be presented in my lectures.] {I always assign Ex-
ercises 1.1.1 (generators), 1.2.1 (completions), and 1.2.3 (the approximation lemma).
Other exercises are assigned, but they vary each time.}

Chapter 2 (measurable functions and convergence; 4 lectures)
I present most of Sections 2.1, 2.2, and 2.3. Highlights are preservation of σ-fields,
measurability of both common functions and limits of simple functions, induced
measures, convergence and divergence sets (especially), and relating →µ to →a.s

(especially, reducing the first to the second by going to subsequences). I then assign
Section 2.4 as outside reading and Section 2.5 for exploring. [I never lecture on
either Section 2.4 or 2.5.] {I always assign Exercises 2.2.1 (specific σ-fields), 2.3.1
(concerning →a.e.), 2.3.3 (a substantial proof), and 2.4.1 (Slutsky’s theorem).}

Chapter 3 (integration; 7 lectures)
This is an important chapter. I present all of Sections 3.1 and 3.2 carefully, but
Section 3.3 is left as reading, and some of the Section 3.4 inequalities (Cr , Hölder,
Liapunov, Markov, and Jensen) are done carefully. I do Section 3.5 carefully as
far as Vitali’s theorem, and then assign the rest as outside reading. {I always
assign Exercises 3.2.1–3.2.2 (only the zero function), 3.3.3 (differentiating under
the integral sign), 3.5.1 (substantial theory), and 3.5.7 (the Scheffé theorem).}

Chapter 4 (Radon–Nikodym; 2 lectures)
I present ideas from Section 4.1, sketch the Jordan–Hahn decomposition proof, and
then give the proofs of the Lebesgue decomposition, the Radon–Nikodym theorem,
and the change of variable theorem. These final two topics are highlighted. The
fundamental theorem of calculus of Section 4.4 is briefly discussed. [I would never
present any of Section 4.3.] {I always assign Exercises 4.2.1 (manipulating Radon–
Nikodym derivatives), 4.2.7 (mathematically substantial), and 4.4.1, 4.4.2, and 4.4.4
(so that the students must do some outside reading in Section 4.4 on their own).}
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Chapter 5 (Fubini; 2 lectures)
The first lecture covers Sections 5.1 and 5.2. Proving Proposition 5.2.1 is a must,
and I discuss/prove Theorems 5.1.2 (product measure) and 5.1.3 (Fubini). The
remaining time is spent on Section 5.3. [I rarely lecture from Section 5.4, but I do
assign it as outside reading.] {I always assign Exercises 5.3.1 (measurability in a
countable number of dimensions) and 5.4.1 (the finite-dimensional field).}

Appendix B (topology and Hilbert space, 0 lectures)
This appendix is presented only for reference. I do not lecture from it.

The mathematical tools have now been developed. In the next three chapters
we learn about some specialized probabilistic tools and then get a brief review of
elementary probability. The presentation on the classic topics of probability theory
then commences in Chapter 8.

Chapter 6 and Appendix B (distribution functions (dfs) and quantile functions
(qfs); 4 lectures) This chapter is quite important to this text. Skorokhod’s theorem
in Section 6.3 must be done carefully, and the rest of Sections 6.1–6.4 should be
covered. Section 6.5 should be left as outside reading. [Lecturing from Sections 6.6
and Sections B.2–B.X is purely optional, and I would not exceed one lecture.] {I
always assign Exercises 6.1.1 (on continuity of dfs), 6.3.3 (F−1(·) is left continuous),
6.3.3 (change of variable), and 6.4.2 (for practice working withX ≡ K(ξ)). Consider
lecturing on Theorem 6.6.1 (the infinite variance case).}

Chapter 7 (conditional expectation; 2 lectures)
Lecture one on Sections 7.1– 7.2 highlights Proposition 7.1.1 (on preserving
independence), Theorem 7.1.2 (on extending independence from π-systems), and
Kolmogorov’s 0-1 law. The other lecture provides some discussion of the defi-
nition of conditional probability in Section 7.4, includes proofs of several parts of
Theorem 7.4.1 (properties of conditional expectation), and discusses Definition 7.5.1
of regular conditional probability. [I never lecture on Sections 7.3, or 7.5.] {I always
assign Exercises 7.1.2 and 7.1.3 (they provide routine practice with the concepts),
Exercise 7.4.1 (discrete conditional probability), Exercise 7.4.3 (repeated stepwise
smoothing in a particular example), and part of Exercise 7.4.4 (proving additional
parts of Theorem 7.4.1).}

Appendix A (elementary probability; 0 lectures)
Sections A.1 and A.2 were written to provide background reading for those graduate
students in mathematics who lack an elementary probability background. Sections
A.3 and A.4 allow graduate students in statistics to read some of the basic multi-
variate results in appropriate matrix notation. [I do not lecture from this material.]
{But I do assign Exercises A.1.8 (the Poisson process exists) and A.2.1(ii) (so that
the convolution formula is refreshed).}

Chapter 8 (laws of large numbers (LLNs) and inequalities; 3 lectures for now)
Since we are on the quarter system at the University of Washington, this leaves me
3 lectures to spend on the law of large numbers in Chapter 8 before the Christmas
break at the end of the autumn quarter. In the first 3 lectures I do Sections 8.1 and
8.2 with Khinchine’s weak law of large numbers (WLLN), Kolmogorov’s inequality
only from Section 8.3, and at this time I present Kolmogorov’s strong law of large
numbers (SLLN) only from Section 8.4. {I always assign Exercises 8.1.1 (Cesàro
summability), 8.2.1 (it generates good ideas related to the proofs), 8.2.3 (as it
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practices the important Op(·) and op(·) notation), 8.4.4 (the substantial result of
Marcinkiewicz and Zygmund), 8.4.7 (random sample size), and at least one of the
alternative SLLN proofs contained in 8.4.8, 8.4.9, and 8.4.10.}

At this point at the beginning of the winter quarter the instructor will have
his/her own opinions about what to cover. I devote the winter quarter to the weak
law of large numbers (WLLN), an introduction to the law of the iterated logarithm
(LIL), and various central limit theorems (CLTs). That is, the second term treats
material from Chapters 8-10, with others optional. I will now outline my choices.

Chapter 8 (LLNs, inequalities, LIL, and series; 6 lectures)
My lectures cover Section 8.3 (symmetrization inequalities and Lévy’s inequality for
the WLLN, and the Ottovani–Skorokhod inequality for series), Feller’s WLLN from
Section 8.4, the Glivenko–Cantelli theorem from Section 8.5, the LIL for normal rvs
in Proposition 8.6.1, the strong Markov property of Theorem 8.7.1, and the two
series Theorem 8.8.2. [I do not lecture from any of Sections 8.9, 9.10, or 8.11 at
this time.] {I always assign Exercise 8.6.1 (Mills’ ratio).}

Chapter 9 (characteristic functions (chfs); 8 lectures) Sections 9.1 and 9.2 contain
classic results that relate to deriving convergence in distribution from convergence of
various classes of integrals. I also cover sections 9.3–9.8. {I always assign Exercises
9.3.1 and 9.3.3(a) (deriving specific chfs) and 9.6.1 (Taylor series expansions of the
chf).}

Chapter 10 (CLTs via chfs; 6 lectures)
The classical CLT, the Poisson limit theorem, and the multivariate CLT make a
nice lecture. The chisquare goodness of fit example and/or the median example (of
Section 10.3) make a lecture of illustrations. Chf proofs of the usual CLTs are given
in Section 10.2 (Section 9.5 on Esseen’s lemma could have been left until now).
Other examples from Section 10.2 or 10.3 could now be chosen, and Example 10.3.4
(weighted sums of iid rvs) is my first choice. [The chisquare goodness of fit example
could motivate a student to read from Sections A.3 and A.4.]

At this stage I still have at least 7 optional lectures at the end of the winter
quarter and about 12 more at the start of the spring quarter. In my final 16 lectures
of the spring quarter I feel it appropriate to consider Brownian motion in Chapter
12 and then martingales in Chapter 13 (in a fashion to be described below). Let me
first describe some possibilities for the optional lectures, assuming that the above
core was covered.

Chapter 10 (bootstrap)
Both Sections 10.8 and 10.9 on the bootstrap require only a discussion of section 10.??.

Chapter 19 (convergence in distribution)
Convergence in distribution on the line is presented in Chapter 10. [This is extended
to metric spaces in Chapter 14, but I do not lecture from it.]

Chapter 10 (domain of normal attraction of the normal df)
The converse of the CLT in Theorem 10.6.1 requires the Giné–Zinn symmetrization
inequality and the Khinchine inequality of Section 8.3 and the Paley–Zygmund
inequality of Section 3.4.

Chapters 7, 10 and 11 (domain of attraction of the Normal df)
Combining Sections 6.6, C.1-C.4, Section 8.3 subsection on maximal inequalities of
another ilk, and Sections 10.5–10.6 makes a nice unit. Lévy’s asymptotic normality
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condition (ANC) of (10.6.3) for a rv X has some prominence. In Section B.2
purely geometric methods plus Cauchy–Schwarz are used to derive a multitude of
equivalent conditions. In the process, quantile functions are carefully studied. In
Section 10.1 the ANC is seen to be equivalent to a result akin to a WLLN for the rv
X2, and so in this context many additional equivalent conditions are again derived.
Thus when one comes to the general CLT in Sections 10.5 and 10.6, one already
knows a great deal about the ANC.

Chapter 11 (infinitely divisible and stable laws)
First, Section 11.1 (infinitely divisible laws) is independent of the rest, including
Section 11.2 (stable laws). The theorem stated in Section 11.4 (domain of attraction
of stable laws) would require methods of Section B.4 to prove, but the interesting
exercises are accessible without this.

Chapter 11 (higher-order approximations)
The local limit theorem in Section 10.4 can be done immediately for continuous dfs,
but it also requires Section 9.8 for discrete dfs. The expansions given in Sections
11.5 (Gamma approximation) and 11.6 (Edgeworth approximation) also require
Exercise 9.6.7.

Assorted topics suitable for individual reading
Possibilities include Section 13.8 (counting process martingales), and Section 13.9
(martingale CLTs). Section 15.1 on trimmed means and Section 15.2 on R-statistics
(including a finite sampling CLT) are both fun; both require some discussion of
Section C.6.

The primary topics for the spring quarter are Chapter 12 (Brownian motion and
elementary empirical processes) and Chapter 13 (martingales).

Chapter 12 (Brownian motion; 6 lectures)
I discuss Section 12.1, sketch the proof of Section 12.2 and carefully apply that
result in Section 12.3, and treat Section 12.4 carefully (as I believe that at some
point a lecture should be devoted to a few of the more subtle difficulties regarding
measurability). I am a bit cavalier regarding Section 12.5 (strong Markov property),
but I apply it carefully in Sections 12.6, 12.7, and 12.8. I assign Section 12.9 as
outside reading. [I do not lecture on Theorem 12.8.2.] {I always assign Exercises
12.1.2 (on (C, C)), 12.3.1 (various transforms of Brownian motion), 12.3.3 (integrals
of normal processes), 12.4.1 (properties of stopping times), 12.7.3(a) (related to
embedding a rv in Brownian motion), and 12.8.2 (the LIL via embedding).}

At this point let me describe three additional optional topics that could now be
pursued, based on the previous lectures from Chapter 12.

Chapter 12 (elementary empirical processes)
Uniform empirical and quantile processes are considered in Section 12.10. Straight-
forward applications to linear rank statistics and two-sample test of fit are included.
One could either lecture from Section 12.12 (directly) or 12.11 (with a preliminary
lecture from Sections 10.10–10.11, or leave these for assigned reading.)

Chapter 11 (martingales; 10 lectures)
I cover most of the first seven sections. {I always assign Exercises 11.1.4 (a counting
process martingale), 11.3.2 (a proof for continuous time mgs), 11.3.7, and 11.3.9 (on
Lr-convergence).}



Definition of Symbols

∼= means “is distributed as”
≡ means “is defined to be”
a = b⊕ c means that |a− b| ≤ c
Un=a Vn means “asymptotically equal” in the sense that Un − Vn →p 0
X ∼= (µ, σ2) means that X has mean µ and variance σ2

X ∼= F (µ, σ2) means that X has df F with mean µ and variance σ2

X̄n is the “sample mean” and Ẍn is the “sample median”
(Ω,A, µ) and (Ω,A, P ) denote a measure space and a probability space
σ[C] denotes the σ-field generated by the class of sets C
F(X) denotes X−1(B̄), for the Borel sets B and B̄ ≡ σ[B, {+∞}, {−∞}]
ξ will always refer to a Uniform(0, 1) rv
ր means “nondecreasing” and ↑ means “strictly increasing”
1A(·) denotes the indicator function of the set A
“df” refers to a distribution function F (·)
“qf” refers to the left continuous quantile function K(·) ≡ F−1(·)
The “tilde” symbol denotes W̃insorization
The “háček” symbol denotes Ťruncation
λ(·) and λn(·) will refer to Lebesgue measure on the line R and on Rn
See page 115 for “dom(a, a′)”
Brownian motion S, Brownian bridge U, and the Poisson process N
The empirical df Fn and the empirical df Gn of Uniform(0, 1) rvs
 is associated with convergence in the LIL (see page 175)
“mg” refers to a martingale
“smg” refers to a submartingale
>
= means “≥” for a submartingale and “=” for a martingale

The symbol “
>
=” is paired with “s-mg” in this context.

Prominence
Important equations are labeled with numbers to give them prominence. Thus,
equations within a proof that are also important outside the context of that proof
are numbered. Though the typical equation in a proof is unworthy of a number, it
may be labeled with a letter to help with the “bookkeeping.” Likewise, digressions
or examples in the main body of the text may contain equations labeled with letters
that decrease the prominence given to them.

Integral signs and summation signs in important equations (or sufficiently com-
plicated equations) are large, while those in less important equations are small. It
is a matter of assigned prominence. The most important theorems, definitions, and
examples have been given titles in boldface type to assign prominence to them.
The titles of somewhat less important results are not in boldface type. Routine
references to theorem 10.4.1 or definition 7.3.1 do not contain capitalized initial
letters. The author very specifically wishes to downgrade the prominence given to
this routine use of these words. Starting new sections on new pages allowed me to
carefully control the field of vision as the most important results were presented.
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Chapter 1

Measures

1 Basic Properties of Measures
Motivation 1.1 (The Lebesgue integral) The Riemann integral of a continuous
function f (we will restrict attention to f(x) ≥ 0 on a ≤ x ≤ b for convenience) is
formed by subdividing the domain of f , forming approximating sums, and passing

to the limit. Thus the mth Riemann sum for
∫ b
a f(x) dx is defined as

RSm ≡
m∑

i=1

f(x∗mi) [xmi − xm,i−1],(1)

where a ≡ xm0 < xm1 < · · · < xmm ≡ b (with xm,i−1 ≤ x∗mi ≤ xmi for all i)

satisfy meshm ≡ max[xmi−xm,i−1]→ 0. Note that xmi−xm,i−1 is the measure (or

length) of the interval [xm,i−1, xmi], while f(x
∗
mi) approximates the values of f(x)

for all xm,i−1 ≤ x ≤ xmi (at least it does if f is continuous on [a, b]). Within the
class C+ of all nonnegative continuous functions, this definition works reasonably

well. But it has one major shortcoming. The conclusion
∫ b
a fn(x) dx→

∫ b
a f(x) dx

is one we often wish to make if fn “converges” to f . However, even when all fn are

in C+ and f(x) ≡ lim fn(x) actually exists, it need not be that f is in C+ (and thus∫ b
a f(x) dx may not even be well-defined) or that

∫ b
a fn(x) dx →

∫ b
a f(x) dx (even

when it is well defined).
A different approach is needed. (Note figure 1.1.)
The Lebesgue integral of a nonnegative function is formed by subdividing the

range. Thus the mth Lebesgue sum for
∫ b
a
f(x) dx is defined as

LSm ≡
m2m∑

k=1

k − 1

2m
×measure

({
x :

k − 1

2m
≤ f(x) < k

2m

})
,(2)

and
∫ b
a f(x) dx is defined to be the limit of the LSm sums as m → ∞. For what

classM of functions f can this approach succeed? The members f of the classM
will need to be such that the measure (or length) of all sets of the form

{
x :

k − 1

2m
≤ f(x) < k

2m

}
(3)

1
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can be specified. This approach leads to the concept of a σ-field A of subsets of [a, b]
that are measurable (that is, we must be able to assign to these sets a number called
their “length”), and this leads to the concept of the classM of measurable functions.
This class M of measurable functions will be seen to be closed under passage to
the limit and all the other operations that we are accustomed to performing on

functions. Moreover, the desirable property
∫ b
a
fn(x) dx→

∫ b
a
f(x) dx for functions

fn “converging” to f will be broadly true. 2

xm0 xm1 xm,i -1 xmi xmm
… …

The domain of f(·) is equally divided.

Riemann sums

The range of f(·) is equally divided.

Lebesgue sums

Figure 1.1  Riemann sums and Lebesgue sums.

1

2m
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Definition 1.1 (Set theory) Consider a nonvoid classA of subsets A of a nonvoid
set Ω. (For us, Ω will be the sample space of an experiment.)
(a) Let Ac denote the complement of A, let A ∪ B denote the union of A and B,
let A ∩ B and AB both denote the intersection, let A \ B ≡ ABc denote the set
difference, let A△B ≡ (AcB ∪ ABc) denote the symmetric difference, and let ∅
denote the empty set. The class of all subsets of Ω will be denoted by 2Ω. Sets A
and B are called disjoint if AB = ∅, and sequences of sets An or classes of sets At
are called disjoint if all pairs are disjoint. Writing A+B or

∑∞
1 An will also denote

a union, but will imply the disjointness of the sets in the union. As usual, A ⊂ B
denotes that A is a subset of B. We call a sequence An increasing (and we will
nearly always denote this fact by writing An ր) when An ⊂ An+1 for all n ≥ 1.
We call the sequence decreasing (denoted by An ց) when An ⊃ An+1 for all n ≥ 1.
We call the sequence monotone if it is either increasing or decreasing. Let ω denote
a generic element of Ω. We will use 1A(·) to denote the indicator function of A,
which equals 1 or 0 at ω according as ω ∈ A or ω 6∈ A.
(b) A will be called a field if it is closed under complements and unions. (That is,
A and B in A requires that Ac and A ∪ B be in A.) [Note that both Ω and ∅ are
necessarily in A, as A was assumed to be nonvoid, with Ω = A ∪Ac and ∅ = Ωc.]
(c) A will be called a σ-field if it is closed under complements and countable unions.
(That is, A,A1, A2, . . . in A requires that Ac and ∪∞1 An be in A.)
(d) A will be called a monotone class provided it contains ∪∞1 An for all increasing
sequences An in A and contains ∩∞1 An for all decreasing sequences An in A.
(e) (Ω,A) will be called a measurable space provided A is a σ-field of subsets of Ω.
(f) A will be called a π-system provided AB is in A for all A and B in A; and A
will be called a π̄-system when Ω in A is also guaranteed.

If A is a field (or a σ-field), then it is closed under intersections (under countable
intersections); since AB = (Ac ∪ Bc)c (since ∩∞1 An = (∪∞1 Acn)c). Likewise, we
could have used “intersection” instead of “union” in our definitions by making use
of A ∪B = (Ac ∩Bc)c and ∪∞1 An = (∩∞1 Acn)c. (This used De Morgan’s laws.)

Proposition 1.1 (Closure under intersections)
(a) Arbitrary intersections of fields, σ-fields, or monotone classes are fields, σ-fields,
or monotone classes, respectively.
[For example, F ≡ ∩{Fα : Fα is a field under consideration} is a field.]
(b) There is a minimal field, σ-field, or monotone class generated by (or, containing)
any specified class C of subsets of Ω. Call C the generators. For example,

σ[C] ≡ ⋂{Fα : Fα is a σ-field of subsets of Ω for which C ⊂ Fα}(4)

is the minimal σ-field generated by C (that is, containing C) .
(c) A collection A of subsets of Ω is a σ-field if and only if it is both a field and a
monotone class.

Proof. (c) (⇐) ∪∞1 An = ∪∞1 (∪n1Ak)) ≡ ∪∞1 Bn ∈ A since the Bn are in A and
are ր. Everything else is even more trivial. 2
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Exercise 1.1 (Generators) Let C1 and C2 denote two collections of subsets of the
set Ω. If C2 ⊂ σ[C1] and C1 ⊂ σ[C2], then σ[C1] = σ[C2]. Prove this fact.

Definition 1.2 (Measures and events) Consider a measurable space (Ω,A) and
a set function µ : A → [0,∞] (that is, µ(A) ≥ 0 for each A ∈ A) having µ(∅) = 0.

(a) Now A is a σ-field and if µ is countably additive (abbreviated c.a.) in that

µ
( ∞∑

n=1

An

)
=

∞∑

n=1

µ(An) for all disjoint sequences An in A,(5)

then µ is called a measure (or, equivalently, a countably additive measure) on (Ω,A).
The triple (Ω,A, µ) is then called a measure space. We call µ finite if µ(Ω) < ∞.

We call µ σ-finite if there exists a measurable decomposition of Ω as Ω =
∑∞

1 Ωn
with Ωn ∈ A and µ(Ωn) <∞ for all n. The sets A in the σ-field A are called events.

[Even if A is not a σ-field, we will still call µ a measure on (Ω,A), when (5) holds
for all sequences An ∈ A for which

∑∞
1 An is in A. We will not, however, use the

term “measure space” to describe such a triple. We will consider below measures on
fields, on certain π̄-systems, and on some other collections of sets. A useful property
of a collection of sets is that along with any sets A1, . . . , Ak it also includes all sets

of the type Bk ≡ AkAck−1 · · ·Ac2Ac1; then
⋃n

1Ak =
∑n

1Bk is easier to work with.]

(b) Of less interest, call µ a finitely additive measure (abbreviated f.a.) on (Ω,A) if
µ(
∑n

1Ak) =
∑n

1µ(Ak)(6)

for all disjoint sequences Ak in A for which
∑n

1Ak is also in A.

Definition 1.3 (Outer measures) Consider a set function µ∗ : 2Ω → [0,∞].
(a) Suppose that µ∗ also satisfies the following three properties.
Null: µ∗(∅) = 0.
Monotone: µ∗(A) ≤ µ∗(B) for all A ⊂ B.

Countable subadditivity: µ∗(
⋃∞

1 An) ≤
∑∞

1 µ∗(An) for all sequences An.
Then µ∗ is called an outer measure.
(b) An arbitrary subset A of Ω is called µ∗-measurable if

µ∗(T ) = µ∗(TA) + µ∗(TAc) for all subsets T ⊂ Ω.(7)

Sets T used in this capacity are called test sets.

(c) We let A∗ denote the class of all µ∗-measurable sets, that is,

A∗ ≡ {A ∈ 2Ω : A is µ∗-measurable}.(8)

[Note that A ∈ A∗ if and only if µ∗(T ) ≥ µ∗(TA) + µ∗(TAc) for all T ⊂ Ω, since

the other inequality is trivial by the subadditivity of µ∗.]

Motivation 1.2 (Measure) In this paragraph we will consider only one possible
measure µ, namely the Lebesgue-measure generalization of length. Let CI denote
the set of all intervals of the types (a, b], (−∞, b], and (a,+∞) on the real line R,
and for each of these intervals I we assign a measure value µ(I) equal to its length,
thus ∞, b− a,∞ in the three special cases. All is well until we manipulate the sets
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in CI , as even the union of two elements in CI need not be in CI . Thus, CI is not
a very rich collection of sets. A natural extension is to let CF denote the collection
of all finite disjoint unions of sets in CI , where the measure µ(A) we assign to each
such set A is just the sum of the measures (lengths) of all its disjoint pieces. Now CF
is a field, and is thus closed under the elementary operations of union, intersection,
and complementation. Much can be done using only CF and letting “measure” be
the “exact length.” But CF is not closed under passage to the limit, and it is thus
insufficient for many of our needs. For this reason the concept of the smallest σ-field
containing CF , labeled B ≡ σ[CF ], is introduced. We call B the Borel sets. But let
us work backwards. Let us assign an outer measure value µ∗(A) to every subset A in
the class 2R of all subsets of the real line R. In particular, to any subset A we assign
the value µ∗(A) that is the infimum of all possible numbers

∑∞
n=1 µ(An), in which

each An is in the field CF (so that we know its measure) and in which the An’s form
a cover of A (in that A ⊂ ∪∞1 An). Thus each number

∑∞
1 µ(An) is a natural upper

bound to the measure (or generalized length) of the set A, and we will specify the
infimum of such upper bounds to be the outer measure of A. Thus to each subset
A of the real line we assign a value µ∗(A) of generalized length. This value seems
“reasonable,” but does it “perform correctly”? Let us say that a particular set A
is µ∗-measurable (that is, it “performs correctly”) if µ∗(T ) = µ∗(TA) + µ∗(TAc)
for all subsets T of the real line R, that is, if the A versus Ac division of the line
divides every subset T of the line into two pieces in a fashion that is µ∗-additive.
This is undoubtedly a combination of reasonableness and fine technicality that took
some time to evolve in the mind of its creator, Carathéodory, while he searched for
a condition that “worked.” In what sense does it “work”? The collection A∗ of all
µ∗-measurable sets turns out to be a σ-field. Thus the collection A∗ is closed under
all operations that we are likely to perform; and it is big enough, in that it is a
σ-field that contains CF . Thus we will work with the restriction µ∗|A∗ of µ∗ to the
sets of A∗ (here, the vertical line means “restricted to”). This is enough to meet
our needs.

There are many measures other than length. For an ր and right-continuous
function F on the real line (called a generalized df) we define the Stieltjes measure
of an arbitrary interval (a, b] (with −∞ ≤ a < b ≤ ∞) in CI by µF ((a, b]) =
F (b)−F (a), and we extend it to sets in CF by adding up the measure of the pieces.
Reapplying the previous paragraph, we can extend µF to the µ∗

F -measurable sets. It
is the important Carathéodory extension theorem that will establish that all Stieltjes
measures (including the case of ordinary length, where F (x) = x, as considered in
the first paragraph) can be extended from CF to the Borel sets B. That is, all
Borel sets are µ∗-measurable for every Stieltjes measure. One further extension is
possible, in that every measure can be “completed” (see the end of section 1.2). We
note here only that when the Stieltjes measure µF associated with the generalized df
F is “completed,” its domain of definition is extended from the Borel sets B (which
all Stieltjes measures have in common) to a larger collection B̂µF that depends on
the particular F . It is left to section 1.2 to simply state that this is as far as we can
go. That is, except in rather trivial special cases (especially, mass at only countably
many points), we find that B̂µF is a proper subset of 2R. (That is, it is typically
impossible to try to define the measure of all subsets of Ω in a suitable fashion.) 2
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Example 1.1 (Some examples of measures, informally)
(a) Lebesgue measure:
Let λ(A) denote the length of A.
(b) Counting measure:
Let #(A) denote the number of “points” in A (or the cardinality of A).
(c) Unit point mass:
Let δω0(A) ≡ 1A(ωo), assigning measure 1 or 0 to A as ω0 ∈ A or not. 2

Example 1.2 (Borel sets)
(a) Let Ω = R and let C consist of all finite disjoint unions of intervals of the types
(a, b], (−∞, b], and (a,+∞). Clearly, C is a field. Then B ≡ σ[C] will be called the
Borel sets (or the Borel subsets of R). Let µ(A) be defined to be the sum of the
lengths of the intervals composing A, for each A ∈ C. Then µ is a (c.a.) measure
on the field C, as will be seen in the proof of theorem 1.3.1 below.

(b) If (Ω, d) is a metric space and U ≡ {all d-open subsets of Ω}, then B ≡ σ[U ]
will be called the Borel sets or the Borel σ-field .

(c) If (Ω, d) is (R, | · |) for absolute value | · |, then σ[C] = σ[U ] even though C 6= U .
[This claim is true, since C ⊂ σ[U ] and U ⊂ σ[C] are clear. Then, just make a trivial
appeal to exercise 1.1.]

(d) Let R̄ ≡ [−∞,=∞] denote the extended real line; let B̄ ≡ σ[B, {−∞}, {+∞}].2

Proposition 1.2 (Monotone properties of measures) Let (Ω,A, µ) denote
a measure space. (Of course, µ(A) ≤ µ(B) for A ⊂ B in A.) Let A1, A2, . . . be in A.
(a) If An ⊂ An+1 for all n, then

µ(
⋃∞

1 An) = lim
n→∞

µ(An).(9)

(b) If µ(An0 ) <∞ for some n0, and An ⊃ An+1 for all n, then

µ(
⋂∞
n=1An) = lim

n→∞
µ(An) .(10)

[Letting Ω denote the real line R, letting An = [n,∞), and letting µ denote either
Lebesgue measure or counting measure, we see the need for some requirement.]

(c) (Countable subadditivity) Whenever A1, A2, . . . and ∪∞1 An are all in A, then
µ(
⋃∞

1 Ak) ≤
∑∞

1 µ(Ak) ;

(d) All this also holds true for a measure on a field (via the same proofs).

Proof. (a) Now,

µ(∪∞1 An) = µ(
∑∞

1 (An \An−1)) with A0 ≡ ∅
=
∑∞

1 µ(An \An−1) by c.a.(p)

= lim
n

∑n
k=1 µ(Ak \Ak−1)

= lim
n
µ(
∑n

k=1 (Ak \Ak−1)) by f.a.

= lim
n
µ(An).(q)
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(b) Without loss of generality, redefine A1 = A2 = · · · = An0 . Let Bn ≡ A1\An,
so that Bn ր. Thus, on the one hand,

lim
n
µ(Bn) = µ(∪∞1 Bn) by (a)

= µ(∪∞1 (A1 ∩ Acn))
= µ(A1 ∩ ∪∞1 Acn)
= µ(A1 ∩ (∩∞1 An)c)
= µ(A1)− µ(∩∞1 An).(r)

On the other hand,

lim
n
µ(Bn) = lim

n
{µ(A1)− µ(An)} by f.a.

= µ(A1)− lim
n
µ(An).(s)

Equate (r) and (s); since µ(A1) < ∞, we can cancel it to obtain the equality
µ(∩∞1 An) = limn µ(An).

(c) Let B1 ≡ A1, B2 ≡ A2A
c
1, . . . , Bk ≡ AkA

c
k−1 · · ·Ac1. Then these newly

defined sets Bk are disjoint, and ∪nk=1Ak =
∑n
k=1 Bk. Hence [a technique worth

remembering]

µ(
⋃n
k=1 Ak) = µ(

∑n
k=1Bk) =

∑n
k=1 µ(Bk)

where
⋃n
k=1Ak =

∑n
k=1 Bk is ր for Bk ≡ AkAck−1 · · ·Ac1

(11)

≤∑n
1µ(Ak)

≤∑∞
1 µ(Ak) by monotonicity.(t)

Let n→∞ in (11), and use part (a) to get the result. 2

Definition 1.4 (liminf and limsup of sets) Let

limAn ≡
⋃∞
n=1

⋂∞
k=nAk = {ω : ω is in all but finitely many An’s}

≡ {ω : ω ∈ An a.b.f.},
(12)

where we use a.b.f. to abbreviate in all but finitely many cases. Let

limAn ≡
⋂∞
n=1

⋃∞
k=nAk = {ω : ω is in an infinite number of An’s}

≡ {ω : ω ∈ An i.o.},
(13)

where we use i.o. to abbreviate infinitely often.

[It is important to learn to read these two mathematical equations in a way that
makes it clear that the verbal description is correct.] Note that we always have
limAn ⊂ limAn. Define

limAn ≡ limAn whenever limAn = limAn.(14)

We also let lim inf An ≡ limAn and lim supAn ≡ limAn, giving us alternative
notations.
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Proposition 1.3 Clearly, limAn equals ∪∞1 An when An is an ր sequence, and
limAn equals ∩∞1 An when An is a ց sequence.

Exercise 1.2 (a) Now µ(lim inf An) ≤ lim inf µ(An) is always true.

(b) Also, lim supµ(An) ≤ µ(lim supAn) holds if µ(Ω) <∞. (Why the condition?)

Definition 1.5 (lim inf and lim sup of numbers) Recall that for real number

sequences an one defines lim an ≡ lim inf an and lim an ≡ lim sup an by

lim infn→∞ an ≡ limn→∞ (infk≥n ak) = supn≥1 (infk≥n ak) and

lim supn→∞ an ≡ limn→∞
(
supk≥n ak

)
= infn≥1

(
supk≥n ak

)
,

(15)

and these yield the smallest limit point and the largest limit point, respectively, of
the sequence an.

Definition 1.6 (Continuity of measures) A set function µ is continuous from below
(above) if µ(limAn) = limµ(An) for all sequences An in Ω that are ր (for all
sequences An in Ω that areց, with at least one µ(An) finite). We call µ continuous
in case it is continuous both from below and from above. If limµ(An) = µ(A)
whenever An ր A, then µ is said to be continuous from below at A, etc.

The next result is often used in conjunction with the Carathéodory extension
theorem of the next section. View it as a converse to the proposition 1.2.

Proposition 1.4 (Continuity of measures) If a finitely additive measure µ on
either a field or σ-field is either continuous from below or has µ(Ω) < ∞ and is
continuous from above at ∅, then it is a countably additive measure.

Proof. Suppose first that µ is continuous from below. Then

µ(
∑∞

1 Ak) = µ( lim
∑n

1Ak)

= lim µ(
∑n

1Ak) by continuity from below(a)

= lim
∑n

1 µ(Ak) by f.a. (where we used only that A is a field)(b)

=
∑∞

1 µ(Ak),(c)

giving the required countable additivity. Thus µ is a measure.
Suppose next that µ is finite and is also continuous from above at ∅. Then f.a.

(even if A is only a field) gives

µ(
∑∞

1 Ak) = µ(
∑n

1Ak) + µ(
∑∞

n+1Ak) =
∑n

1 µ(Ak) + µ(
∑∞

n+1Ak)

→∑∞
1 µ(Ak) + 0,(d)

where µ(
∑∞

n+1Ak)→ µ(∅) = 0 by continuity from above at ∅, since ∑∞
n+1Ak ց ∅

and µ is finite. That is, this f.a. measure is also c.a., and hence it is a measure. 2
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Definition 1.7 (“Little oh,” “big oh,” and “at most” ⊕) We write:

an ≡ o(rn) if an/rn → 0 ,

an ≡ O(rn) if lim |an/rn| ≤ (some M) <∞.
(16)

We write

an = bn ⊕ cn if |an − bn| ≤ cn.(17)

This last notation allows us to string inequalities together linearly, instead of having
to start a new inequality on a new line. (I use it often.)

Exercise 1.3 (π-systems and λ-systems) Consider a measurable space (Ω,A).
A class D of subsets is called a λ-system if it contains the space Ω and all proper
differences (A \ B, when B ⊂ A with both A,B ∈ D) and if it is closed under
monotone increasing limits. [Recall that a class is called a π-system if it is closed
under finite intersections, while π̄-systems are also required to contain Ω.]
(a) The minimal λ-system generated by a class C is denoted by λ[C]. Show that
λ[C] is equal to the intersection of all λ-systems containing C.
(b) A collection A of subsets of Ω is a σ-field if and only if it is both a π-system
and a λ-system.
(c) Let C be a π-system and let D be a λ-system. Then C ⊂ D implies that σ[C] ⊂ D.
Note (or, show) that this follows from (19) below.

Proposition 1.5 (Dynkin’s π-λ theorem) Let µ and µ′ be two finite measures
on the measurable space (Ω,A). Let C be a π̄-system, where C ⊂ A. Then

µ = µ′ on the π̄-system C implies µ = µ′ on σ[C].(18)

Proof. We first show that on any measurable space (Ω,A) we have

σ[C] = λ[C] when C is a π-system of subsets of A.(19)

Let D ≡ λ[C]. By the easy exercise 1.3(a)(b), it suffices to show that D is a π-system
(that is, that A,B ∈ D implies A ∩B ∈ D). We first go just halfway; let

EC ≡ {A ∈ D : AC ∈ D}, for any fixed C ∈ C.(a)

Then C ⊂ EC , and Ω ∈ EC . Also, for A,B ∈ EC with B ⊂ A and for C ∈ C we
have (since both AC and BC are in D) that (A \ B)C = (AC \ BC) ∈ D, so that
A \ B ∈ EC . Finally, if An is ր in EC , then AnC is ր in D; so A ≡ limAn has
AC ∈ D, and A ∈ EC . Thus EC is a λ-system containing C. Thus EC = D, since D
was the smallest such class. We have thus learned of D that

AC ∈ D for all C ∈ C, for each A ∈ D.(b)
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To go the rest of the way, we define

FD ≡ {A ∈ D : AD ∈ D}, for any fixed D ∈ D.(c)

Then C ⊂ FD, by (b), and Ω ∈ FD. Also, for A,B ∈ FD with B ⊂ A and for D ∈ D
we have (since both AD and BD are in D) that (A \ B)D = (AD \ BD) ∈ D, so
that A \ B ∈ FD. Finally, if An is ր in FD, then AnD is ր in D; so A ≡ limAn
has AD ∈ D, and A ∈ FD. Thus FD is a λ-system containing C. Thus FD = D,
since D was the smallest such class. We have thus learned of D that

AD ∈ D for all A ∈ D, for each D ∈ D.(d)

That is, D is closed under intersections; and thus D is a π-system. Thus (19) holds.
We will now demonstrate that G ≡ {A ∈ A : µ(A) = µ′(A)} is a λ-system on Ω.

First, Ω ∈ G, since Ω is in the π̄-system C. Second, when A ⊂ B are both in G we
have the equality (since µ(A) and µ′(A) are finite)

µ(B \A) = µ(B) − µ(A) = µ′(B) − µ′(A) = µ′(B \A),(e)

giving B \A ∈ G. Finally, let An ր A with all An’s in G. Then proposition 1.2(i)
yields the result

µ(A) = lim µ(An) = lim µ′(An) = µ′(A),(f)

so that A ∈ G. Thus G is a λ-system.

Thus the collection G on which µ = µ′ is a λ-system that contains the π̄-system C.
Applying (19) shows that σ[C] ⊂ G. 2

The previous result is very useful in extending the verification of independence
from small classes of sets to larger ones. The next proposition is used for both
Fubini’s theorem and the existence of a regular conditional probability distribution.
It could also have been used below to give an alternate proof of uniqueness in the
Carathéodory extension theorem.

Proposition 1.6 (Minimal monotone class; Halmos) The minimal monotone
class M ≡ m[C] containing the field C and the minimal σ-field σ[C] generated
by the same field C satisfy

m[C] = σ[C] when C is a field.(20)

Proof. Since σ-fields are monotone classes, we have that σ[C] ⊃M. If we now
show thatM is a field, then proposition 1.1(c) will imply that σ[C] ⊂M.

To show thatM is a field, it suffices to show that

A,B inM implies AB,AcB,ABc are inM.(a)

Suppose that (a) has been established. We will now show that (a) implies thatM
is a field.
Complements: Let A ∈ M, and note that Ω ∈ M, since C ⊂ M. Then A,Ω ∈ M
implies that Ac = AcΩ ∈M by (a).
Unions: Let A,B ∈M. Then A ∪B = (Ac ∩Bc)c ∈M.
ThusM is indeed a field, provided that (a) is true. It thus suffices to prove (a).
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For each A ∈ M, let MA ≡ {B ∈ M : AB,AcB,ABc ∈ M}. Note that it
suffices to prove that

MA =M for each fixed A ∈ M.(b)

We first show that

MA is a monotone class.(c)

Let Bn be monotone in MA, with limit set B. Since Bn is monotone in MA, it
is also monotone in M, and thus B ≡ limnBn ∈ M. Since Bn ∈ MA, we have
ABn ∈ M, and since ABn is monotone in M, we have AB = limnABn ∈ M. In
like fashion, AcB and ABc are in M. Therefore, B ∈ MA, by definition of MA.
That is, (c) holds.

We next show that

MA =M for each fixed A ∈ C.(d)

Let A ∈ C and let C ∈ C. Then A ∈ MC , since C is a field. But A ∈ MC if and
only if C ∈ MA, by the symmetry of the definition ofMA. Thus C ⊂ MA. That
is, C ⊂ MA ⊂ M, and MA is a monotone class by (c). But M is the minimal
monotone class containing C, by the definition ofM. Thus (d) holds. But in fact,
we shall now strengthen (d) to

MB =M for each fixed B ∈ M.(e)

The conditions for membership inM imposed on pairs A,B are symmetric. Thus
for A ∈ C, the statement established above in (d) that B ∈M(=MA) is true if and
only if A ∈MB. Thus C ⊂MB, whereMB is a monotone class. ThusMB =M,
since (as was earlier noted)M is the smallest such monotone class. Thus (e) (and
hence (a)) is established. 2
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2 Construction and Extension of Measures
Definition 2.1 (Outer extension) Let Ω be arbitrary. Let µ be a measure on a
field C of subsets Ω. For each A ∈ 2Ω define

µ∗(A) ≡ inf

{ ∞∑

n=1

µ(An) : A ⊂
∞⋃

n=1

An with all An ∈ C
}
.(1)

Now, µ∗ is called the outer extension of µ. The sequences A1, A2, . . . are called
Carathéodory coverings. [There is always at least one covering, since Ω ∈ C.]

Theorem 2.1 (Carathéodory extension theorem) A measure µ on a field C
can be extended to a measure on the σ-field σ[C] generated by C by defining

µ(A) ≡ µ∗(A) for each A in A ≡ σ[C].(2)

If µ is σ-finite on C, then the extension is unique on A = σ[C] and is also σ-finite.

Comment: Let A∗ denote the µ∗-measurable sets, as in (1.1.8). The measure µ on
the field C will, in fact, be extended to A∗. Thus, σ[C] ⊂ A∗ will also be shown.

Proof. The proof proceeds by a series of claims.

Claim 1: µ∗ is an outer measure on (Ω, 2Ω).
Null: Now, µ∗(∅) = 0, since ∅, ∅, . . . is a covering of ∅.
Monotone: Let A ⊂ B. Then every covering of B is also a covering of A. Thus
µ∗(A) ≤ µ∗(B).
Countably subadditive: Let all An ⊂ Ω be arbitrary. Let ǫ > 0. For each An there
is a covering {Ank : k ≥ 1} such that

∑∞
1 µ(Ank) ≤ µ∗(An) + ǫ/2n, since µ∗(An) is an infimum.(3)

[The choice of a convergent series (like ǫ/2n) that adds to ǫ is an important technique
for the reader to learn.] Now ∪nAn ⊂ ∪n(∪kAnk). Thus

µ∗(
⋃
nAn) ≤ µ∗(

⋃
n

⋃
kAnk) since µ∗ is monotone

≤∑n

∑
k µ (Ank)

since the Ank’s form a covering of the set
⋃
n

⋃
kAnk

≤∑n [µ
∗(An) + ǫ/2n] by (3)

=
∑

n µ
∗(An) + ǫ.

But ǫ > 0 was arbitrary, and thus µ∗(
⋃
nAn) ≤

∑
n µ

∗(An).

Claim 2: µ∗|C = µ (that is, µ∗(C) = µ(C) for all C ∈ C), and C ⊂ A∗.
Let C ∈ C. Then µ∗(C) ≤ µ(C), since C, ∅, ∅, . . . is a covering of C. For the other
direction, we let A1, A2, . . . be any covering of C. Since µ is c.a. on C, and since
∪∞1 (An ∩ C) = C ∈ C, we have from proposition 1.1.2(c) that

µ(C) = µ(
⋃∞

1 (An ∩ C)) ≤
∑∞

1 µ(An ∩ C) ≤
∑∞

1 µ(An),

and thus µ(C) ≤ µ∗(C). Thus µ(C) = µ∗(C). We next show that any C ∈ C is also
in A∗. Let C ∈ C. Let ǫ > 0, and let a test set T be given. There exists a covering
{An}∞1 ⊂ C of T such that
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µ∗(T ) + ǫ ≥∑∞
1 µ(An) since µ∗(T ) is an infimum(a)

=
∑∞

1 µ(CAn) +
∑∞

1 µ(CcAn)

since µ is c.a. on C with C and An in C
≥ µ∗(CT ) + µ∗(CcT ) since CAn covers CT and CcAn covers CcT.(b)

But ǫ > 0 is arbitrary. Thus C ∈ A∗. Thus C ⊂ A∗.
Claim 3: The class A∗ of µ∗-measurable subsets of Ω is a field that contains C.

Now, A ∈ A∗ implies that Ac ∈ A∗: The definition of µ∗-measurable is symmetric
in A and Ac. And A,B ∈ A∗ implies that AB ∈ A∗: For any test set T ⊂ Ω we
have the required inequality

µ∗(T ) = µ∗(TA) + µ∗(TAc) since A ∈ A∗

= µ∗(TAB) + µ∗(TABc) + µ∗(TAcB) + µ∗(TAcBc)

since B ∈ A∗ with test set TA and with test set TAc

≥ µ∗(TAB) + µ∗(TABc + TAcB + TAcBc) = µ∗(TAB) + µ∗(T (AB)c)

since µ∗ is countably subadditive. As the reverse inequality is trivial,

µ∗(T ) = µ∗(TAB) + µ∗(T (AB)c), giving AB ∈ A∗.(c)

Thus A∗ is a field.

Claim 4: µ∗ is a f.a. measure on A∗.
Let A,B ∈ A∗ be disjoint. Finite additivity follows from

µ∗(A+B) = µ∗((A+B)A) + µ∗((A+B)Ac)

since A ∈ A∗ with test set A+B

= µ∗(A) + µ∗(B).(d)

Trivially, µ∗(A) ≥ 0 for all sets A. And µ∗(∅) = 0 was shown in the first claim.

Claim 5: A∗ is a σ-field, and it contains σ[C].
It suffices to show that A ≡∑∞

1 An ∈ A∗ whenever all An ∈ A∗, since A∗ is a field.
Now, Bn ≡

∑n
1 Ak ∈ A∗, since A∗ is a field. Using Bn ∈ A∗ for the first step,

µ∗(T ) = µ∗(TBn) + µ∗(TBcn) ≥ µ∗(TBn) + µ∗(TAc)

since µ∗ is monotone and Bcn ⊃ Ac

= µ∗((TBn)A1) + µ∗((TBn)A
c
1) + µ∗(TAc) as A1 ∈ A∗

= µ∗(TA1) + µ∗(T
∑n

2 Ak) + µ∗(TAc)

= µ∗(TA1) + µ∗(T (
∑n

2 Ak)A2) + µ∗(T (
∑n

2 Ak)A
c
2) + µ∗(TAc)

= µ∗(TA1) + µ∗(TA2) + µ∗(T
∑n

3 Ak) + µ∗(TAc)

= · · · =∑n
1 µ

∗(TAk) + µ∗(TAc).(e)

Letting n→∞ gives

µ∗(T ) ≥∑∞
1 µ∗(TAk) + µ∗(TAc)(f)

≥ µ∗(TA) + µ∗(TAc) since µ∗ is countably subadditive.(g)

Thus A ∈ A∗.
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Claim 6: µ∗ is c.a. on A∗.
Replace T by A in (f) to get µ∗(A) ≥∑∞

1 µ∗(An), and then countable subadditivity
gives the reverse inequality.

Claim 7: When µ is a finite measure, its extension µ∗ to A∗ is unique.
Let ν denote any other extension of µ to A∗. Let A in A∗. For any Carathéodory
covering A1, A2, . . . of A (with the An’s in A), countable subadditivity gives

ν(A) ≤ ν(∪∞1 An) ≤
∑∞

1 ν(An) =
∑∞

1 µ(An),

since µ = ν on A. Thus (recall the definition of µ∗ in (1))

ν(A) ≤ µ∗(A) for all A ∈ A∗.(h)

Note that the measures µ∗ and ν on A∗ also satisfy

ν(A) + ν(Ac) = ν(Ω) = µ∗(Ω) = µ∗(A) + µ∗(Ac)(i)

for all A in A∗ (using Ω ∈ A for ν(Ω) = µ∗(Ω)). Since (h) gives both

ν(A) ≤ µ∗(A) and ν(Ac) ≤ µ∗(Ac)(j)

(where all four of these terms are finite), we can infer from (i) that

ν(A) = µ∗(A) for all A ∈ A∗.(k)

This gives the uniqueness of µ∗ on A∗.

Claim 8: Uniqueness of µ∗ on A∗ also holds when µ is a σ-finite measure on A.
Label the sets of the measurable partition as Dn, and let Ωn ≡

∑n
1 Dk so that

Ωn ր Ω. Claim 7 establishes that

ν(AΩn) = µ∗(AΩn) for all A ∈ A∗.(l)

It follows that

ν(A) = limn ν(AΩn) by proposition 1.1.2(m)

= limn µ
∗(AΩn) by (l)

= µ∗(A) by proposition 1.1.2,(n)

completing the proof. In fact, the following corollary was established. 2

Corollary 1 The µ∗-measurable sets A∗ of (1.1.8) were shown to contain σ[C].
Moreover, the measure µ on the field C was in fact extended to A∗ in the proof
above. Also, for µ a σ-finite measure on C, the extension was shown to be unique
on A∗ and also to be σ-finite.

Question We extended our measure µ from the field C to a collection A∗ that is
at least as big as the σ-field σ[C]. Have we actually gone beyond σ[C]? Can we go
further? Corollary 2 will show that we can always “complete” such a measure (which
may or may not extend it), but definite limitations to extension will be implied by
proposition 2.1. The most famous example is the “Lebesgue sets” of proposition 2.3.
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Definition 2.2 (Complete measures) Let (Ω,A, µ) denote a measure space.
If µ(A) = 0, then A is called a null set. We call (Ω,A, µ) complete if whenever we
have A ⊂ (some B) ∈ A with µ(B) = 0, we necessarily also have A ∈ A. [That is,
all subsets of sets of measure 0 are required to be measurable.]

Exercise 2.1 (Completion) Let (Ω,A, µ) denote a measure space. Show that

Âµ ≡ {A : A1 ⊂ A ⊂ A2 with A1, A2 ∈ A and µ(A2 \A1) = 0}(4)

= {A ∪N : A ∈ A, and N ⊂ (some B) ∈ A having µ(B) = 0}(5)

= {A△N : A ∈ A, and N ⊂ (some B) ∈ A having µ(B) = 0},(6)

and that Âµ is a σ-field. Define µ̂ on Âµ by

µ̂(A ∪N) = µ(A)(7)

for all A ∈ A and for all N ⊂ (some B) ∈ A having µ(B) = 0. Show that (Ω, Âµ, µ̂)
is a complete measure space for which µ̂|A = µ. [Note: A proof must include
a demonstration that definition (7) leads to a well-defined µ̂. That is, whenever
A1∪N1 = A2∪N2 we must have µ(A1) = µ(A2), so that µ̂(A1∪N1) = µ̂(A2∪N2).]

Definition 2.3 (Lebesgue sets) The completion of Lebesgue measure on (R,B, λ)
is still called Lebesgue measure. The resulting completed σ-field B̂λ of the Borel
sets B is called the Lebesgue sets.

Corollary 2 When we complete a measure µ on a σ-field A, this completed
measure µ̂ is the unique extension of µ to Âµ . [It is typical to denote the extension
by µ also (rather than µ̂).]

Corollary 3 (Thus when we begin with a σ-finite measure µ on a field C, both
the extension to A ≡ σ[C] and the further extension to Âµ ≡ σ̂[C]µ are unique.)

Here, we note that all sets in Âµ = σ̂[C]µ are in the class A∗ of µ∗-measurable sets.

Proof. Consider corollary 2 first. Let ν denote any extension to Âµ. We will
demonstrate that

ν(A ∪N) = µ(A) for all A ∈ A, and all null sets N(a)

(that is, ν = µ̂). Assume not. Then there exist sets A ∈ A and N ⊂ (some B) in A
with µ(B) = 0 such that ν(A ∪N) > µ(A) [necessarily, ν(A ∪N) ≥ ν(A) = µ(A)].
For this A and N we have

µ(A) = ν(A) < ν(A ∪N) = ν(A ∪ (AcN)) where AcN ⊂ AcB = (null)

= ν(A) + ν(AcN) ≤ ν(A) + ν(B)(b)

since ν is a measure on the completion

= µ(A) + µ(B) since ν is an extension of µ.(c)

Hence µ(B) > 0, which is a contradiction. Thus the extension is unique.
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We now turn to corollary 3. Only the final claim needs demonstrating. Suppose
A is in σ̂[C]µ. Then A = A′ ∪ N for some A′ ∈ A and some N satisfying N ⊂ B
with µ(B) = 0. Since A∗ is a σ-field, it suffices to show that any such N is in A∗.
Since µ∗ is subadditive and monotone, we have

µ∗(T ) ≤ µ∗(TN) + µ∗(TN c) = µ∗(TN c) ≤ µ∗(T ),(d)

because µ∗(TN) = 0 follows from using B, ∅ ∅, . . . to cover TN . Thus equality holds
in this last equation, showing that N is µ∗-measurable. 2

Exercise 2.2 Let µ and ν be finite measures on (Ω,A).
(a) Show by example that Âµ and Âν need not be equal.

(b) Prove or disprove each half: Âµ = Âν iff µ and ν have identical null sets.

(c) Give an example of an LS-measure µ on R (see section 1.3) for which B̂µ = 2R.

Exercise 2.3 (Approximation lemma; Halmos) Let the σ-finite measure µ
on the field C be extended to A = σ[C], and also refer to the extension as µ.
(a) Show that for each A ∈ A (or Âµ) having µ(A) <∞, and for each ǫ > 0,

µ(A△C) < ǫ for some set C ∈ C.(8)

[Hint. Truncate the sum in (1.2.1) to define C.]
(b) Let µ denote counting measure on the integers. Then C ≡ {C : C or Cc is finite}
is a field. Determine σ[C]. Show that (8) fails for the set A of even integers. Show
that this (Ω,A, P ) is σ-finite, and this µ is a Lebesgue–Stieltjes measure (as below).

Definition 2.4 (Regular measures on metric spaces) Let d denote a metric on Ω,
let A denote the Borel sets, and let µ be a measure on (Ω,A). Suppose that for each
set A in Âµ, and for every ǫ > 0, one can find an open set Oǫ and a closed set Cǫ
for which both Cǫ ⊂ A ⊂ Oǫ and µ(Oǫ \ Cǫ) < ǫ . Suppose also that if µ(A) <∞,
one then requires that the set Cǫ be compact. Then µ is called a regular measure.
[Note exercise 1.3.1 below. Contrast its content with (8).]

Exercise 2.4 (Nonmeasurable sets) Let Ω consist of the sixteen values 1, . . . , 16.
(Think of them arranged in four rows of four values.) Let

C1 = {1, 2, 3, 4, 5, 6, 7, 8}, C2 = {9, 10, 11, 12, 13, 14, 15, 16},
C3 = {1, 2, 5, 6, 9, 10, 13, 14}, C4 = {3, 4, 7, 8, 11, 12, 15, 16}.

Let C denote the field generated by {C1, C2, C3, C4}, and let A = σ[C].
(a) Show that A ≡ σ[C] 6= 2Ω. (Note that 2Ω contains 216 = 65, 536 sets.)
(b) Let µ(Ci) =

1
2 , 1 ≤ i ≤ 4, with µ(C1C3) =

1
4 . Show Âµ = A, with 24 = 16 sets.

(c) Let µ(Ci) =
1
2 , i = 2, 3, 4, with µ(C2C4) = 0. Show that Âµ has 210 = 1024 sets.

(d) Illustrate proposition 2.1 below in the context of this exercise.

Proposition 2.1 (Not all sets need be measurable) Let µ be a measure on A ≡ σ[C],
with C a field. If B 6∈ Âµ, then there are infinitely many measures on σ[Âµ ∪ {B}]
that agree with µ on C. [Thus the σ-field Âµ is as far as we can go with the unique
extension process.] (We merely state this observation for reference, without proof.)
[To exhibit a subset of R not in the Borel sets B requires the axiom of choice.]
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Proposition 2.2 (Not all subsets are Lebesgue sets) There is a subset D of R
that is not in the Lebesgue sets B̂λ.

Proof. Define the equivalence relation∼ on elements of [0, 1) by x ∼ y if x−y is a
rational number. Use the axiom of choice to specify a setD that contains exactly one
element from each equivalence class. Now define Dz ≡ {z + x (modulo 1) : x ∈ D}
for each rational z in [0, 1), so that [0, 1) =

∑
zDz represents [0, 1) as a countable

union of disjoint sets. Moreover, all Dz must have the same outer measure; call it a.
Assume D = D0 is measurable. But then 1 = λ([0, 1)) =

∑
z λ(Dz) =

∑
z a gives

only
∑
z a = 0 (when a = 0) and

∑
z a =∞ (when a > 0) as possibilities. This is a

contradiction. Thus D 6∈ B̂λ. 2

Exercise 2.5 Write out the details that D =
∑
zDz (with disjoint sets Dz for the

rationals z) in the above proof.

Proposition 2.3 (Not all Lebesgue sets are Borel sets) There necessarily exists
a set A ∈ B̂λ \ B that is a Lebesgue set but not a Borel set.

Proof. This proof follows exercise 6.3.3 below; it requires the axiom of choice. 2

Exercise 2.6 Every subset A of Ω having µ∗(A) = 0 is a µ∗-measurable set.

Exercise 2.7∗ Show that the Carathéodory theorem can fail if µ is not σ-finite.

Coverings

Earlier in this section we encountered Carathéodory coverings.

Exercise 2.8∗(Vitali covering) (a) We say that a family V of intervals I is a
Vitali covering of a set D if for each x ∈ D and each ǫ > 0 there exists an interval
I ∈ V for which x ∈ I and λ(I) < ǫ.
(b) (Vitali covering theorem) Let D ⊂ R have outer Lebesgue measure λ∗(D) <∞.
Let V be a collection of closed intervals that forms a Vitali covering of D. Then
there exists a finite number of pairwise disjoint intervals (I1, . . . , Im) in V whose
Lebesgue outer measure λ∗ satisfies

λ∗(D \∑m
j=1 Ij) < ǫ.(9)

(Compare this “nice approximation” of a set to the nice approximations given in
exercise 2.3 and in definition 2.4.) [Lebesgue measure λ will be formally shown to
exist in the next section, and λ∗ will be discussed more fully.] [Result (9) will be
useful in establishing the Lebesgue result that increasing functions on R necessarily
have a derivative, except perhaps on a set having Lebesgue measure zero.]

Exercise 2.9∗(Heine–Borel) If {Ut : t ∈ T } is an arbitrary collection of open
sets that covers a compact subset D of R, then there exists a finite number of them
U1, . . . , Um that also covers D.

The familiar Heine–Borel result will be frequently used. It is stated here only
to contrast it with the important new ideas of Carathéodory and Vitali coverings.
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3 Lebesgue–Stieltjes Measures

At the moment we know only a few measures informally. We now construct the
large class of measures that lies at the heart of probability theory.

Definition 3.1 (Lebesgue–Stieltjes measure) A measure µ on the real line
R assigning finite values to finite intervals is called a Lebesgue–Stieltjes measure.
[The measure µ on (R, 2R) whose value µ(A) for any set A equals the number of
rationals in A is not a Lebesgue–Stieltjes measure.]

Definition 3.2 (gdf) A finite ր function F on R that is right-continuous is
called a generalized df (to be abbreviated gdf ). Then F−(·) ≡ limyր· F (y) denotes
the left-continuous version of F . The mass function of F is defined by

∆F (·) ≡ F (·)− F−(·), while F (a, b] ≡ F (b)− F (a) for all a ≤ b

is called the increment function of F . Identify gdfs having the same increment func-
tion. Only one member F of each equivalence class so obtained satisfies F−(0) = 0,
and this F can (and occasionally will) be used as the representative member of the
class (also to be called the representative gdf).

Example 3.1 We earlier defined three measures on (R,B) informally.
(a) For Lebesgue measure λ, a gdf is the identity function F (x) = x.
(b) For counting measure, a gdf is the greatest integer function F (x) = [x].
(c) For unit point mass at x0, a gdf is F (x) = 1[x0,∞)(x). 2

Theorem 3.1 (Correspondence theorem; Loève) The relationship

µ((a, b]) ≡ F (a, b] for all −∞ ≤ a ≤ b ≤ +∞(1)

establishes a 1-to-1 correspondence between the Lebesgue–Stieltjes measures µ on B
and the set of representative members of the equivalence classes of generalized dfs.
[Each such µ extends uniquely to B̂µ.]

Notation 3.1 We formally establish some notation that will be used throughout.
Important classes of sets include:

CI ≡ {all intervals (a, b], (−∞, b], or (a,+∞) : −∞ < a < b < +∞}.(2)

CF ≡ {all finite disjoint unions of intervals in CI} = (a field) .(3)

B ≡ σ[CF ] ≡ (the σ-field of Borel sets).(4)

B̂µ ≡ (the σ-field B completed for the measure µ).(5)

B̄ ≡ σ[B, {−∞}, {+∞}]. 2(6)
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Proof. Given an LS-measure µ, define the increment function F (a, b] via (1).
We clearly have 0 ≤ F (a, b] < ∞ for all finite a, b, and F (a, b] → 0 as b ց a, by
proposition 1.1.2. Now specify F−(0) ≡ 0, F (0) ≡ µ({0}), F (b) ≡ F (0) +F (0, b] for
b > 0, and F (a) = F (0)− F (a, 0] for a < 0. This F (·) is the representative gdf.

Given a representative gdf, we define µ on the collection I of all finite intervals
(a, b] via (1). We will now show that µ is a well-defined and c.a. measure on this
collection I of finite intervals.
Nonnegative: µ ≥ 0 for any (a, b], since F is ր.
Null: µ(∅) = 0, since ∅ = (a, a] and F (a, a] = 0.
Countably additive on I: Let I ≡ (a, b] =

∑∞
1 In ≡

∑∞
1 (an, bn]. We must show

that µ(
∑∞

1 In) =
∑∞

1 µ(In).

First, we will show that
∑∞

1 µ(Ik) ≤ µ(I). Fix n. Then
∑n

1 Ik ⊂ I, so that (relabel

if necessary, so that I1, . . . , In is a left-to-right ordering of these intervals)
∑n

1 µ(Ik) =
∑n

1 F (ak, bk] ≤ F (a, b] = µ(I).(a)

Letting n→∞ in (a) gives the first claim.
Next, we will show that µ(I) ≤∑∞

1 µ(Ik). Suppose b−a > ǫ > 0 (the case b−a = 0

is trivial, as µ(∅) = 0). Fix θ > 0. For each k ≥ 1, use the right continuity of F to
choose an ǫk > 0 so small that

F (bk, bk + ǫk] < θ/2k, and define Jk ≡ (ak, ck) ≡ (ak, bk + ǫk).(b)

These Jk form an open cover of the compact interval [a+ ǫ, b], so that some finite
number of them are known to cover [a+ ǫ, b], by the Heine–Borel theorem. Sorting
through these intervals one at a time, choose (a1, c1) to contain b, choose (a2, c2) to
contain a1, choose (a3, c3) to contain a2, . . . ; finally (for some K), choose (aK , cK)
to contain a+ ǫ. Then (relabeling the subscripts, if necessary)

F (a+ ǫ, b] ≤ F (aK , c1] ≤
∑K

1 F (ak, ck] ≤
∑K

1 F (ak, bk] +
∑K

1 θ/2k

≤∑∞
1 µ(Ik) + θ.(c)

Let θ ց 0 and then ǫց 0 in (c) to obtain the second claim as

µ(I) = F (a, b] ≤∑∞
1 µ(Ik).(d)

We will now show that µ is a well-defined c.a. measure on the given field CF . If
A =

∑
nIn ∈ CF with each In of type (a, b], then we define µ(A) ≡ ∑n µ(In). If

we also have A =
∑

mI
′
m, then we must show (where the subscripts m and n could

take on either a finite or a countably infinite number of values) that
∑

m µ(I
′
m) =

∑
n µ(In) = µ(A).(e)

Now, I ′m = A ∩ I ′m =
∑

nInI
′
m and In = AIn =

∑
mI

′
mIn, so µ is well defined by

∑
m µ(I

′
m) =

∑
m

∑
n µ(InI

′
m) =

∑
n

∑
m µ(InI

′
m) =

∑
n µ(In) = µ(A).(f)

The c.a. of µ on CF is then trivial; if disjoint An =
∑
m Inm for each n, it then

follows that A ≡∑nAn =
∑
n

∑
m Inm with µ(A) =

∑
n

∑
m µ(Imn) =

∑
n µ(An).

Finally, a measure µ on CF determines a unique measure on B, as is guaranteed
by the Carathéodory extension of theorem 1.2.1. 2
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Exercise 3.1 Show that all Lebesgue–Stieltjes measures on (R,B) are regular
measures (recall definition 1.2.4). (Use the open intervals Jn of the previous proof.)

Probability Measures, Probability Spaces, and DFs

Definition 3.3 (Probability distributions P (·) and dfs F (·))
(a) In probability theory we think of Ω as the set of all possible outcomes of some
experiment, and we refer to it as the sample space. The individual points ω in Ω are
referred to as the elementary outcomes. The measurable subsets A in the collection
A are referred to as events. A measure of interest is now denoted by P ; it is called a
probability measure, and must satisfy P (Ω) = 1. We refer to P (A) as the probability
of A, for each event A in ÂP . The triple (Ω,A, P ) (or (Ω, ÂP , P̂ ), if this is different)
is referred to as a probability space.
(b) An ր right-continuous function F on R having F (−∞) ≡ limx→−∞ F (x) = 0
and F (+∞) ≡ limx→+∞ F (x) = 1 is called a distribution function (which we will
abbreviate as df). [For probability measures, setting F (−∞) = 0 is used to specify
the representative df.]

Corollary 1 (The correspondence theorem for dfs) Defining P (·) on all intervals
(a, b] via P ((a, b] ) ≡ F (b) − F (a) for all −∞ ≤ a < b ≤ +∞ establishes a 1-to-1
correspondence between all probability distributions P (·) on (R,B) and all dfs F (·)
on R.

Exercise 3.2 Prove this simple corollary.



Chapter 2

Measurable Functions and
Convergence

1 Mappings and σ-Fields
Notation 1.1 (Inverse images) Suppose X denotes a function mapping some
set Ω into the extended real line R̄ ≡ R ∪ {±∞}; we denote this by X : Ω → R̄.
Let X+ and X− denote the positive part and the negative part of X , respectively:

X+(ω) ≡
{
X(ω) if X(ω) ≥ 0,
0 else,

(1)

X−(ω) ≡
{−X(ω) if X(ω) ≤ 0,
0 else.

(2)

Note that

X = X+ −X− and |X | = X+ +X− = X + 2X− = 2X+ −X .(3)

We also use the following notation:

[X = r ] ≡ X−1(r) ≡ {ω : X(ω) = r } for all real r,(4)

[X ∈ B ] ≡ X−1(B) ≡ {ω : X(ω) ∈ B } for all Borel sets B,(5)

X−1(B) ≡ {X−1(B) : B ∈ B } .(6)

We call these the inverse images of r, B, and B, respectively. We let

B̄ ≡ σ[B, {+∞}, {−∞}] .(7)

Inverse images are also well-defined when X : Ω→ Ω′ for arbitrary sets Ω and Ω′. 2

For A,B ∈ Ω we define A△B ≡ ABc ∪AcB and A \B ≡ ABc. There is use for
the notation

‖X‖ ≡ sup
ω∈Ω
|X(ω)| ,(8)

and we will also reintroduce this sup norm in other contexts below.

21
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Proposition 1.1 Let X : Ω → Ω′ and Y : Ω′ → Ω
′′

. Let T denote an arbitrary
index set. Then for all A,B,At ⊂ Ω′ we have

X−1(Bc) = [X−1(B) ]c, X−1(A \B) = X−1(A) \X−1(B),(9)

X−1(
⋃
t∈TAt ) =

⋃
t∈TX

−1(At), X−1(
⋂
t∈TAt) =

⋂
t∈TX

−1(At).(10)

For all sets A ⊂ Ω
′′

, the composition Y ◦X satisfies

(Y ◦X)−1(A) = X−1(Y −1(A)) = X−1 ◦ Y −1(A) .(11)

Proof. Trivial. 2

Proposition 1.2 (Preservation of σ-fields) Let X : Ω→ Ω′. Then:

A ≡ X−1(a σ-field A′ of subsets of Ω′ ) = (a σ-field of subsets of Ω ) .(12)

X−1(σ[C′ ] ) = σ[X−1(C′ )] for any collection C′ of subsets of Ω′.(13)

A′ ≡ {A′ : X−1(A′ ) ∈ (a specific σ-field A of subsets of Ω)}
= (a σ-field of subsets of Ω′ ) .

(14)

Proof. Now, (12) is trivial from proposition 1.1. Consider (14). Now:

A′ ∈ A′ implies X−1(A′ ) ∈ A

implies X−1(A
′c ) = [X−1(A′ )]c ∈ A implies A

′c ∈ A′ ,
(a)

A′
n’s ∈ A′ implies X−1(A′

n)’s ∈ A

implies X−1(
⋃
nA

′
n) =

⋃
nX

−1(A′
n) ∈ A implies

⋃
nA

′
n ∈ A′.

(b)

This gives (14). Consider (13). Using (12) gives

X−1(σ[C′ ] ) = (a σ-field containing X−1(C′ )) ⊃ σ[X−1(C′ )] .(c)

Then (14) shows that

A′ ≡ {A′ : X−1(A′ ) ∈ σ[X−1(C′ )] } = (a σ-field containing C′ ) ⊃ σ[C′ ] ,(d)

so that (using (d) for the second inclusion below)

X−1(σ[C′ ] ) ⊂ X−1(A′ ) ⊂ σ[X−1(C′ )] .(e)

Combining (c) and (e) gives (13). [We apply (13) below to obtain (2.2.6).] 2

Roughly, using (12) we will restrict X so that F(X) ≡ X−1(B̄ ) ⊂ A for our
original (Ω,A, P ), so that we can then “induce” a measure on (R̄, B̄ ). Or, (14) tells
us that the collection A′ is such that we can always induce a measure on (Ω′,A′ ).
We do this in the next section. First, we generalize our definition of Borel sets to n
dimensions.
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Example 1.1 (Euclidean space) Let

Rn ≡ R× · · · ×R ≡ {(r1, . . . , rn) : each ri is in R} .

Let Un denote all open subsets of Rn, in the usual Euclidean metric. Then

Bn ≡ σ[Un] is called the class of Borel sets of Rn.(15)

Following the usual notation, B1×· · ·×Bn ≡ {(b1, . . . , bn) : b1 ∈ B1, . . . , bn ∈ Bn}.
Now let

∏n
i=1B ≡ B × · · · × B ≡ σ[{B1 × · · · ×Bn : all Bi are in B}].(16)

Now consider

σ[ {(−∞, r1]× · · · × (−∞, rn] : all ri are in R} ].(17)

Note that these three σ-fields are equal. Just observe that each of these three
classes generates the generators of the other two classes, and apply exercise 1.1.1.
[Surely, we can define a generalization of area λ2 on (R2,B2) by beginning with
λ2(B1 × B2) = λ(B1) × λ(B2) for all B1 and B2 in B, and then extending to all
sets in B2. We will do this in theorem 5.1.1, and we will call it Lebesgue measure
on two-dimensional Euclidean space.] 2
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2 Measurable Functions
We seek a large usable class of functions that is closed under passage to the
limit. This is the fundamental property of the class of measurable functions.
Propositions 2.2 and 2.3 below will show that the class of measurable functions
is also closed under all of the standard mathematical operations. Thus, this class
is sufficient for our needs.

Definition 2.1 (Simple functions, etc.) Let the measure space (Ω,A, µ) be given
and fixed throughout our discussion. Consider the following classes of functions.
The indicator function 1A(·) of the set A ⊂ Ω is defined by

1A(ω) ≡
{
1 if ω ∈ A,
0 else.

(1)

A simple function is of the form

X(ω) ≡
n∑

i=1

xi 1Ai(ω) for

n∑

1

Ai = Ω with all Ai ∈ A, and xi ∈ R.(2)

An elementary function is of the form

X(ω) ≡
∞∑

i=1

xi 1Ai(ω) for

∞∑

i=1

Ai = Ω with all Ai ∈ A, and xi ∈ R̄.(3)

Definition 2.2 (Measurability) Suppose that X : Ω → Ω′, where (Ω,A) and
(Ω′,A′ ) are both measurable spaces. We then say that X is A′-A-measurable if
X−1(A′ ) ⊂ A. We also denote this by writing either

X : (Ω,A)→ (Ω′,A′ ) or X : (Ω,A, µ)→ (Ω′,A′ )(4)

(or even X : (Ω,A, µ) → (Ω′,A′, µ′ ) for the measure µ′ “induced” on (Ω′,A′ ) by
the mapping X , as will soon be defined). In the special case X : (Ω,A) → (R̄, B̄ ),
we simply call X measurable; and in this special case we let F(X) ≡ X−1(B̄ ) denote
the sub σ-field of A generated by X .

Proposition 2.1 (Measurability criteria) Let X : Ω → R̄. Suppose σ[C ] = B̄.
Then measurability can be characterized by either of the following:

X is measurable if and only if X−1(C) ⊂ A.(5)

X is measurable if and only if X−1( [−∞, x] ) ∈ A for all x ∈ R̄ .(6)

Note that we could replace [−∞, x] by any one of [−∞, x), [x,+∞], or (x,+∞].

Proof. Consider (5). Let X−1(C) ⊂ A. Then

X−1(B̄ ) = X−1(σ[C ] ) = σ[X−1(C)] by proposition 2.1.2(a)

⊂ A since X−1(C) ⊂ A, and A is a σ-field.(b)
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The other direction is trivial. Thus (5) holds. To demonstrate (6), we need to show
that B̄ satisfies

σ[ {[−∞, x] : x ∈ R } ] = B̄.(c)

Since B = σ[CI ] for CI as in (1.3.2) and since

(a, b] = [−∞, b] ∩ [−∞, a]c, [−∞, b) = ∪∞1 [−∞, b− 1/n],(d)

{−∞} = ∩n[−∞,−n], {+∞} = ∩n[−∞, n]c, etc.,(e)

the equality (c) is obvious. The rest is trivial. 2

Proposition 2.2 (Measurability of common functions) LetX,Y , andXn’s
be measurable functions. Consider cX with c > 0, −X , inf Xn, supXn, lim inf Xn,
lim supXn, limXn if it exists, X2, X ± Y if it is well-defined, XY where 0 ·∞ ≡ 0,
X/Y if it is well-defined, X+, X−, |X |, g(X) for continuous g, and the composite
function g(X) for all measurable functions g. All of these are measurable functions.

Proposition 2.3 (Measurability via simple functions)

Simple and elementary functions are measurable.(7)

X : Ω→ R̄ is measurable if and only if

X is the limit of a sequence of simple functions.
(8)

Moreover:

If X ≥ 0 is measurable, then X is

the limit of a sequence of simple functions that are ≥ 0 and ր .
(9)

[The Xn’s and Zn’s that are defined in the proof below are important.]

Proof. The functions in proposition 2.2 are measurable, since:

[cX < x] = [X < x/c], [−X < x] = [X > −x].(a)

[inf Xn < x] = ∪[Xn < x], supXn = − inf(−Xn).(b)

lim inf Xn = sup
n
( inf
k≥n

Xk), lim supXn = − lim inf(−Xn).(c)

limXn = lim inf Xn, provided that limXn(ω) exists for all ω.(d)

[X2 < x] = [−√x < X <
√
x ] = [X <

√
x ] ∩ [X ≤ −√x ]c.(e)

Each of the sets where X or Y equals 0, ∞, or −∞ is measurable; use this below.

[X > Y ] = ∪r{X > r > Y : r is rational}, so [X > Y ] is a measurable set.(f)

So, [X + Y > z] = [X > z − Y ] ∈ A since z − Y is trivially measurable.

(Here [X =∞] ∩ [Y = −∞] = ∅ is implied, as X + Y is well defined. Etc., below.)

X − Y = X + (−Y ) and XY = [(X + Y )2 − (X − Y )2 ]/4.(g)
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X/Y = X × (1/Y ),(h)

since [1/Y < x] = [Y > 1/x] for x > 0 in case Y > 0, and for general Y one can

write 1
Y = 1

Y 1[Y >0] − 1
−Y 1[Y <0] with the two indicator functions measurable.

X+ = X ∨ 0 and X− = (−X) ∨ 0 .(i)

For g measurable, (g ◦X)−1(B̄ ) = X−1(g−1(B̄ )) ⊂ X−1(B̄ ) ⊂ A. Then continuous
g are measurable, since

g−1(B) = g−1(σ[ open sets ] ) = σ[g−1( open sets )] ⊂ σ[ open sets ] ⊂ B̄ ,(j)

and both g−1({+∞}) = ∅ ∈ B̄ and g−1({−∞}) = ∅ ∈ B̄, where we now apply the
result for measurable g.

We now prove proposition 2.3. Claim (7) is trivial. Consider (8). Define simple
functions Xn by

Xn ≡
n2n∑

k=1

k − 1

2n
×
{
1[ k−1

2n ≤X < k
2n ] − 1[ k−1

2n ≤−X< k
2n ]

}
(10)

+ n× {1[X≥n ] − 1[−X≥n ]} .

Since |Xn(ω)−X(ω)| ≤ 2−n for |X(ω)| < n, we have

Xn(ω)→ X(ω) as n→∞ for each ω ∈ Ω.(k)

Also, the nested subdivisions k/2n cause Xn to satisfy

Xn ր when X ≥ 0.(l)

We extend proposition 2.3 slightly by further observing that

‖Xn −X‖ → 0 as n→∞, if X is bounded.(11)

Also, the elementary functions

Zn ≡
∞∑

k=1

k − 1

2n
×
{
1[ k−1

2n ≤X< k
2n ] − 1[ k−1

2n ≤−X< k
2n ]

}
(12)

+ ∞× {1[X=∞ ] − 1[X=−∞ ]}

are always such that

‖ (Zn −X)× 1[−∞<X<∞ ] ‖ ≤ 1/2n → 0 as n→∞. 2(13)

Proposition 2.4 (The discontinuity set is measurable; Billingsley) If (M,d) and
(M ′, d′) are metric spaces and ψ : M → M ′ is any function (not necessarily a
measurable function), then the discontinuity set of ψ defined by

Dψ ≡ { x ∈M : ψ is not continuous at x }(14)

is necessarily in the Borel σ-field Bd (that is, the σ-field generated by the d-open
subsets of M).
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Proof. Let

Aǫ,δ ≡ {x ∈M : d(x, y) < δ, d(x, z) < δ and

d′(ψ(y), ψ(z)) ≥ ǫ for distinct y, z ∈M}.(a)

Note that Aǫ,δ is an open set, since {u ∈ M : d(x, u) < δ0} ⊂ Aǫ,δ will necessarily
occur if δ0 ≡ {δ − [d(x, y) ∨ d(x, z)] }/2; that is, the y and z that work for x also
work for all u in M that are sufficiently close to x. (Note: The y that worked for x
may have been x itself.) Then

Dψ =
⋃∞
i=1

⋂∞
j=1Aǫi,δj ∈ Bd,(b)

where ǫ1, ǫ2, . . . and δ1, δ2, . . . both denote the positive rationals, since each Aǫ,δ is
an open set. 2

Induced Measures

Example 2.1 (Induced measures) We now turn to the “induced measure”
previewed above. Suppose X : (Ω,A, µ)→ (Ω′,A′ ), so that X is A′-A-measurable.
We define µX ≡ µ′ by

µX(A′ ) ≡ µ′(A′ ) ≡ µ(X−1(A′ )) for each A′ ∈ A′.(15)

Then µX ≡ µ′ is a measure on (Ω′,A′), called the induced measure. This is true,
since we verify that

µ′(∅) = µ(X−1(∅)) = µ(∅) = 0, and(a)

µ′(
∑∞

1 A′
n) = µ(X−1(

∑∞
1 A′

n)) = µ(
∑∞

1 X−1(A′
n))

=
∑∞

1 µ(X−1(A′
n)) =

∑∞
1 µ′(A′

n).(b)

Note also that

µ′(Ω′ ) = µ(X−1(Ω′ )) = µ(Ω).(c)

Thus if µ is a probability measure, then so is µX ≡ µ′. Note also that we
could regard X as an A′-F(X)-measurable transformation from the measure space
(Ω,F(X), µ) to (Ω′,A′, µX).

Suppose further that F is a generalized df on the real line R, and that µF (·)
is the associated measure on (R,B) satisfying µF ((a, b] ) = F (b) − F (a) for all a
and b (as was guaranteed by the correspondence theorem (theorem 1.3.1)). Thus
(R,B, µF ) is a measure space. Define

X(ω) = ω for all ω ∈ R.(16)

Then X is a measurable transformation from (R,B, µF ) to (R,B) whose induced
measure µX is equal to µF . Thus for any given df F we can always construct a
measurable function X whose df is F . 2
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Exercise 2.1 Suppose (Ω,A) = (R2,B2), where B2 denotes the σ-field generated
by all open subsets of the plane. Recall that this σ-field contains all sets B × R
and R × B for all B ∈ B; here B1 × B2 ≡ {(r1, r2) : r1 ∈ B1, r2 ∈ B2}. Now

define measurable transformations X1((r1, r2)) = r1 and X2(r1, r2)) = r2. Then

define Z1 ≡ (X2
1 +X2

2 )
1/2 and Z2 ≡ sign(X1 −X2), where sign(r) equals 1, 0,−1

according as r is > 0,= 0, < 0. The exercise is to give geometric descriptions of the
σ-fields F(Z1), F(Z2), and F(Z1, Z2). (Suppose X1 and X2 are iid Logistic(0,1).)

Proposition 2.5 (The form of an F(X)-measurable function) Suppose that
X is a measurable functions on (Ω,A) and that Y is F(X)-measurable. Then there
must exist a measurable function g on (R̄, B̄) such that Y = g(X).

Proof. [The approach of this proof is to consider indicator functions, simple
functions, nonnegative functions, general functions. This approach will be used
again and again. Learn it! ] Suppose that Y = 1D for some set D ∈ F(X), so that
Y is an indicator function that is F(X)-measurable. Then we can rewrite Y as
Y = 1D = 1X−1(B) = 1B(X) ≡ g(X), for some B ∈ B̄, where g(r) ≡ 1B(r). Thus
the proposition holds for indicator functions. It holds for simple functions, since
when all Bi ∈ B̄,

Y =
∑m

1 ci 1Di =
∑m

1 ci 1X−1(Bi) =
∑m

1 ci 1Bi(X) ≡ g(X).

Let Y ≥ 0 be F(X)-measurable. Then there do exist ր simple F(X)-measurable
functions Yn such that Y ≡ limn Yn = limn gn(X) for the ր simple B̄-measurable
functions gn. Now let g = lim gn, which is B̄-measurable, and note that Y = g(X).
For general Y = Y + − Y −, use g = g+ − g−. 2

Exercise 2.2 (Measurability criterion) Let C denote a π̄-system of subsets of Ω.
Let V denote a vector space of functions (that is, X + Y ∈ V and αX ∈ V for all
X,Y ∈ V and all α ∈ R).
(a) Suppose that:

1C ∈ V for all C ∈ C.(17)

If An ր A with 1An ∈ V , then 1A ∈ V .(18)

Show that 1A ∈ V for every A ∈ σ[C].
(b) It then follows trivially that every simple function

Xn ≡
∑m

1 αi 1Ai is in V ;(19)

here m ≥ 1, all αi ∈ R, and
∑m

1 Ai = Ω with all Ai ∈ σ[C ].
(c) Now suppose further that Xn ր X for Xn’s as in (19) implies that X ∈ V .
Show that V contains all σ[C]-measurable functions.
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3 Convergence

Convergence Almost Everywhere

Definition 3.1 (→a.e.) LetX1, X2, . . . denote measurable functions on (Ω,A, µ)
to (R̄, B̄ ). Say that the sequence Xn converges almost everywhere to X (denoted
by Xn →a.e. X as n → ∞) if for some N ∈ A for which µ(N) = 0 we have
Xn(ω)→ X(ω) as n → ∞ for all ω 6∈ N . If for all ω 6∈ N the sequence Xn(ω) is a
Cauchy sequence, then we say that the sequence Xn mutually converges a.e. and
denote this by writing Xn −Xm →a.e. 0 as m ∧ n→∞.

Exercise 3.1 Let X1, X2, . . . be measurable functions from (Ω,A, µ) to (R̄, B̄ ).
(a) If Xn →a.e. X , then X = X̃ a.e. for some measurable X̃.
(b) If Xn →a.e. X and µ is complete, then X itself is measurable.

Proposition 3.1 A sequence of measurable functions Xn that are a.e. finite
converges a.e. to a measurable function X that is a.e. finite if and only if these
functions Xn converges mutually a.e. [Thus we can redefine such functions on null
sets and make them everywhere finite and everywhere convergent.]

Proof. The union of the countable number of null sets on which finiteness or
convergence fails is again a null set N . On N c, the claim is just a property of the
real numbers. 2

Proposition 3.2 (The convergence and divergence sets are measurable)
Consider the finite measurable functions X,X1, X2, . . . (perhaps they have been re-
defined on null sets to achieve this); thus, they are B-A-measurable. Then the
convergence and mutual convergence sets are measurable. In fact, the convergence
set is given by

[Xn → X ] ≡
∞⋂

k=1

∞⋃

n=1

∞⋂

m=n

[
|Xm −X | <

1

k

]
∈ A,(1)

and the mutual convergence set is given by

[Xn −Xm → 0] ≡
∞⋂

k=1

∞⋃

n=1

∞⋂

m=n

[
|Xm −Xn| <

1

k

]
∈ A.(2)

Proof. Just read the right-hand side of (1) as, for all ǫ ≡ 1/k > 0 there exists
an n such that for all m ≥ n we have |Xm(ω)−X(ω)| < 1/k. (Practice saying this
until it makes sense.) 2

Taking complements in (1) allows the divergence set to be expressed via

[Xn → X ]c =

∞⋃

k=1

∞⋂

n=1

∞⋃

m=n

[
|Xm −X | ≥

1

k

]
≡

∞⋃

k=1

Ak with Ak ր in k,(3)

where

Ak =
⋂∞
n=1Dkn, and the Dkn ≡

⋃∞
m=n[ |Xm −X | ≥ 1/k ] are ց in n.(4)
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Proposition 3.3 Consider finite measurable Xn’s and a finite measurable X .
(i) We have

Xn →a.e. (such an X) if and only if

µ(
⋂∞
n=1

⋃∞
m=n [ |Xm −Xn| ≥ ǫ ] ) = 0 , for all ǫ > 0.(5)

[A finite limit X exists if and only if the Cauchy criterion holds; and we want to be
able to check for the existence of a finite limit X without knowing its value.]

(ii) (Most useful criterion for →a.e.) When µ(Ω) <∞, we have

Xn →a.e. (such an X) if and only if

µ(
⋃∞
m=n [ |Xm −Xn| ≥ ǫ ] )→ 0, for all ǫ > 0, if and only if(6)

µ( [ max
n≤m≤N

|Xm −Xn| ≥ ǫ ] ) ≤ ǫ for all N ≥ n ≥ (some nǫ), for all ǫ > 0.(7)

Proof. This is immediate from (3), (4), and proposition 1.1.2. 2

Remark 3.1 (Additional measurability for convergence and divergence) Suppose
we still assume that X1, X2, . . . are finite measurable functions. Then the following
sets are seen to be measurable:

[ω : Xn(ω)→ X(ω) ∈ R̄ ]c = [ lim inf Xn < lim supXn]

=
⋃

rational r [ lim inf Xn < r < lim supXn ] ∈ A,(8)

[ lim supXn = +∞ ] =
⋂∞
m=1 [ lim supXn > m ] ∈ A.(9)

These comments reflect the following fact: If Xn(ω) does not converge to a finite
number, then there are several different possibilities; but these interesting events
are all measurable. 2

Convergence in Measure

Definition 3.2 (→µ) A given sequence of measurable and a.e. finite functions
X1, X2, . . . is said to converge in measure to the measurable function X taking
values in R̄ (to be denoted by Xn →µ X as n→∞) if

µ( [ |Xn −X | ≥ ǫ] )→ 0 as n→∞, for all ǫ > 0.(10)

[Such convergence implies that X must be finite a.s., as

[ |X | =∞] ⊂ {⋃∞
k=1[ |Xk| =∞]} ∪ [ |Xn −X | ≥ ǫ]

shows.] We say that these Xn converge mutually in measure, which we denote by
writing Xm −Xn →µ 0 as m ∧ n→∞, if µ( [ |Xm −Xn| ≥ ǫ] )→ 0 as m∧ n→∞,
for each ǫ > 0.
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Proposition 3.4 (a) If Xn →µ X and Xn →µ X̃, then X = X̃ a.e.

(b) On a complete measure space, X = X̃ on N c, for a null set N .

Proof. For all ǫ > 0

µ( [ |X − X̃| ≥ 2ǫ ] ) ≤ µ( [ |Xn −X | ≥ ǫ ] ) + µ( [ |Xn − X̃ | ≥ ǫ ] )→ 0,(a)

giving µ( [ |X − X̃| ≥ ǫ] ) = 0 for all ǫ > 0. Thus

µ( [X 6= X̃ ] ) = µ(
⋃
k[ |X−X̃| ≥ 1/k ] ) ≤∑∞

1 µ( |X−X̃| ≥ 1/k ) =
∑∞

1 0 ,(b)

as claimed. 2

Exercise 3.2 (a) Show that in general →µ does not imply →a.e..
(b) Give an example with µ(Ω) =∞ where →a.e. does not imply →µ.

Theorem 3.1 (Relating →µ to →a.e.) Let X and X1, X2, . . . be measurable
and finite a.e. functions. The following are true.

Xn →a.e. (such an X) if and only if Xn −Xm →a.e. 0.(11)

Xn →µ (such an X) if and only if Xn −Xm →µ 0.(12)

Let µ(Ω) <∞. Then Xn →a.e. (such an X) implies Xn →µ X.(13)

(Riesz) If Xn →µ X, then for some nk we have Xnk
→a.e. X. (See (16)).(14)

(Reducing →µ to →a.e. by going to subsequences) Suppose µ(Ω) <∞. Then

Xn →µ X if and only if

each subsequence n′ has a further n′′ on which Xn′′ →a.e. (such an X).
(15)

Proof. Now, (11) is proposition 3.1, and (12) is exercise 3.3 below. Result (13)
comes from the elementary observation that

µ( [ |Xn −X | ≥ ǫ ] ) ≤ µ(
⋃∞
m=n [ |Xm −X | ≥ ǫ ] )→ 0, by (6).(a)

To prove (14), choose nk ↑ such that

µ(Ak) ≡ µ( [ |Xnk
−X | > 1/2k+1 ] ) < 1/2k+1,(b)

with µ( [ |Xn −X | > 1/2k+1 ] ) < 1/2k+1 for all n ≥ nk. Now let

Bm ≡
⋃∞
k=m Ak, so that µ(Bm) ≤∑∞

k=m 2−(k+1) ≤ 1/2m.(c)

On Bcm =
⋂∞
mA

c
k we have |Xnk

−X | ≤ 1/2k+1 for all k ≥ m, so that

|Xnk
(ω)−X(ω)| ≤ 1/2k+1 → 0 as k →∞, for each ω ∈ Bcm,(d)

with µ(Bm) ≤ 1/2m. Since convergence occurs on each Bcm, we have

Xnk
(ω)→ X(ω) as k →∞ for each ω ∈ C ≡ ⋃∞

m=1B
c
m ,(e)
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where Bm = ∪∞k=m Ak is ց with (∩∞m=1Bm) ⊂ (every Bm). So

µ(Cc) = µ(
⋂∞
m=1Bm) ≤ lim sup µ(Bm) ≤ lim 1/2m = 0,(f)

completing the proof of (14). {Recall from (d) that Xnk
→a.e. X with

µ({ |Xnk
−X | ≤ 1/2k+1 for all k ≥ m}c) ≤ 1/2m for all m ≥ 1, and so(16)

µ({ |Xnk
−Xnk+1

| ≤ 1/2k for all k ≥ m}c) ≤ 1/2m for all m ≥ 1.(17)

For exercise 3.3 below, replace X above by Xnk+1
in (b), and prove a.s. convergence

to some X on this subsequence. Then show that the whole sequence converges in
measure to this X . Results (16) and (17) will prove useful.}

Consider the unproven half of (15). Suppose that every n′ contains a further
n′′ as claimed (with a particular X). Assume that Xn →µ X fails. Then for some
ǫo > 0 and some n′

limn′ µ( [ |Xn′ −X | > ǫo ] ) = (some ao) > 0.(g)

But we are given that some further subsequence n′′ has Xn′′ →a.e. X , and thus
Xn′′ →µ X by (13), using µ(Ω) <∞. Thus

limn′′ µ( [ |Xn′′ −X | > ǫo ] ) = 0;(h)

but this is a contradiction of (f). 2

Exercise 3.3 As in (12), show that Xn →µ X if and only if Xm − Xn →µ 0.
[Hint. Adapt the proof of (16).]

Exercise 3.4 (a) Suppose that µ(Ω) < ∞ and g is continuous a.e. µX (that is,
g is continuous except perhaps on a set of µX measure 0). Then Xn →µ X implies
that g(Xn)→µ g(X).

(b) Let g be uniformly continuous on the real line. Then Xn →µ X implies that
g(Xn)→µ g(X). (Here, µ(Ω) =∞ is allowed.)

Exercise 3.5 (a) (Dini) If Xn : Ω → R are continuous, with Ω compact, and
with Xn(ω)ց X(ω) for each ω ∈ Ω, then Xn converges uniformly to X on Ω.

(b) In general, a uniform limit of bounded and continuous functions Xn is also
bounded and continuous.
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4 Probability, RVs, and Convergence in Law
Definition 4.1 (Random variable and df) (a) A probability space (Ω,A, P )
is just a measure space for which P (Ω) = 1. Now, X : (Ω,A, P ) → (R,B) will
be called a random variable (to be abbreviated rv); thus it is a B-A-measurable
function. If X : (Ω,A, P )→ (R̄, B̄ ), then we will call X an extended rv.

(b) The distribution function (to be abbreviated df ) of a rv is defined by

FX(x) ≡ P (X ≤ x) for all −∞ < x <∞.(1)

We recall that F ≡ FX satisfies

F is ր and right continuous, with F (−∞) = 0 and F (+∞) = 1.(2)

We let CF denote the continuity set of F that contains all points at which F is
continuous. [That F ր is trivial, and the other three properties all follow from the
monotone property of measure, since (∞, x] = ∩∞n=1(−∞, x+an] for every sequence

an ց 0, ∩∞n=1(−∞,−n] = ∅, and ∪∞n=1(−∞, n] = R.]

(c) If F is ր and right continuous with F (−∞) ≥ 0 and F (+∞) ≤ 1, then F will
be called a sub df.
(d) The induced measure on (R,B) (or (R̄, B̄ )) will be denoted by PX . It satisfies

PX(B) = P (X−1(B)) = P (X ∈ B) for all B ∈ B(3)

(for all B ∈ B̄ if X is an extended rv). We call this the induced distribution of X .
We use the notation X ∼= F to denote that the induced distribution PX(·) of the
rv X has df F .
(e) We say that rvs Xn (with dfs Fn) converge in distribution or converge in law to
a rv X0 (with df F0) if

Fn(x) = P (Xn ≤ x)→ F0(x) = P (X0 ≤ x) at each x ∈ CF0 .(4)

We abbreviate this by writing either Xn →d X0, Fn →d F0, or L(Xn)→ L(X0).

Notation 4.1 Suppose now that {Xn : n ≥ 0} are rvs on (Ω,A, P ). Then it is
customary to write Xn →p X0 (in place of Xn →µ X0) and Xn →a.s. X0 (as well
as Xn →a.e. X0). The “p” is an abbreviation for in probability, and the “a.s.” is an
abbreviation for almost surely.
Anticipating the next chapter, we let Eg(X) denote

∫
g(X) dµ, or

∫
g(X) dP when

µ is a probability measure P . We say that Xn converges to X0 in rth mean if
E|Xn −X0|r → 0. We denote this by writing Xn →r X0 or Xn →Lr X0. 2

Proposition 4.1 Suppose that the rvs X ∼= F and Xn
∼= Fn satisfy Xn →p X .

Then Xn →d X . (Thus, Xn →a.s. X implies that Xn →d X .)

Proof. (This result has limited importance. But the technique introduced here
is useful; see exercise 4.1 below.) Now,

Fn(t) = P (Xn ≤ t) ≤ P (X ≤ t+ ǫ) + P ( |Xn −X | ≥ ǫ)(a)

≤ F (t+ ǫ) + ǫ for all n ≥ some nǫ.(b)



34 CHAPTER 2. MEASURABLE FUNCTIONS AND CONVERGENCE

Also,

Fn(t) = P (Xn ≤ t) ≥ P (X ≤ t− ǫ and |Xn −X | ≤ ǫ) ≡ P (AB)

≥ P (A)− P (Bc) = F (t− ǫ)− P ( |Xn −X | > ǫ)

≥ F (t− ǫ)− ǫ for n ≥ (some n′
ǫ).

Thus for n ≥ (nǫ ∨ n′
ǫ) we have

F (t− ǫ)− ǫ ≤ limFn(t) ≤ limFn(t) ≤ F (t+ ǫ) + ǫ.(c)

If t is a continuity point of F , then letting ǫ → 0 in (c) gives Fn(t) → F (t). Thus
Fn →d F . 2

The following elementary result is extremely useful. Often, one knows that
Xn →d X , but what one is really interested in is a slight variant of Xn, rather than
Xn itself. The next result was designed for just such situations.

Definition 4.2 (Type) Two rvs X and Y are of the same type if Y ∼= aX + b.

Theorem 4.1 (Slutsky) Suppose that Xn →d X , while the rvs Yn →p a and
Zn →p b as n → ∞ (here Xn, Yn, and Zn are defined on a common probability
space, but X need not be). Then

Un ≡ Yn ×Xn + Zn →d aX + b as n→∞.(5)

Exercise 4.1 Prove Slutsky’s theorem. [Hint. Recall the proof of proposition 4.1.
Then write Un = (Yn−a)Xn+(Zn−b)+aXn+b where Yn−a→p 0 and Zn−b→p 0.
Note also that P ( |Xn| > (some Mǫ)) < ǫ for all n ≥ (some nǫ).]

Exercise 4.2 Let c be a constant. Show that Xn →d c if and only if Xn →p c.

Remark 4.1 Suppose X1, X2, . . . are independent rvs with a common df F .
Then Xn →d X0 for any rv X0 having df F . However, there is no rv X for which
Xn converges to X in the sense of →a.s. , →p , or →r . (Of course, we are assuming
that X is not a degenerate rv (that is, that µF is not a unit point mass).) 2
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5 Discussion of Sub σ-Fields
Consider again a sequence of rvsX1, X2, . . . where each quantityXn is a measurable
transformation Xn : (Ω,A, P ) → (R,B, PXn), and where PXn denotes the induced
measure. Each rv Xn is B-F(Xn)-measurable, with F(Xn) a sub σ-field of A.
Even though the intersection of any number of σ-fields is a σ-field, the union of
even two σ-fields need not be a σ-field. We thus define the sub σ-field generated by
X1, . . . , Xn as

F(X1, . . . , Xn) ≡ σ[
⋃n
k=1F(Xk) ] = X−1(Bn) for Xn ≡ (X1, . . . , Xn)

′,(1)

where the equality will be shown in the elementary proposition 5.2.1 below.

Note that F(X1, . . . , Xn) ⊂ F(X1, . . . , Xn, Xn+1), so that these necessarily form
an increasing sequence of σ-fields of A. Also, define

F(X1, X2, . . .) ≡ σ[
⋃∞
k=1F(Xk) ].(2)

It is natural to say that such Xn = (X1, . . . , Xn)
′ are adapted to the F(X1, . . . , Xn).

In fact, if F1 ⊂ F2 ⊂ · · · is any sequence of σ-fields for which F(X1, . . . , Xn) ⊂ Fn
for all n, then we say that the Xn’s are adapted to the Fn’s.

Think of F(X1, . . . , Xn) as the amount of information available at time n from
X1, . . . , Xn; that is, you have available for inspection all of the probabilities

P ((X1, . . . , Xn) ∈ Bn) = P ((X1, . . . , Xn)
−1(Bn)) = P(X1,...,Xn)(Bn),(3)

for all Borel sets Bn ∈ Bn. Rephrasing, you have available for inspection all of the
probabilities

P (A), for all A ∈ F(X1, . . . , Xn).(4)

At stage n + 1 you have available P (A) for all A ∈ F(X1, . . . , Xn, Xn+1); that is,
you have more information available. [Think of Fn \ F(X1, . . . , Xn) as the amount
of information available to you at time n that goes beyond the information available
from X1, . . . , Xn; perhaps some of it comes from other rvs not yet mentioned, but
it is available nonetheless.]

Suppose we are not given rvs, but rather (speaking informally now, based on
your general feel for probability) we are given joint dfs Fn(x1, . . . , xn) that we think
ought to suffice to construct probability measures on (Rn,Bn). In (2.2.16) we saw
that for n = 1 we could just let (Ω,A, µ) = (R,B, µF ) and use X(ω) = ω to define a
rv that carried the information in the df F . How do we define probability measures
Pn on (Rn,Bn) so that the coordinate rvs

Xk(ω1, . . . , ωn) = ωk for all (ω1, . . . , ωn) ∈ Rn(5)

satisfy

Pn(X1 ≤ x1, . . . , Xn ≤ xn) = Fn(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn,(6)

and thus carry all the information in Fn? Chapter 5 will deal with this construction.
But even now it is clear that for this to be possible, the Fn’s will have to satisfy
some kind of consistency condition as we go from step n to n + 1. Moreover, the
consistency problem should disappear if the resulting Xn’s are “independent.”
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But we need more. We will let R∞ denote all infinite sequences ω1, ω2, . . . for
which each ωi ∈ R. Now, the construction of (5) and (6) will determine probabilities
on the collection Bn ×

∏∞
k=n+1 R of all subsets of R∞ of the form

Bn ×
∏∞
k=n+1R

≡ {(ω1, . . . , ωn, ωn+1, . . .) : (ω1, . . . , ωn) ∈ Bn, ωk ∈ R for k ≥ n+ 1},(7)

with Bn ∈ Bn. Each of these collections is a σ-field (which within this special
probability space can be denoted by F(X1, . . . , Xn)) in this overall probability space
(R∞,B∞, P∞), for some appropriate B∞. But what is an appropriate σ-field B∞
for such a probability measure P∞? At a minimum, B∞ must contain

σ[
⋃∞
n=1{Bn ×

∏∞
k=n+1R}] = σ[

⋃∞
n=1 F(X1, . . . , Xn)],(8)

and indeed, this is what we will use for B∞. Of course, we also want to construct
the measure P∞ on (R∞,B∞) in such a way that

P∞

(∏n
k=1(−∞, xk]×

∏∞
k=n+1R

)
= Fn(x1, . . . , xn) for all n ≥ 1(9)

and for all x1, . . . , xn in R. The details are given in chapter 5.
Until chapter 5 we will assume that we are given the rvs X1, X2, . . . on some

(Ω,A, P ), and we will need to deal only with the known quantities F(X1, . . . , Xn)
and F(X1, X2, . . .) defined in (1) and (2). This is probability theory: Given
(Ω,A, P ), we study the behavior of rvs X1, X2, . . . that are defined on this space.
Now contrast this with statistics: Given a physical situation producing measure-
ments X1, X2, . . ., we construct models {(R∞,B∞, P θ∞) : θ ∈ Θ} based on various
plausible models for F θn(x1, . . . , xn), θ ∈ Θ, and we then use the data X1, X2, . . .
and the laws of probability theory to decide which model θ0 ∈ Θ was most likely
to have been correct and what action to take. In particular, the statistician must
know that the models to be used are well-defined.

We also need to extend all this to uncountably many rvs {Xt : t ∈ T }, for some
interval T such as [a, b], or [a,∞), or [a,∞], or (−∞,∞), . . . . We say that rvs
Xt : (Ω,A, P ) → (R,B) for t ∈ T are adapted to an ր sequence of σ-fields Ft if
Fs ⊂ Ft for all s ≤ t with both s, t ∈ T and if each Xt is Ft-measurable. In this
situation we typically let RT ≡

∏
t∈T Rt and then let

Ft ≡ F(Xs : s ≤ t) ≡ σ[
⋃
sX

−1
s (B) : s ≤ t and s ∈ T ] for all t ∈ T.(10)

This is also done in chapter 5 (where more general sets T are, in fact, considered).
The purpose in presenting this section here is to let the reader start now to

become familiar and comfortable with these ideas before we meet them again in
chapter 5 in a more substantial and rigorous presentation. (The author assigns this
as reading at this point and presents only a very limited amount of chapter 5 in his
lectures.)

Exercise 5.1 (a) Show that the class C ≡ {X−1
1 (B1)∩{X−1

2 (B2) : B1, B2 ∈ B} is
a π̄-system that generates the σ-field F(X1, X2).
(b) Recall the Dynkin π–λ theorem, and state its implications in this context.
(c) State an extension of this part (a) to F(X1, . . . , Xn) and to F(X1, X2, . . .).



Chapter 3

Integration

1 The Lebesgue Integral

Let (Ω,A, µ) be a fixed measure space and let X,Y,Xn, . . . denote measurable
functions from (Ω,A, µ) to (R̄, B̄ ). If Ω =

∑n
1 Ai where A1, . . . , An are in A,

then A1, . . . , An is called a partition (or measurable partition) of Ω.

Definition 1.1 (Lebesgue integral
∫
X dµ or

∫
X) If X =

∑n
i=1 xi 1Ai ≥ 0

is a simple function (where all xi ≥ 0 and A1, . . . , An is a partition of Ω), then

∫
X dµ ≡

n∑

i=1

xi µ(Ai).(1)

(We must verify that it is well defined.) If X ≥ 0, then

∫
X dµ ≡ sup

{∫
Y dµ : 0 ≤ Y ≤ X and Y is such a simple function

}
.(2)

[Of course, we must show that the value of
∫
X dµ in (1) is independent of the

representation of X that is specified.] For general measurable X ,

∫
X dµ ≡

∫
X+ dµ−

∫
X− dµ,(3)

provided that at least one of
∫
X+ dµ and

∫
X− dµ is finite. We let

L1 ≡ L1(Ω,A, µ) ≡ {X :
∫
|X | dµ <∞},

L+1 ≡ L+1 (Ω,A, µ) ≡ {X ∈ L1 : X ≥ 0},
Lr ≡ Lr(Ω,A, µ) ≡ Lr(µ) ≡ {X :

∫
|X |r dµ <∞}, for each r > 0;

(4)

in each of these definitions we agree to identify X and X ′ whenever X = X ′ a.e. µ.
If X (which is not measurable) equals a measurable function Y on a set A having
µ(Ac) = 0, then

∫
X dµ ≡

∫
Y dµ. [Clearly,

∫
X dµ is not affected by such Y and A.]

37



38 CHAPTER 3. INTEGRATION

If X is measurable and
∫
X dµ is finite, then X is called integrable. For any A ∈ A,

∫

A

X dµ ≡
∫
X 1A dµ.(5)

We also use the notation (especially in proofs, to save space)
∫
X ≡

∫
X dµ ≡ (the integral of X) ≡ EX ≡ (the expectation of X) .(6)

For ordinary Lebesgue measure µ on R, we often write
∫
X dµ =

∫
X(r) dr .

It needs to be demonstrated that the above definition makes sense and that∫
X dµ satisfies the following elementary properties.

Proposition 1.1 (Elementary properties of the integral) It holds that
definition 1.1 of the integral is unambiguous. Now suppose that the functions X
and Y are measurable, that

∫
X dµ and

∫
Y dµ are well-defined, and that their sum

(the number
∫
X dµ+

∫
Y dµ) is a well-defined number in [−∞,+∞]. Then

∫
(X + Y ) dµ =

∫
X dµ+

∫
Y dµ and

∫
cX dµ = c

∫
X dµ,(7)

0 ≤ X ≤ Y implies 0 ≤
∫
X dµ ≤

∫
Y dµ.(8)

Proof. Consider first the case of simple functions.
Claim 1: Defining

∫
X dµ =

∑m
1 xi µ(Ai) for simple functions X =

∑m
1 xi 1Ai

makes
∫
X dµ well-defined for such simple functions.

Suppose that we also have X =
∑n

1 zj 1Cj . Then
∑m

i=1 xi
∑n

j=1 1AiCj = X =
∑n

j=1 zj
∑m

i=1 1AiCj ,(a)

so that xi = zj if AiCj 6= ∅. Thus
∑m

i=1 xi µ(Ai) =
∑m
i=1 xi

∑n
j=1 µ(AiCj) =

∑m
i=1

∑n
j=1 xi µ(AiCj)

=
∑m

i=1

∑n
j=1 zj µ(AiCj) since xi = zj if AiCj 6= ∅

=
∑n

j=1 zj
∑m

i=1 µ(AiCj) =
∑n
j=1 zj µ(Cj) ;

and since the two extreme terms that represent the two different definitions of the
quantity

∫
X dµ are equal, we see that

∫
X dµ is well-defined.

Claim 2: The integral behaves linearly for simple functions.
SupposeX =

∑m
1 xi 1Ai and Y =

∑n
1 yj 1Bj . ThenX+Y =

∑m
1

∑n
1 (xi+yj) 1AiBj .

We thus have
∫
(X + Y ) dµ =

∑m
1

∑n
1 (xi + yj)µ(AiBj)

=
∑m

1

∑n
1 xi µ(AiBj) +

∑m
1

∑n
1 yj µ(AiBj)
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=
∑m

1 xi
∑n

1 µ(AiBj) +
∑n

1 yj
∑m

1 µ(AiBj)

=
∑m

1 xi µ(Ai) +
∑n

1 yj µ(Bj) =
∫
X dµ+

∫
Y dµ,

which establishes the additivity.
Claim 3: Even in general, it is trivial that

∫
cX = c

∫
X in (7).

Claim 4: Even in general, the monotonicity in (8) is trivial.
The proof for general X ≥ 0 and Y ≥ 0 is included in the proof of the monotone

convergence theorem (MCT) (that is, the first theorem of the next section). That
is, we will prove the MCT using linearity just for simple functions, and then we will
use the MCT to obtain the current linearity for any functions X ≥ 0 and Y ≥ 0.
(The final linearity step is then trivial. Just write X = X+−X− and Y = Y +−Y −

and do algebra.) 2

Notation 1.1 Let F denote a generalized df and let µF denote the associated
Lebesgue–Stieltjes measure. Suppose that g is an integrable function on R. We will
then freely use the notation

∫
R
g(x) dF (x) ≡

∫
R
g(x) dµF (x). 2(9)
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2 Fundamental Properties of Integrals
Theorem 2.1 (MCT, the monotone convergence theorem) Suppose that
Xn ր X a.e. for measurable functions Xn ≥ 0. Then

0 ≤
∫
Xn dµր

∫
X dµ .(1)

Corollary 1 For X ≥ 0, the simple Xn in (2.2.10) satisfy
∫
Xn dµր

∫
X dµ.

Proof. By redefining on null sets if necessary, we may assume that Xn ր X
for all ω. Thus X is measurable, by proposition 2.2.2. Also,

∫
Xn is ր, and so

a ≡ lim
∫
Xn exists in [0,∞]. Moreover, Xn ≤ X implies

∫
Xn ≤

∫
X ; and so we

conclude that a = lim
∫
Xn ≤

∫
X .

Let Y ≡ ∑m
1 cj1Dj be an arbitrary simple function satisfying 0 ≤ Y ≤ X .

Fix 0 < θ < 1. Then note that An ≡ [Xn ≥ θ Y ] ր Ω (since 0 ≤ θ Y ≤ X on
[X = 0] and 0 ≤ θ Y < X on [X > 0] are both trivial). Claims 3 and 4 of the
proposition 3.1.1 proof give

θ
∫
Y × 1An =

∫
θ Y × 1An ≤

∫
Xn × 1An ≤

∫
Xn ≤ a;(a)

and letting n→∞ gives θ
∫
Y ≤ a (as Y 1An ր Y gives

∫
Y 1An ր

∫
Y since each

cj µ(DjAn) → cj µ(Dj) by proposition 1.1.2) for each 0 < θ < 1, so that
∫
Y ≤ a.

Since 0 ≤ Y ≤ X is arbitrary, this gives
∫
X ≤ a = lim

∫
Xn. 2

Proof. We now return to the linearity of the integral for general measurable
functions X ≥ 0 and Y ≥ 0. Let Xn ր X and Yn ր Y for the measurable simple
functions of (2.2.10). Then Xn+Yn ր X+Y . Thus the MCT twice, the linearity of
the integral for simple functions, and then the MCT again give the general linearity
of the integral via

∫
X +

∫
Y = lim

∫
Xn + lim

∫
Yn = lim (

∫
Xn +

∫
Yn)

= lim
∫
(Xn + Yn) by simple function linearity(a)

=
∫
(X + Y ) by the MCT.(b)

In general, combine the integrals of X+, X−, Y +, and Y − appropriately. 2

Theorem 2.2 (Fatou’s lemma) For Xn’s measurable,
∫

limXn dµ ≤ lim

∫
Xn dµ, provided that Xn ≥ 0 a.e. for all n.(2)

Proof. Redefine on null sets (if necessary) so that all Xn ≥ 0. Then

Yn ≡ inf
k≥n

Xk ր limXn, or limXn = limYn with Yn ր,(3)

so that
∫
limXn =

∫
lim Yn = lim

∫
Yn by the MCT(a)

= lim
∫
Yn ≤ lim

∫
Xn since Yn ≤ Xn . 2(b)
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Theorem 2.3 (DCT, the dominated convergence theorem) Suppose now
that |Xn| ≤ Y a.e. for all n, for some dominating function Y ∈ L1; and suppose
either (i) Xn →a.e. X or (ii) Xn →µ X . Then

∫
|Xn −X | dµ→ 0 as n→∞ (that is, Xn →L1 X).(4)

[Note that (supn≥1 |Xn| ) could make a suitable dominating function.]

Corollary 1 Note that (4) implies
∫
Xn dµ→

∫
X dµ (that is, EXn → EX),(5)

sup
A∈A

∣∣∣
∫

A

Xn dµ−
∫

A

X dµ
∣∣∣→ 0.(6)

Proof. (i) Suppose that Xn →a.e. X . Then Zn ≡ |Xn − X | →a.e. 0. (Here,
0 ≤ Zn ≤ 2Y a.s., where both of the functions 0 and 2Y are in L1.) Now apply
Fatou’s lemma to the rvs 2Y − Zn ≥ 0, and conclude that

∫
(2Y − 0) =

∫
lim (2Y − Zn) ≤ lim

∫
(2Y − Zn) by Fatou(a)

= lim (
∫
2Y −

∫
Zn)

=
∫
2Y − lim

∫
Zn .(7)

Hence, lim sup
∫
Zn ≤

∫
0 = 0 (as

∫
2Y is finite). Combining the two results gives

0 ≤ lim inf
∫
Zn ≤ lim sup

∫
Zn ≤ 0 ;(b)

so lim
∫
Zn = 0, as claimed.

(ii) Suppose Xn →µ X . Let a ≡ lim sup
∫
Zn ≥ 0. Let n′ be a subsequence such

that
∫
Zn′ → a. But Zn′ →µ 0, so theorem 2.3.1 gives a further subsequence n′′

such that Zn′′ →a.e. 0, while we still have
∫
Zn′′ → a. But

∫
Zn′′ → 0 by case (i).

Thus a = 0. Thus

0 ≤ lim sup
∫
Zn = a = 0, or

∫
Zn → 0 .(c)

(iii) Consider the corollary. We have |
∫
Xn −

∫
X | ≤

∫
|Xn −X |, and thus

|
∫
A
Xn −

∫
A
X | ≤

∫
A
|Xn −X | ≤

∫
|Xn −X | → 0(d)

uniformly in all A ∈ A. 2

Theorem 2.4
∫ ∑∞

1 Xn dµ =
∑∞

1

∫
Xndµ if Xn ≥ 0 a.e., for all n.

Proof. Note that 0 ≤ Zn ≡
∑n

1 Xk ր Z ≡ ∑∞
1 Xk a.e., and now apply the

MCT to the Zn’s. 2
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Theorem 2.5 (Absolute continuity of the integral) Fix X ∈ L1. Then∫

A

|X | dµ→ 0 as µ(A)→ 0.(8)

That is,
∫
A |X | dµ < ǫ, provided only that µ(A) < (an appropriate δǫ).

Proof. Now,
∫
|X | 1[ |X|≤n] ր

∫
|X | by the MCT, so we may claim that

∫
|X | 1[ |X|>n] ≤ ǫ/2 for n ≥ N ≡ (some Nǫ) .(a)

Thus
∫
A
|X | ≤

∫
A
|X | 1[ |X|≤N ] +

∫
|X | 1[ |X|>N ] ≤ N × µ(A) + ǫ/2 ≤ ǫ,(b)

provided that µ(A) ≤ ǫ/(2N) . 2

Exercise 2.1 (Only the zero function) Show that

X ≥ 0 and
∫
X dµ = 0 implies µ( [X > 0] ) = 0 .(9)

Exercise 2.2 (Only the zero function) Show that
∫

A

X dµ =
{
= 0,
≥ 0

for all A ∈ A implies X =
{
= 0 a.e.,
≥ 0 a.e.

(10)

Exercise 2.3 Consider a measure space (Ω,A, µ). Let µ0 ≡ µ|A0 for a sub
σ-field A0 of A. Starting with indicator functions, show that

∫
X dµ =

∫
X dµ0 for

any A0-measurable function X . Hint: Consider four cases, as in the next proof.

Definition 2.1 (Induced measure) Suppose that X : (Ω,A, µ) → (Ω′,A′ ) is
a measurable function. Recall from (2.2.15) that

µ′(A′ ) ≡ µX(A′ ) = µ(X−1(A′ )) for all A′ ∈ A′,(11)

and µ′ is a measure on (Ω′,A′ ), called the induced measure of X .

Theorem 2.6 (Theorem of the unconscious statistician) (i) The induced
measure µX(·) of the measurable function X : (Ω,A, µ) → (Ω′,A′, µX) determines
the induced measure µg(X) for all measurable functions g : (Ω′,A′)→ (R̄, B̄ ).
(ii) (Change of variable) Then

∫

X−1(A′)

g(X(ω)) dµ(ω) =

∫

A′

g(x) dµX(x) for all A′ ∈ A′,(12)

in the sense that if either side exists then so does the other and they are equal. So,
∫

X−1(g−1(B))

g(X(ω)) dµ(ω) =

∫

g−1(B)

g(x) dµX(x) =

∫

B

y dµY (y) for B ∈ B̄.(13)

Proof. (i) Now, Y ≡ g(X) is measurable. By (2.1.11) and (2.2.5) we see that

µY (B) = µg(X)(B) = µ( [g(X) ∈ B] ) = µ(X−1 ◦ g−1(B)) = µX(g−1(B))(a)

is well-defined, since g−1(B) ∈ A′. Thus the first claim holds.
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(ii) We only prove the first equality in (13) when A′ = Ω′ and X−1(Ω′ ) = Ω,
since we can replace g by g × 1A′ , noting that 1A′(X(ω)) = 1X−1(A′)(ω).

Case 1. g = 1A′ : Then

∫
1A′(X) dµ =

∫
1X−1(A′) dµ = µ(X−1(A′)) = µX(A′) =

∫
1A′ dµX .(b)

Case 2. g =
∑n
i=1 ci 1A′

i
, where

∑n
i=1 A

′
i = Ω′ with A′

i ∈ A′ and all ci ≥ 0: Then

∫
g(X) dµ =

∫ ∑n
i=1 ci 1A′

i
(X) dµ =

∑n
i=1 ci

∫
1A′

i
(X) dµ

=
∑n

i=1 ci
∫
1A′

i
dµX =

∫
g dµX .(c)

Case 3. g ≥ 0: Let gn ≥ 0 be simple with gn ր g : Then
∫
g(X) dµ = lim

∫
gn(X) dµ by the MCT, since gn(X)ր g(X)

= lim
∫
gn dµX by case 2

=
∫
g dµX by the MCT.(d)

Case 4. g is measurable, and either
∫
g(X)+ dµ or

∫
g(X)− dµ is finite: Using

g = g+ − g−, we note that g(X)+ = g+(X) and g(X)− = g−(X). Then
∫
g(X) dµ =

∫
g(X)+ dµ−

∫
g(X)− dµ =

∫
g+(X) dµ−

∫
g−(X) dµ

=
∫
g+ dµX −

∫
g− dµX by case 3

=
∫
g dµX .(e)

In the arguments (b), (c), (d), (e) one should start from the end that is assumed
to exist, in order to make a logically tight argument. (Note the next exercise.) 2

Exercise 2.4 Let Y ≡ g(X) in the context of the theorem 2.6. Verify the second
equality in (13).

Exercise 2.5 Let X equal -1,0,1 with probability 1/3 for each possibility. Let
g(x) = x2. Then evaluate both sides in (13), and see why such calculations were
performed unconsciously for years.
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3 Evaluating and Differentiating Integrals

Let (R, B̂µ, µ) denote a Lebesgue–Stieltjes measure space that has been completed.

If g is B̂µ-measurable, then
∫
g dµ is called the Lebesgue–Stieltjes integral of g; and

if F is the generalized df corresponding to µ, then we also use the notation
∫
g dF .

Also,
∫ b
a g dF ≡

∫
(a,b ] g dF =

∫
1(a,b ] g dF .

Theorem 3.1 (Equality of LS and RS integrals) Let g be continuous on [a, b].

Then the Lebesgue–Stieltjes integral
∫ b
a
g dF and the Riemann–Stieltjes integral are

equal. [And since the LS-integral and the RS-integral are equal, we can continue to
evaluate most LS-integrals using the methods learned in elementary calculus.]

Proof. We first recall the classical setup associated with the definition of the
RS-integral. Consider any sequence of partitions a ≡ xn0 < · · · < xnn ≡ b such
that the partition Xn ≡ {xn0, xn1, . . . , xnn} is a refinement of Xn−1 in the sense that
Xn−1 ⊂ Xn. Then if meshn ≡ max1≤k≤n(xnk − xn,k−1) → 0, and if x∗nk’s are such

that xn,k−1 < x∗nk ≤ xnk, we have (letting gn(a) be defined by right continuity)

gn ≡
∑n
k=1 g(x

∗
nk) 1(xn,k−1,xnk] → g uniformly on [a, b ],(a)

since g is (necessarily) uniformly continuous on [a, b]. Thus for all such sequences
the LS-integral of section 3.1 satisfies

∫ b
a
g dF ≡

∫ b
a
g dµ = lim

∫ b
a
gn dµ by the DCT, bounded by a constant

= lim
∑n

1 g(x
∗
nk)µ((xn,k−1, xnk]) = lim

∑n
1 g(x

∗
nk)F (xn,k−1, xnk]

= lim {a Riemann–Stieltjes sum for the integral of g}(b)

= {the Riemann–Stieltjes integral of g},(c)

and this holds for all partitions and x∗nk’s as above, provided only that meshn → 0.

Thus the LS-integral
∫ b
a
g dF and the RS-integral are equal for continuous g. 2

Exercise 3.1∗(RS-integral compared to LS-integral) We state a few additional facts
here, just for completeness:

g is RS-integrable with respect to F if and only if
g is continuous a.e. µF (·).(1)

If g is RS-integrable with respect to F,

then the RS and LS-integrals
∫ b
a
g dF are equal.

(2)

Let D(F ) and D(g) denote the discontinuity sets of F and g. Then

g is not RS-integrable when D(F ) ∩ D(g) 6= ∅.(3)

(Consider g(·) ≡ 1{0}(·) and F ≡ 1[0,∞) regarding (3).)



3. EVALUATING AND DIFFERENTIATING INTEGRALS 45

Exercise 3.2 Suppose that the improper RS-integral of a continuous function

g on R, defined by RS(
∫
g dF ) ≡ lima→−∞,b→∞ (RS

∫ b
a g dF ) exists finitely. Then

lima→−∞,b→∞ (LS
∫ b
a
|g| dF ) need not be finite. Thus the fact that an improper

RS-integral exists does not imply that the function is LS-integrable. Construct an
example on [0,∞).

Exercise 3.3 (Differentiation under the integral sign) (a) Suppose that the
function X(t, ·) is an integrable function on (Ω, µ), for each t ∈ [a, b ]. Suppose also
that for a.e. ω the partial derivative ∂

∂tX(t, ω) exists for all t in the nondegenerate
interval [a, b] (use one-sided derivatives at the end points), and that n

∣∣∣ ∂
∂t
X(t, ω)

∣∣∣ ≤ Y (ω) for all t ∈ [a, b ], where Y ∈ L1.

Then the derivative and integral may be interchanged, in that

d

dt

∫

Ω

X(t, ω) dµ(ω) =

∫

Ω

[ ∂
∂t

X(t, ω)
]
dµ(ω) for all t ∈ [a, b ].(4)

(b) Fix t ∈ (a, b). Formulate weaker hypotheses that yield (4) at this fixed t.
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4 Inequalities
Convexity We begin by briefly reviewing convexity. A real-valued function f
defined on some interval I of real numbers is convex if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α) f(y)
for all x, y in I and all 0 ≤ α ≤ 1.

(1)

We will use the following facts. If f is convex on an interval, then f is continuous on
the interior Io of the interval. Also, the left and right derivatives exist and satisfy
D−(x) ≤ D+(x) at each point in the interior Io of the interval. The following is
useful. Convexity on the interval I holds if and only if

f((x+ y)/2) ≤ [f(x) + f(y)]/2 for all x, y in I, provided that

f is also assumed to be bounded (or continuous, or measurable) on I.
(2)

[There exist functions satisfying the inequality in (2) that are not continuous, but
they are unbounded in every finite interval. Thus requiring (1) for all 0 ≤ α ≤ 1 is
strictly stronger then requiring it to hold only for α = 1/2.] We need a simple test
for convexity (when f is ‘nice’), and so note that f is convex if either

f ′(x) is ր for all x ∈ I or f ′′(x) ≥ 0 for all x ∈ I .(3)

We call f strictly convex if strict inequality holds in any of the above. If f is
convex, then there exists a linear function l such that f(x) ≥ l(x) with equality at
any prespecified x0 in the interior Io of the domain I of f ; this function is called
the supporting hyperplane. (Call f concave in −f is convex.) 2

Definition 4.1 (Moments) [The following definitions make sense on a general
measure space (Ω,A, µ), and are standard notation on a probability space (Ω,A, P ).]
Recall from (3.1.6) that Eh(X) =

∫
h(X(ω)) dµ(ω) =

∫
h(X) dµ =

∫
h(X). Let

µ ≡ EX ≡ (the mean of X), (Note two different uses of µ)(4)

σ2 ≡ Var[X ] ≡ E(X − µ)2 = (the variance of X),

σ ≡ StDev[X ] ≡ (the standard deviation of X) .
(5)

We will write X ∼= (µ, σ2) if EX = µ and Var[X ] = σ2 < ∞. We will then write
X ∼= F (µ, σ2) if X also has df F (·). Now let

EXk ≡ (kth moment of X), for k ≥ 1 an integer,(6)

E|X |r ≡ (rth absolute moment of X), for r > 0,(7)

‖X‖r ≡ {E|X |r}1/r (or E|X |) ≡ (rth norm of X), for r ≥ 1 (or, r < 1),(8)

µk ≡ E(X − µ)k ≡ (kth central moment of X), for k ≥ 1,(9)

Cov[X,Y ] ≡ E[(X − µX)(Y − µY )] = (the covariance of X and Y ).(10)

Note that Cov[X,X ] = Var[X ]. (Probability theory has µ(Ω) = 1.)
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Throughout this section X and Y will denote measurable functions.

Proposition 4.1 (Ls ⊂ Lr) Let µ(Ω) <∞. Then Ls ⊂ Lr whenever 0 < r < s.

[So if E|X |s <∞, then E|X |r and EXk are finite for all 0 ≤ r, k ≤ s.]

Proof. Now, |x|r ≤ 1 + |x|s; and integrability is equivalent to absolute
integrability. Note that µ(Ω) <∞ is used to claim 1 ∈ L1. 2

Proposition 4.2 Let µ(Ω) = 1. Then σ2 < ∞ holds if and only if EX2 < ∞.
Moreover, σ2 = EX2 − µ2 when µ(Ω) = 1.

Proof. Suppose EX2 < ∞. Then EX2 − µ2 = E(X2) − E(2µX) + E(µ2) =
E(X − µ)2 = Var[X ]. Note that proposition 4.1 was used for EX . Thus µ(Ω) <∞
was used. Suppose that σ2 <∞. Then E{(X−µ)2+2µ(X−µ)+µ2} = EX2. 2

Inequality 4.1 (Cr-inequality) E|X + Y |r ≤ Cr E|X |r + Cr E|Y |r,
where Cr = 2r−1 for r ≥ 1 and Cr = 1 for 0 < r ≤ 1.

Proof. There are no restrictions on µ. Note that E|X + Y |r ≤ E(|X |+ |Y |)r.
Case 1. r > 1: Then |x|r is convex in x for x ≥ 0, since its derivative is ↑ . Thus

|(x+ y)/2|r ≤ [|x|r + |y|r]/2; and now take expectations.

Case 2. 0 < r ≤ 1: Now, |x|r is concave and ր for x ≥ 0; just examine derivatives.

Thus |x+ y|r−|x|r ≤ |0+ y|r− 0r since the increase from x to x+ y can not exceed
the increase from 0 to y, and now take expectations. 2

Inequality 4.2 (Hölder’s inequality) E|X Y | ≤ E1/r|X |r E1/s|Y |s for r > 1,
and 1/r+ 1/s = 1 (so, s− 1 = 1/(r− 1). Alternatively, ‖X Y ‖1 ≤ ‖X‖r × ‖Y ‖s .
When both expectations E|X |r and E|Y |s fall in (0,∞), we have equality if and only
if there exists a constant a > 0 for which |Y |s = a|X |r a.e.; hence, a = E|Y |s/E|X |r.

Proof. The result is trivial if E|X |r = 0 or ∞. Likewise for E|Y |s. So suppose
that both expectations are in (0,∞). Since f(x) = ex is convex by fact (3), it
satisfies (1) with α ≡ 1/r and 1−α = 1/s, x ≡ r log |a| and y ≡ s log |b| for some a
and b; thus (1) becomes (with equality if and only if r log |a| = x = y = s log |b| )

exp(1r x+ 1
s y) ≤ 1

r e
x + 1

s e
y , or:(11)

Young’s inequality For all a, b we have

|ab| ≤ |a|
r

r
+
|b|s
s

with equality iff |a|r = |b|s iff |b| = |a|1/(s−1) = |a|r−1.(12)

Now let a = |X |/‖X‖r and b = |Y |/‖Y ‖s, and take expectations. Equality

holds if and only if |Y |/‖Y ‖s = (|X |/‖X‖r)1/(s−1) a.e. (that is, all mass is located

at equality in (12)) if and only if

|Y |s
E|Y |s =

( |X |
‖X‖r

)s/(s−1)

=
|X |r
E|X |r a.e. 2(a)
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Exercise 4.1 (Convexity inequality) Show that

uα v1−α ≤ αu+ (1 − α) v for all 0 ≤ α ≤ 1 and all u, v ≥ 0.(13)

Use this to reprove Hölder’s inequality.

Inequality 4.3 (Cauchy–Schwarz) {E(XY )}2 ≤ ( E|XY | )2 ≤ EX2 EY 2.

If both EX2 and EY 2 take values in (0,∞), then equality holds throughout both

of the inequalities if and only if either Y = aX a.e. or Y = −aX a.e., for some
a > 0; in fact, a2= EY 2/EX2. (Only Y 2 = cX2 a.e. for some c > 0 is required for
equality in the rightmost inequality above.)

Example 4.1 (Correlation inequality) For rvs X and Y (on a probability space)
having positive and finite variances, it holds that

−1 ≤ ρ ≤ 1,(14)

for the correlation ρ of X and Y defined by

ρ ≡ ρX,Y ≡ Corr [X,Y ] ≡ Cov[X,Y ]√
Var[X ] Var[Y ]

. 2(15)

Exercise 4.2 Consider rvs X and Y having EX2 and EY 2 in (0,∞). Show that

ρ = +1 if and only if X − µX = a (Y − µY ) a.e. for some a > 0,

ρ = −1 if and only if X − µX = a (Y − µY ) a.e. for some a < 0.

Thus ρ measures linear dependence, not general dependence.

Inequality 4.4 (Liapunov’s inequality) (a) It holds that

E1/r |X |r is ր in r for all r ≥ 0, provided µ(Ω) = 1.(16)

(b) Let µ(Ω) be finite. Then ‖X‖r ≤ ‖X‖s × {µ(Ω)} 1
r− 1

s for all 0 < r < s.

(c) h(r) ≡ log E|X |r is convex on [a, b] if X ∈ La ∩ Lb (0 < a and any µ(Ω) value).

Proof. (c) Apply Hölder to |X |αa and |X |(1−α)b with r = 1/α and s = 1/(1−α)
and obtain the inequality

E|X |αa+(1−α)b ≤ (E|X |αa· 1
α )α(E|X |(1−α)b· 1

1−α )1−α(p)

= (E|X |a)α(E|X |b)1−α.(q)

(All expectations are finite if X ∈ La ∩ Lb; since a ≤ r ≤ b and c > 0 implies that
cr ≤ cb or cr ≤ ca as c ≥ 1 or c ≤ 1.) Taking logarithms gives the convexity

h(αa+ (1− α)b) ≤ αh(a) + (1− α)h(b).(r)

(b) Finiteness of E|X |b gives the finiteness of E|X |r on (0, b] via proposition 4.1.
Then apply Hölder to |X |r · 1 with a = s

r and 1
a + 1

b = 1 (and E1 = µ(Ω)). 2

Exercise 4.3 (Littlewood’s inequality) Define mr ≡ E|X |r. Show that for
0 ≤ r ≤ s ≤ t we have (write ms = E( |X |λs · |X |(1−λ)s), and apply Hölder)

mt−r
s ≤ mt−s

r ms−r
t (thus, m3

2 ≤ m2
1 m4 ).(17)
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Inequality 4.5 (Minkowski’s inequality) E1/r|X + Y |r ≤ E1/r|X |r + E1/r|Y |r
for all r ≥ 1. That is, ‖X + Y ‖r ≤ ‖X‖r + ‖Y ‖r for r ≥ 1.

(Recall that ‖X+Y ‖r ≤ ‖X‖r+‖Y ‖r for 0 < r ≤ 1, by the Cr-inequality and (8).)

Proof. This is trivial for r = 1. Suppose r > 1, and note that s = r/(r − 1).
Then for any measure µ we have

E{|X + Y |r} ≤ E{|X | |X + Y |r−1} + E{|Y | |X + Y |r−1}(a)

≤ ( ‖X‖r + ‖Y ‖r ) ‖ |X + Y |r−1 ‖s by Hölder’s inequality twice

= ( ‖X‖r + ‖Y ‖r) E1/s |X + Y |(r−1)s = ( ‖X‖r + ‖Y ‖r) E1/s |X + Y |r.
If E|X + Y |r = 0, the result is trivial. If not, we divide to get the result. 2

Inequality 4.6 (Basic inequality) Let g ≥ 0 be ր on [0,∞) and even. Then for
all measurable X we have

µ( |X | ≥ λ ) ≤ E g(X)/g(λ) for all λ > 0 .(18)

Proof. Now,

E g(X) =
∫
[ |X|≥λ] g(X) dµ +

∫
[ |X|<λ] g(X) dµ ≥

∫
[ |X|≥λ] g(X) dµ(a)

≥ g(λ)
∫
[ |X|≥λ] 1 dµ = g(λ) µ( |X | ≥ λ ). 2(b)

The next two inequalities are immediate corollaries.

Inequality 4.7 (Markov’s inequality) µ(|X | ≥ λ) ≤ E|X |r/λr for all λ > 0.

Inequality 4.8 (Chebyshev’s inequality) If E|X | <∞, then

µ( |X − µ| ≥ λ) ≤ Var[X ]/λ2 for all λ > 0 .(19)

Inequality 4.9 (Paley–Zygmund) If E|X | <∞ for a rv X ≥ 0, then

P (X > λ) ≥ [(EX − λ)+]2/EX2 for each λ > 0 .(20)

Proof. Now,

EX = E(X 1[X≤λ]) + E(X 1[X>λ]) ≤ λ+
√

E(X2)P (X > λ)

by Cauchy–Schwarz. Rearranging gives the inequality. 2

Inequality 4.10 (Jensen’s inequality) Let X : (Ω,A, P )→ (I,B, PX), where
E|X | <∞ and EX is in the interior Io of the interval I. (Any −∞ ≤ a < b ≤ ∞ is
permissible for I ⊂ R.) Let g be convex on this interval I. Then the rv X satisfies

g( EX ) ≤ E g(X) (here, P (Ω) = 1 is required).(21)

For strictly convex g, equality holds if and only if X = EX a.e.

[Comment. Useful g include tr on [0,∞) for any r ≥ 1, |t|, and − log t on (0,∞).]
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Proof. Let l(·) be a supporting hyperplane to g(·) at EX . Then

E g(X) ≥ E l(X)(a)

= l(EX) since l(·) is linear and µ(Ω) = 1(b)

= g(EX) since g(·) = l(·) at EX .(c)

Now g(X)− l(X) ≥ 0. Thus E g(X) = E l(X) if and only if g(X) = l(X) a.e. µ if
and only if X = EX a.e. µ . 2

Inequality 4.11 (Bonferroni) For any events Ak on a probability space (Ω,A, P ),
∑n

i=1 P (Ai) ≥ P (∪ni=1Ai) ≥
∑n
i=1 P (Ai)−

∑∑
i6=j P (AiAj).

Exercise 4.4 (W̃insorized variance) (a) Let the rv X have finite mean µ. Fix
c, d with c ≤ µ ≤ d. Let X̃ equal c,X, d according as [X ≤ c], [c < X ≤ d], [d < X ],

and set µ̃ ≡ EX̃ . Show that E|X̃ − µ̃|2 ≤ E|X̃ − µ|2 ≤ E|X − µ|2.
(b)∗ (Chow and Teicher) Given both a rv X with finite mean µ and a number r ≥ 1,
show how to choose c, d so that E|X̃ − µ̃|r ≤ E|X − µ|r.

Exercise 4.5∗(Hardy) Let h ∈ L2(R+,B, λ) and define H̄(u) = u−1
∫ u
0
h(s) ds

for u > 0. Let r > 1. Use the Hölder inequality to show that
∫∞
0 H̄r(u) du ≤ ( r

r−1)
r
∫∞
0 hr(u) du with equality if and only if h = 0 a.e.(22)

Let r > 1. Then
∑∞

1 ( 1
n

∑n
1 xk)

r ≤ ( r
r−1 )

r
∑∞

1 xrn when all xn ≥ 0.

[Hint. Write H̄(u) = u−1
∫ u
0
h(s)sαs−α ds for some α. Also, first consider xn ց .]

Exercise 4.6 (Wellner) Let T ∼= Binomial(n, p), so P (T = k) =
(
n
k

)
pk(1 − p)n−k

for 0 ≤ k ≤ n. The measure associated with T has mean np and variance np(1−p).
Then use inequality 4.6 with g(x) = exp(rx) and r > 0, to show that

P (T/n ≥ pǫ) ≤ exp(−np h(ǫ)), where h(ǫ) ≡ ǫ(log(ǫ)− 1) + 1.(23)

Exercise 4.7 (Geometric mean) Show that (x1×· · ·×xn)1/n ≤ (x1+ · · ·+xn)/n
whenever all xk ≥ 0.

Exercise 4.8∗ Let X,Y ≥ 0 with XY ≥ 1 and P (Ω) = 1. Show that

µX × µY ≥ 1 and {1 + µ2
X}1/2 ≤ E{(1 +X2)1/2} ≤ (1 + µX).(24)

Exercise 4.9∗(Clarkson’s inequality) Let X , Y in Lr(Ω,A, µ). Show that

E|X + Y |r + E|X − Y |r ≤ 2r−1 {E|X |r + E|Y |r} provided r ≥ 2.(25)

Exercise 4.10 Let LLogL denote all measurable X having E{|X | × Log(|X |)}
finite, with Log(x) ≡ (1 ∨ log x). Show that Lr ⊂ LLogL ⊂ L1, for all r > 1.
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Exercise 4.11 Show that for all a, b we have
∣∣|a| − |b|

∣∣r ≤
∣∣|a|r − |b|r

∣∣ for r ≥ 1,(26)

with the reverse inequality for 0 < r < 1.

Exercise 4.12 Let (Ω,A, µ) have µ(Ω) < ∞. Then P (A) ≡ µ(A)/µ(Ω), for all
A ∈ A, is a probability measure P .

(a) Restate Jensen’s inequality (21) in terms of µ.
(b) Restate Liapunov’s inequality inequality 4.4(b) in terms of P .
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5 Modes of Convergence

Definition 5.1 (Modes of convergence) Let X and Xn’s be measurable and
a.e. finite from the measure space (Ω,A, µ) to (R̄, B̄).

(a) Recall that Xn converges a.e. to X (denoted by Xn →a.e. X) if

Xn(ω)→ X(ω) for all ω ∈ A, where µ(Ac) = 0.(1)

(b) Also, recall that Xn converges in measure to X (denoted by Xn →µ X) if

µ( [ω : |Xn(ω)−X(ω) | ≥ ǫ ] )→ 0 for each ǫ > 0.(2)

(c) Now (rigorously for the first time), Xn converges in rth mean to X (denoted by

Xn →r X or Xn →Lr X) if

E|Xn −X |r → 0 for Xn’s and X in Lr;(3)

here, r > 0 is fixed. [Note from the Cr-inequality that if Xn −X and one of X or
Xn is in Lr, then the other of Xn or X is also in Lr.]

Recall from chapter 2 that Xn →a.e. (some a.e. finite X) holds if and only if
Xn−Xm →a.e. 0 as m ∧ n→∞ . Likewise, in chapter 2 we had Xn →µ (some X)

if and only if Xn −Xm →µ 0 as m ∧ n→∞ . Next, we will consider Xn →r X .
(First, note thatXn →r X trivially impliesXn →µ X , using the Markov inequality.)

Exercise 5.1 (Completeness of Lr) (I) Let Xn’s be in any Lr , for r > 0.

(Riesz–Fischer) Xn →r (some X ∈ Lr) if and only if Xn −Xm →r 0.(a)

That is, Lr is complete with respect to →r . Prove (a), using (2.3.14). [Show that
(Lr, ‖ · ‖r) is a complete metric space (when r > 0), provided that we identify X
and X ′ whenever X = X ′ a.e.] (Note theorem 5.8 below regarding separability.)

(II) Let µ(Ω) <∞. Then:

If Xn →s X, then Xn →r X for all 0 < r ≤ s.(b)

Show by example that Xn →Lr X does not imply that Xn →a.e. X.(c)

Show by example that Xn →a.e. X does not imply that Xn →L1 X.(d)

[Hint: Use Fatou’s lemma in (a) and Hölder’s inequality in (b).]

Summary Let X and Xn’s be as in definition 5.1. Then

Xn converges a.e., in measure, or in Lr to such an X

if and only if

Xn is Cauchy a.e., Cauchy in measure, or Cauchy in Lr .
(4)



5. MODES OF CONVERGENCE 53

Consequences of Convergence in Distribution on (Ω,A, P )

Notation 5.1 Suppose now that µ really denotes a probability measure, and
so we will label it P . Recall that Xn converges in distribution to X (denoted by
Xn →d X , Fn →d F or L(Xn)→ L(X) with L(·) referring to “law”) when the dfs
F and Fn of X and Xn satisfy (recall (2.4.4))

Fn(x)→ F (x) as n→∞ for each continuity point x ∈ CF of F (·) .(5)

[Note that Fn ≡ 1[1/n,∞) →d F ≡ 1[0,∞), even though Fn(0) = 0 6→ 1 = F (0).] The
statement→d will carry with it the implication that F corresponds to a probability
measure P , which can be viewed as the PX = µX of an appropriate rv X . 2

Theorem 5.1 (Helly–Bray) Consider the rvs X and Xn on some (Ω,A, P ).
Suppose Fn →d F , and suppose that g is bounded and is continuous a.s. F . Then

∫
g dFn = E g(Xn) =

∫
g(Xn) dP →

∫
g(X) dP = E g(X) =

∫
g dF.(6)

Conversely, Eg(Xn)→ Eg(X) for all bounded, continuous g implies that Fn →d F .

Theorem 5.2 (Mann–Wald) Consider the rvs X and Xn on some (Ω,A, P ).
Suppose Xn →d X , and let g be continuous a.s. F . Then g(Xn)→d g(X).

Proof. We ask for a proof for continuous g in the next exercise, but we give a
“look-ahead” proof now. (See theorem 6.3.2 below for the Skorokhod proof.)

Skorokhod theorem If Xn →d X , there are Y and Yn on some (Ω,A, P ) having

Yn ∼= Xn and Y ∼= X and especially Yn → Y a.s. PY (·) .(7)

Note that A1 ≡ {ω : Yn(ω)→ Y (ω)} has P (A1) = 1. Also,

P (A2) ≡ P ({ω : g is continuous at Y (ω)})(a)

= PY ({y : g is continuous at y} ) = PY (Cg) = 1.(b)

Thus A ≡ A1 ∩ A2 = A1 ∩ Y −1(Cg) has P (A) = 1. Especially,

g(Yn(ω))→ g(Y (ω)) for all ω ∈ A, with P (A) = 1 .(c)

Since g is bounded, applying the DCT to (7) gives the Helly–Bray claim that
∫
g dFn ≡

∫
g dµFn =

∫
g(Yn) dP →

∫
g(Y ) dP =

∫
g dµF ≡

∫
g dF.(d)

We note additionally that since (7) implies g(Yn) →a.s. g(Y ), it also implies
g(Yn) →d g(Y ). Since g(Xn) ∼= g(Yn) and g(X) ∼= g(Y ), we can conclude that
g(Xn) →d g(X). This argument did not use the boundedness of g, and so proves
the Mann–Wald theorem. [The Helly–Bray theorem will be used later in this section
(in proving Vitali’s theorem). Proving it as indicated in the next exercise would
have been possible now, but the proof based on Skorokhod’s theorem is more in
keeping with the spirit of this book.] (Theorem 3.2.6 was used twice in (d).)
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Consider the converse. Let gǫ(·) equal 1, be linear, equal 0 on (−∞, x − ǫ], on
[x−ǫ, x], on [x,∞); and let hǫ(·) equal 1, be linear, equal 0 on (−∞, x], on [x, x+ǫ],
on [x+ ǫ,∞), with gǫ and hǫ both continuous. Then

F (x− ǫ) ≤ E gǫ(X) = limE gǫ(Xn) ≤ limFn(x)

≤ limFn(x) ≤ limEhǫ(Xn) = limEhǫ(X) ≤ F (x + ǫ),(e)

so that Fn(x)→ F (x) at all continuity points of F . 2

Definition 5.2 (Determining class) Let G denote a collection of bounded and
continuous functions g on the real line R. If for any rvs X and Y the condition

E g(X) = E g(Y ) for all g ∈ G implies X ∼= Y ,

then call G a determining class. [The proof of the converse half of Helly–Bray
exhibited one such class of particularly simple functions. (See also section 9.2 for
further examples which will prove particularly useful.)]

Exercise 5.2 (a) Prove the Helly–Bray result
∫
g dFn →

∫
g dF for all bounded

and continuous g, without appeal to theorem 6.3.2 of Skorokhod. [Truncate the real
line at large continuity points ±M of F , and then use the uniform continuity of g on
the interval [−M,M ] to obtain a simple proof in this case. (Note exercise 9.1.1.)

(b) Alter your proof to be valid when g is bounded and merely continuous a.s. µF .

General Moment Convergence on (Ω,A, µ)
Theorem 5.3 (Moment convergence under →r) Let Xn →r X , r > 0. Then

E|Xn|r → E|X |r.(8)

Moreover, X+
n →r X

+, X−
n →r X

−, and |Xn| →r |X |. (See also exercise 9.1.1.)

Proof. Let (Ω,A, µ) be arbitrary and 0 < r ≤ 1. The Cr-inequality gives

E|Xn|r ≤ E|Xn −X |r + E|X |r and E|X |r ≤ E|X −Xn|r + E|Xn|r,(a)

so that

|E|Xn|r − E|X |r | ≤ E|Xn −X |r → 0 when 0 < r ≤ 1.(9)

Suppose r ≥ 1. Then using Minkowski’s inequality twice (as in (a)) gives∣∣∣E1/r|Xn|r − E1/r|X |r
∣∣∣ ≤ E1/r|Xn −X |r → 0, when r ≥ 1.(10)

Combining (9) and (10) shows that E|Xn|r → E|X |r. (Recall exercise 5.1(b).)

Now, |X+
n −X+| equals |Xn−X |, |Xn−0|, |0−X |, |0−0| just as [Xn ≥ 0, X ≥ 0]

[Xn ≥ 0, X < 0], [Xn < 0, X ≥ 0], [Xn < 0, X < 0]. Thus

|X+
n −X+| ≤ |Xn −X |, and |X−

n −X−| ≤ |Xn −X |(11)

also. Hence X+
n →r X

+, so that E(X+
n )

r → E(X+)r. Likewise for X−
n . Cross-

product terms are 0, since X+(ω)X−(ω) = 0; so if r = k is integral, then

EXk
n = E(X+

n )
k + (−1)kE(X−

n )k → E(X+)k + (−1)kE(X−)k = E(Xk) . 2(b)
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Uniform Integrability and Vitali’s Theorem

Definition 5.3 (Uniformly integrable) A collection of measurableXt’s is called
integrable if sup t E|Xt| <∞. Further, a collection of rvs {Xt : t ∈ T } is said to be
uniformly integrable (which is abbreviated u.i.) if

sup
t∈T

E{ |Xt| × 1[ |Xt|≥λ ]} → 0 as λ→∞ .(12)

(We will see below that u.i. implies ‘integrable’ when µ(Ω) <∞.)

Remark 5.1 (Dominated Xt’s are u.i.) Suppose these |Xt| ≤ Y a.s. for some
Y ∈ L1. Then these Xt’s are integrable, in that supt E|Xt| ≤ EY <∞. But, more
is true. For some null sets Nt, we have [|Xt| ≥ λ] ⊂ [|Y | ≥ λ] ∪Nt. It follows that
µ(|Xt| ≥ λ) ≤ µ(|Y | ≥ λ) → 0 uniformly in t as λ→∞ (use Markov’s inequality).
Then for each fixed t,

∫
[ |Xt|≥λ ]

|Xt| dµ ≤
∫
[ |Y |≥λ ]

Y dµ→ 0 uniformly in t as λ→∞
by the absolute continuity of the integral of Y in theorem 3.2.5. Thus:

If |Xt| ≤ Y for some Y ∈ L1, then these Xt’s are uniformly integrable.(13)

The functions Xn(t) ≡ 1
n 1[−n2,n2](t) on (R,B, λ) are u.i. but not integrable. 2

Exercise 5.3 (a) Now EY =
∫∞
0
P (Y ≥ y) dy =

∫∞
0

[1 − F (y)] dy for any rv

Y ≥ 0 with df F (as will follow from Fubini’s theorem below). Sketch a proof.

(b) In fact, this formula can also be established rigorously now. Begin with simple
functions Y and sum by parts. Then apply the MCT for the general result.

(c) Use the result of (a) to show that for Y ≥ 0 and λ ≥ 0 we have
∫
[Y≥λ] Y dP = λP (Y ≥ λ) +

∫∞
λ
P (Y ≥ y) dy. (Draw pictures.)

(d) Suppose there is a Y ∈ L1 such that P ( |Xn| ≥ y) ≤ P (Y ≥ y) for all y > 0
and all n ≥ 1. Then use (b) to show that {Xn : n ≥ 1} is uniformly integrable.

Exercise 5.4 (Uniform integrability criterion) If supt E|Xt|r ≤M <∞ for
some r > 1, then the Xt’s are uniformly integrable. (Compare this to theorem 5.6
of de la Vallée Poussin below, by letting G(x) = xr.)

Theorem 5.4 (Uniform absolute continuity of integrals) Let µ(Ω) < ∞.
A family of measurable Xt’s is uniformly integrable if and only if both

sup
t

E|Xt| ≤ (some M) <∞ (the collection is integrable) and(14)

µ(A) < δǫ implies sup
t

∫

A

|Xt| dµ < ǫ (uniform absolute continuity).(15)

Proof. Suppose these conditions hold. Then Markov’s inequality and (14) give

µ( |Xt| ≥ λ) ≤ E|Xt| /λ ≤ supt E|Xt| /λ < δǫ uniformly in t(a)

for λ large enough. Then (15) applied to the sets [ |Xt| ≥ λ ] yields (12). (Note
that µ(Ω) <∞ was not used.)
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Suppose the u.i. condition (12) holds. If µ(A) < δ, then
∫
A |Xt| dµ =

∫
A |Xt| × 1[ |Xt|<λ ] dµ+

∫
A |Xt| × 1[ |Xt|≥λ ] dµ(b)

≤ λ× µ(A) +
∫
|Xt| 1[ |Xt|≥λ ] dµ ≤ ǫ/2 + ǫ/2 = ǫ using (12)(c)

for a sufficiently large fixed λ and for δ ≤ ǫ/(2λ). (We have not yet used µ(Ω) <∞.)
Moreover, for λ large enough, (12) again gives

E|Xt| ≤ λ µ(Ω) +
∫
[ |Xt|≥λ ] |Xt| dµ ≤ λ µ(Ω) + 1 for all t;(d)

thus the collection is integrable. Thus (15) holds. 2

Theorem 5.5 (Vitali) (i) Let µ(Ω) < ∞ and r > 0. Suppose that Xn →µ X .

The following are equivalent:

{|Xn|r : n ≥ 1} are uniformly integrable.(16)

Xn →r X.(17)

E|Xn|r → E|X |r <∞.(18)

limn E|Xn|r ≤ E|X |r <∞.(19)

The uniform absolute continuity of (15) holds for the |Xn|r, and X ∈ Lr .(20)

(ii) Let µ(Ω) =∞ and r ≥ 1. Suppose Xn →µ or a.e. X with all Xn in Lr.
(a) Then (17), (18), and (19) are equivalent—and they imply (16).

(b) Suppose (15) holds and that for each ǫ > 0 there exists a set Aǫ for which both
µ(Aǫ) <∞ and supn

∫
Ac

ǫ
|Xn|r dµ ≤ ǫ. This holds if and only if (17)–(19) hold.

Corollary 1 (Lr-convergence) Let µ(Ω) < ∞. Let r > 0. Let all Xn ∈ Lr.
Then Xn →r X (or, E|Xn−X |r → 0) if and only if both Xn →µ X and one (hence
both) of the two families of functions {|Xn|r : n ≥ 1} or {|Xn −X |r : n ≥ 1} is u.i.

Remark 5.2 (Vitali’s theorem) Let Xn →µ X throughout, with µ(Ω) arbitrary.
Fatou and Xn′′ →a.e. X on some further subsequence n′′ of any n′ always yield

E|X |r = E lim |Xn′′ |r ≤ lim E|Xn′′ |r ≤ lim E|Xn′′ |r ≤ lim E|Xn|r.(21)

So Vitali (ii)(a) yields E|Xn|r → E|X |r <∞, if r ≥ 1. Vitali thus gives (for r ≥ 1)

E|Xn −X |r → 0 if and only if E|Xn|r → E|X |r (any µ(Ω) value)

if and only if (in case µ(Ω) <∞) the rvs {|Xn|r : n ≥ 1} are u.i. 2
(22)

Exercise 5.5 Consider Vitali’s theorem. In the proof that follows we will show
that (17) ⇒ (18) ⇒ (19) ⇒ (16) for r > 0 and any µ(Ω) value.

(p) Prove Vitali’s (ii)(a) that (19) implies (17) when r ≥ 1. (See exercise 5.10.)
(q) Prove the “true” Vitali theorem in (ii)(b). (Find a hint in exercise 5.10.)
(r) Give an example to demonstrate the implication that just (16) can hold in (ii).
(s) Note that t ∈ [0,∞) may replace n ∈ {1, 2, . . .} in all of Vitali’s theorem.
(t) Let r ≥ 1. Let Xn →µ X , where |Xn|r ≤ Yn with Yn →µ Y and E|Yn| → E|Y |
provides a bound. Show that Xn →r X .
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Proof. Suppose (16); show (17). Now, Xn′ →a.s. X for some subsequence by

theorem 2.3.1. Thus E|X |r = E(lim |Xn′ |r) ≤ limE|Xn′ |r ≤ M < ∞ using Fatou

and (14). Thus X ∈ Lr. The Cr-inequality gives |Xn −X |r ≤ Cr{|Xn|r + |X |r}.
The |Xn −X |r are easily shown u.i. as in the theorem 5.4 proof. So for large n,

E|Xn −X |r = E{|Xn−X |r × 1[ |Xn−X|>ǫ ]}+E{|Xn −X |r × 1[ |Xn−X|≤ǫ ]}(j)

≤ ǫ+ǫr×µ(Ω) (only here (and for E|X |r finite) was µ(Ω) <∞ needed);(k)

the ǫ in (k) is from (15), since µ(|Xn−X |≥ ǫ)→ 0 by hypothesis. Thus (17) holds.

Now (16) implies (20) by theorem 5.4, with X ∈ Lr by Fatou (as in the previous

paragraph) and using µ(Ω) < ∞. We will not use µ(Ω) < ∞ again. Next, (20)

implies (16) since µ(|Xn| ≥ λ) ≤ µ(|Xn − X | ≥ λ/2) ∪ µ(|X | ≥ λ/2) < ǫ + ǫ, by

first specifying λ large (as X ∈ Lr) and then n large (as Xn →µ X).

Now, (17) implies (18) by theorem 5.3. Also (18) trivially implies (19).

Suppose (19) holds. Define fλ to be a continuous function on [0,∞) that equals

|x|r , 0, or is linear, according as |x|r ≤ λ, |x|r ≥ λ + 1, or λ ≤ |x|r ≤ λ + 1.

Then (graphing fλ(x) and xr on [0, λ+ 1]), we have Yn ≡ fλ(Xn) →µ Y ≡ fλ(X)

by the uniform continuity of each fλ. (See exercise 2.3.4(b).) Let n′ denote any
subsequence of n, and let n′′ denote a further subsequence on which Xn′′ →a.e. X
(see (2.3.14) in theorem 2.3.1 of Riesz). On the subsequence n′′ we then have

limn′′

∫
[ |Xn′′ |r>λ+1] |Xn′′ |r dµ

= limn′′ {
∫
|Xn′′ |r dµ−

∫
[ |Xn′′ |r≤λ+1] |Xn′′ |r dµ}

≤ E|X |r − limn′′

∫
[ |Xn′′ |r≤λ+1]

|Xn′′ |r dµ by (19)(l)

≤ E|X |r − limn′′ E fλ(Xn′′) ≤ E|X |r − E fλ(X) by Fatou(m)

≤
∫

[ |X|r≥λ ]
|X |r dµ→ 0 as λ→∞, since X ∈ Lr .(n)

Thus, limn

∫
[|Xn|r>λ+1]

|Xn|r dµ ≤
∫
[|X|r≥λ] |X |r dµ→ 0, which implies (16). 2

Theorem 5.6 (de la Vallée Poussin) Let µ(Ω) < ∞. A family of L1-integrable
functions Xt is uniformly integrable if and only if there exists a convex function G

on [0,∞) for which G(0) = 0, G(x)/x→∞ as x→∞ and

supt EG(|Xt|) <∞ .(23)

Proof. For λ so large that G(x)/x ≥ c for all x ≥ λ we have
∫
[ |Xt|≥λ ]

|Xt| dµ ≤ 1
c

∫
[ |Xt|≥λ ]

G(|Xt| ) dµ ≤ 1
c supt EG(|Xt| ) < ǫ(a)

for c sufficiently large. Thus (23) implies {Xt : t ∈ T } is uniformly integrable.

Now we show that {Xt : t ∈ T } u.i. implies (23) for some G. We define

G(x) =
∫ x
0 g(y) dy where (with a sequence bn ր having b0 = 0, to be specified

below) g(x) ≡ bn for all n ≤ x < n+ 1, n ≥ 0. Define an(t) ≡ µ( |Xt| ≥ n). Note,
EG( |Xt| ) ≤ b1 µ(1 ≤ |Xt| < 2) + (b1 + b2) µ(2 ≤ |Xt| < 3) + · · ·
=
∑∞

n=1 bn an(t).(b)
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Note that G(n+ 2) ≥ [n/2] g([n/2]) = [n/2] b[n/2], so that G(x)/x→∞ as x→∞.

It thus suffices to choose bn ր∞ such that supt
∑∞

1 bn an(t) <∞. By the definition
of uniform integrability, we can choose integers cn ↑ ∞ such that

supt
∫
[ |Xt|≥cn] |Xt| dµ ≤ 1/2n.(c)

Thus for all t we have

1/2n ≥
∫
[ |Xt|≥cn] |Xt| dµ ≥

∑∞
i=cn

i µ(i ≤ |Xt| < i+ 1)

=
∑∞

i=cn

∑i
j=1 µ(i ≤ |Xt| < i+ 1 )

≥∑∞
j=cn

∑∞
i=j µ(i ≤ |Xt| < i+ 1) =

∑∞
j=cn

µ( |Xt| ≥ j )

=
∑∞

j=cn
aj(t).(d)

Thus, interchanging the order of summation,

1 =
∑∞

n=1 2
−n ≥ supt

∑∞
n=1

∑∞
j=cn

aj(t) = supt
∑∞

j=1 bj aj(t)(e)

for bj ≡ (the number of integers n such that cn is ≤ j).
While u.i. yields a convex G in (23), u.i. follows from (23) without convexity. 2

Exercise 5.6 Consider only the definition of u.i. Do not appeal to Vitali.
(a) Let ξ ∼= Uniform(0, 1), and let Xn ≡ (n/ logn)1[0,1/n](ξ) for n ≥ 3. Show that

these Xn are uniformly integrable and
∫
Xn dP → 0, even though these rvs are not

dominated by any fixed integrable rv Y .

(b) Let Yn ≡ n1[0,1/n](ξ) − n1[1/n,2/n](ξ). Show that these Yn are not uniformly

integrable, but that
∫
Yn dP → 0. However,

∫
|Yn| dP 6→ 0.

Summary of Modes of Convergence Results

Theorem 5.7 (Convergence implications) Let X and Xn’s be measurable
and a.e. finite. (Note figure 5.1.)

(i) If Xn →a.e. X and µ(Ω) <∞, then Xn →µ X.

(ii) If Xn →µ X , then Xn′ →a.e. X on some subsequence n′.

(iii) If Xn →r X , then Xn →µ X and {|Xn|r : n ≥ 1} are uniformly integrable.

(iv) Let r ≥ 1. If Xn →µ or a.e. X and lim E|Xn|r ≤ E|X |r <∞, then Xn →r X .

Let µ(Ω) <∞. If Xn →µ X and {|Xn|r : n ≥ 1} are u.i., then Xn →r X .

(v) If Xn →r X and µ(Ω) <∞, then Xn →r′ X for all 0 < r′ < r.

(vi) If Xn →p X , then Xn →d X .

(vii) Let µ(Ω) <∞. Then Xn →µ X if and only if every subsequence {n′} contains
a further subsequence {n′′} for which Xn′′ →a.e. X .

(viii) If Xn →d X , then Yn →a.e. Y for Skorokhod rvs with Yn ∼= Xn and Y ∼= X .
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Xn→ÊÊa.e. X Some Xn′ →ÊÊa.e. X

Xn→ÊÊr X Xn→ÊÊr′ X for all r′ ≤ r

Xn→ÊÊµ X

Xn→ÊÊd X Every n′ contains an n˝
for which Xn˝ → a.e. X

1

6

2

3

if µ(Ω) < ∞

5

if µ(Ω) < ∞

|Xn|
r u.i.  4

if µ = P 7 if µ(Ω) < ∞

Figure 5.1  Convergence implications.

Proof. See theorem 2.3.1 for (i) and (ii). Markov’s inequality gives (iii) via

µ( |Xn −X | ≥ ǫ) ≤ E|Xn −X |r/ǫr → 0.

Vitali’s theorem includes both halves of (iv). Hölder’s inequality gives (v) via

E|Xn −X |r
′ ≤ {E|Xn −X |r

′(r/r′)}r′/r (E1)1−r′/r, (with E1 = µ(Ω));(a)

note also exercise 5.1(b) and the proof of inequality 3.4.4(b). Proposition 2.4.1
gives (vi). Theorem 2.3.1 then gives (vii). The Skorokhod construction (to appear
more formally as theorem 6.3.2 below) was stated above in (7); (7) gives (viii). 2
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Approximation of Functions in Lr by Continuous Functions

Let Cc denote the class of continuous functions on R that vanish outside a compact

set, and then let C
(∞)
c denote the subclass that has an infinite number of continuous

derivatives. Let Sc denote the class of all step functions on R, where such a step
function is of the form

∑m
1 yj1Ij for disjoint finite intervals Ij . Further, let F denote

a generalized df, and let µ(·) ≡ µF (·) denote the associated Lebesgue–Stieltjes
measure. Let X denote a measurable function on (Ω,A, µ) = (R,B, µF ).

Theorem 5.8 (The continuous functions are dense in Lr(R,B, µF ), r ≥ 1)
Suppose throughout that X ∈ Lr, for some fixed 1 ≤ r <∞.
(a) (Continuous functions) Then for each ǫ > 0 there is a bounded and continuous
function Yǫ in Cc for which

∫
|X−Yǫ|r dµF < ǫ. Thus the class Cc is ǫ-dense within

the class Lr under the ‖ · ‖r–norm.

(b) We may insist that Yǫ ∈ C(∞)
c . (The Yǫ of exercise 5.17 has sup |Yǫ| ≤ sup |X |.)

(c) (Step functions) Such a close approximation may also be found within the step
functions Sc, making them ǫ-dense also.

(d) All this extends to rvs on (Rn,Bn) (or on locally compact Hausdorff spaces).

(e) All these spaces Lr are separable, provided µ is σ-finite and A is countably
generated (that is, A = σ[C] with C a countable collection of sets).

Proof. Let r = 1. Consider only X+. Approximate it by a simple function

Xǫ =
∑κ

1 xi 1Ai of (2.2.10) so closely that
∫
|X+−Xǫ| dµF < ǫ/3. (We can require

that all Ai ⊂ (some [−Mǫ,Mǫ]) for which
∫
[ |X+|≥Mǫ]

X+ dµF < ǫ/3, and that each

xi > 0.) Now, the Halmos approximation lemma of exercise 1.2.3 guarantees sets
B1, . . . , Bn made up of a finite disjoint union of intervals of the form (a, b] (with a
and b finite continuity points of F , as in (b) of the proof of theorem 1.3.1) for which

µF (Ai△Bi) < ǫ/(3κ |xi|), and so X ′
ǫ ≡

∑κ
1 xi 1Bi satisfies

∫
|Xǫ −X ′

ǫ| dµF < ǫ/3. (note that these Bi need not be disjoint).
(p)

ThisX ′
ǫ is the step function called for in part (c). Rewrite this X ′

ǫ =
∑m

1 yj 1Cj with
disjoint Cj = (aj , bj]. Now approximate 1Cj by the continuous function Wj that

equals 0, is linear, equals 1 according as x ∈ [aj , bj ]
c, as x ∈ [aj , aj + δ]∪ [bj − δ, bj],

as x ∈ [aj + δ, bj − δ]. (We require that δ be specified so small that the combined

µF measure of all 2m sets of the type x ∈ [aj , aj + δ] and [bj − δ, bj] is at most

θ ≡ ǫ/(6
∑m

1 yj). Then let Yǫ ≡
∑m

1 cjWj , which has
∫
|X ′

ǫ − Yǫ| dµF < ǫ/3. Thus∫
|X − Yǫ| dµF < ǫ, as called for in part (a). For (b), the function ψ(x/δ) [where

ψ(x) ≡
∫ 1

x
exp(−1/((s(1− s))) ds

∫ 1

0 exp(−1/((s(1− s))) ds
for 0 ≤ x ≤ 1,(24)

with ψ(x) equal to 1 or 0 according as x ≤ 0 or x ≥ 1 is easily seen to have an
infinite number of continuous derivatives on R (with all said derivatives equal to 0
when x equals 0 or 1)]. Use ψ(−x/δ) on [aj , aj + δ] and ψ(x/δ) on [bj − δ, bj] to
connect values 0 to 1, instead of linear connections. The result is a function in C

(∞)
c .
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For r > 1, write X = X+−X−and use the Cr-inequality and |a− b|r ≤ |ar− br|
for all a, b ≥ 0. For example, make E|X+ − Y +

ǫ |r ≤ E|(X+)r − (Y +
ǫ )r| < ǫ by the

case r = 1. (Exercise 5.18 asks for a proof of (e).) 2

Miscellaneous Results

Exercise 5.7 (Scheffé’s theorem) Let fo, f1, f2, . . . be ≥ 0 on (Ω,A, µ).
Prove the following without resort to Vitali. Then prove them via Vitali.

(a) Suppose
∫
Ω fn dµ = 1 for all n ≥ 0, and fn →a.e. fo with respect to µ, then

sup
A∈A

∣∣∣∣
∫

A

fn dµ−
∫

A

fo dµ

∣∣∣∣ ≤
∫

Ω

|fn − fo| dµ→ 0 as n→∞.(25)

(Think of this as the uniform convergence of measures with densities fn.)

[Hint. Integrate (fo− fn)+ and (fo− fn)− separately. Note that (fo− fn)+ ≤ fo.]
(b) Show that lim

∫
Ω
fn dµ ≤

∫
Ω
fo dµ <∞ and fn →µ or a.e. fo is sufficient for (25).

Exercise 5.8∗(→a.u., Egorov) (i) We define Xn →a.u. X (which is used as an
abbreviation for almost uniform convergence) to mean that for all ǫ > 0 there exists
an Aǫ with µ(Aǫ) < ǫ such that Xn →uniformly X on Acǫ . Recall (2.3.6) to show

(Egorov) If µ(Ω) <∞ and Xn →a.e. (some X), then Xn →a.u. X.(26)

If |Xn| ≤ Y a.e. for all n where Y ∈ Lr with r > 1, then µ(Ω) <∞ is not needed.

(ii) (a) If Xn →a.u. X , then both Xn →a.e. X and Xn →µ X .

(b) If Xn →µ X , then Xn′ →a.u. X on some subsequence n′.

Exercise 5.9 (a) (Approximating integrable functions) Suppose µ(Ω) ∈ [0,∞]
and

∫
Ω |X | dµ <∞. Fix ǫ > 0. Show the existence of a set Aǫ with µ(Aǫ) <∞ for

which both |X | ≤ (some Mǫ) on Aǫ and
∫
Ac

ǫ
|X | dµ < ǫ.

(b) Let µ(Ω) < ∞. Let X be measurable and finite a.e. For any ǫ > 0, specify a
finite number Mǫ and a set Aǫ having µ(A

c
ǫ) < ǫ and |X | ≤Mǫ on Aǫ.

Exercise 5.10 Verify Vitali’s theorem 5.5(ii)(a) when µ(Ω) = ∞ is allowed.
[Hint. Apply exercise 5.9, Scheffé’s theorem, absolute continuity of the integral,
Egorov’s theorem, and exercise 3.4.12.]

Exercise 5.11 (ℓr-Spaces) Let Ω be an arbitrary set and consider the class of
all subsets A. Let µ(A) denote the cardinality of A when this is finite, and let it
equal ∞ otherwise. This is counting measure on Ω. Let 0 < r < ∞. Let ℓr(Ω)
denote all functions X : Ω→ R for which

∑
ω∈Ω |X(ω)|r <∞. Then

‖X‖r = {
∑
ω∈Ω |X(ω)|r}1/r, for all r ≥ 1,(27)

defines a norm on ℓr(Ω) (see (3.4.8) for 0 < r < 1). This is just a special case of an
Lr-space, and it is important enough to deserve its specialized notation. Show that

ℓr ⊂ ℓs for all 0 < r < s <∞.(28)

This set inclusion is proper if Ω has infinitely many points.



62 CHAPTER 3. INTEGRATION

The exercises below presented for “flavor” or as tools, rather than to be worked.

Exercise 5.12∗(Weak Lr-convergence; and in L∞) Let Xn, X ∈ Lr, with r ≥ 1.
Let 1/r + 1/s = 1 define s for r > 1. Let s = ∞ when r = 1, and L∞ denotes all
bounded A-measurable Y on Ω, and let ‖X‖∞ ≡ inf{c : µ({ω : |X(ω)| > c}) = 0}
denote the essential supremum of such functions X . Let s = 1 when r =∞. (The
following results can be compared with Vitali’s theorem.)

(A) (a) Fix 1 ≤ r < ∞. Let Xn →r X on L(Ω,A, µ). Show that Xn converges
weakly in Lr (denoted by Xn →w−Lr X) in that

∫
Ω
Xn Y dµ→

∫
Ω
X Y dµ for all Y ∈ Ls .(29)

(b) (Radon-Reisz) Conversely, suppose that Xn →w−Lr X and additionally that
the moments satisfy E|Xn|r → E|X |r, where 1 < r <∞. Show that Xn →Lr X .

(B) (c) Let Xn →µ or a.e. X . Let 1 < r < ∞ and supn E|Xn|r < ∞. Show (29).
(Recall Scheffé’s theorem regarding r = 1.)

(C) (d) (Lehmann) Fix M . Let FM ≡ {X : ‖X‖∞ ≤ M < ∞}. Let X,X1, X2, . . .
denote specific functions in FM . Then (29) holds for all Y ∈ L1 if and only if (29)
holds for all Y in the subclass {1A : µ(A) <∞}. (Note also exercise 5.21 below.)

Exercise 5.13∗ (a) L∞(Ω, σ[{all open sets}], µ) is a complete metric space under
the essential sup norm ‖ · ‖∞ whenever Ω is a locally compact Hausdorff space.
(b) The set Sc of simple functions that vanish off of compact sets is dense in this
complete metric space (L∞, ‖ · ‖∞). (Recall theorem 5.8.)
(c) No family of continuous functions is dense in (L∞([0, 1],B, λ), ‖ · ‖∞), and the
space L∞ is not separable under the norm ‖ · ‖∞.

Exercise 5.14∗(Loève) Suppose X1, X2, . . . are integrable on (Ω,A, µ). Define
φn(A) ≡

∫
A
Xn dµ for all A ∈ A, and suppose φn(A) converges to a finite number

for all A ∈ A. Define |φ|n(A) ≡
∫
A |Xn| dµ. Then supn |φ|n(Ω) <∞. Moreover,

supn |φ|n(A)→ 0 as either µ(A)→ 0 or Aց 0.(30)

Finally, there exists an integrable function X (that is unique a.e. µ) for which
φn(A) → φ(A) for all A ∈ A, with φ(A) ≡

∫
AX dµ. (Relate this to the absolute

continuity of measures introduced in the next chapter.)

Exercise 5.15∗(Lusin) Suppose Xn →a.e. X , with µ being σ-finite on (Ω,A).
Determine a measurable decomposition Ω = A0+A1+A2+ · · · for which µ(A0) = 0
and Xn → X uniformly on each of A1, A2, . . ..

Exercise 5.16∗(Lusin) Let X be an (R,B) measurable function on R.
(a) Let ǫ > 0. Show that there exists a continuous function Yǫ on R and a closed
set Dǫ such that λ(Dc

ǫ) < ǫ and X = Yǫ on Dǫ.
(b) Show that a function X : R → R is B-measurable if and only if there exists a
sequence of continuous function Yn : R→ R for which Yn →a.e. X .
[Hint. (a) Begin with simple functions like those in (2.2.10). Consider each [n, n+1]
separately. Apply Egorov’s theorem.]
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Exercise 5.17∗(Lusin) Let X be measurable on (Ω,A, µ), where Ω is a locally
compact Hausdorff space [every point has a neighborhood whose closure is compact,
such as the real line R with the usual Euclidean metric] and A = σ[{open sets}].
Suppose X(ω) = 0 for all ω ∈ Ac, where µ(A) <∞. Let ǫ > 0. Then there exists Yǫ,
where Yǫ(ω) = 0 for all ω ∈ Bc, with the set B compact, and where Yǫ is continuous,

sup |Yǫ| ≤ sup |X |, and µ({ω : X(ω) 6= Yǫ(ω)}) < ǫ. [That is, a measurable function
is “almost equal” to a continuous function.] (Note exercise ??.?? below.)

Exercise 5.18∗ Prove the separability of Lr in theorem 5.8(e).

Exercise 5.19∗(Halmos) Let (Ω,A, µ) be σ-finite. For each A1, A2 in A define
ρ(A1, A2) = µ(A1△A2). We agree to identify all members of the equivalence classes
of subsets A ≡ {A′ : ρ(A,A′) = 0}.) Let A0 denote the collection of all of these
equivalence classes A that satisfy µ(A) <∞.
(a) Show that (A0, ρ) is a metric space.
(b) Show that the metric space (A0, ρ) is separable whenever A = σ[C] for some
countable collection C (that is, whenever A is countably generated).

Definition 5.4 (Dominated families of measures) Suppose that M is a family
of measures µ on some (Ω,A) having µ≪ µ0 for some σ-finite measure (Ω,A, µ0).
Denote this by M ≪ µ0, and say that M is dominated by µ0. Show that there
exists a probability distribution P0 on (Ω,A) for which µ≪ P0 for all µ ∈ M; that
is, for whichM≪ P0. (Note definition ??.??.)

Exercise 5.20∗(Berger) Let P denote a collection of probability measures P on
the measurable space (Ω,A). Suppose A = σ[C] for some countable collection C;
that is, A is countably generated. Let dTV denote the total variation metric on P ;
see exercise 4.2.10 below. Show that

P is dominated if and only if (P , dTV ) is a separable metric space.(31)

(For example, let P denote all Poisson(λ) distributions on 0, 1, 2, . . . having λ > 0.
The countable collection of distributions with λ is rational is dense in (P , dTV ).)
[Hint. Use the previous exercise.]

Exercise 5.21∗(Lehmann) Suppose that (Ω,A, µ) is σ-finite and A is countably
generated. Let Φ denote the set of all A-measurable φ for which 0 ≤ φ(ω) ≤ 1 for
all ω ∈ Ω. Consider an arbitrary sequence φn ∈ Φ. Show that a subsequence n′ and
a function φ ∈ Φ must exist for which

∫
Ω
φn′ f dµ→

∫
Ω
φ f dµ for all f ∈ L1(Ω,A, µ)(32)

(that is, φn′ →w−L1 φ, or φn′ converges weakly in L1 to φ in the sense of (29)).
[Hint. By exercise 5.12(d) it suffices to verify (32) for all f = 1A with µ(A) <∞.]

Exercise 5.22 (An added touch) Let an ≥ 0 satisfy
∑∞

1 an < ∞. Show that

there necessarily exists a sequence cn ↑ ∞ for which
∑∞

1 cnan <∞.
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Chapter 4

Derivatives via Signed
Measures

0 Introduction
In a typical calculus class the derivative F ′(x) of a function F at x is defined as
the limit of the difference quotients [F (x + h) − F (x)]/h as h → 0. One of the
major theorems encountered is then the Fundamental Theorem of Calculus that
expresses F as the integral of its derivative (with this result formulated on some
interval [a, b] with respect to ordinary Lebesgue measure dλ = dx). We can thus

write F (x)−F (a) =
∫ x
a F

′(y) dy under appropriate hypothesis on F . In the context
of an elementary probability class we let f ≡ F ′ and rewrite the fundamental result

as P ( [a, x] ) =
∫
[a,x]f(y) dy =

∫ x
a f(y) dy for all a ≤ x ≤ b, or even as

P (A) =
∫
A
f(y) dy for all events A of the form [a, x].(1)

Let us now turn this order around and begin by defining one function φ as the
“indefinite integral” of another function X , and do it on an arbitrary measure space
(Ω,A, µ). Thus for a fixed X ∈ L1(Ω,A, µ), define

φ(A) =
∫
AX dµ for all A ∈ A.(2)

As example 4.1.1 will show, if X ≥ 0 then this φ is a measure on (Ω,A); in general

φ(A) ≡
∫
AX dµ =

∫
AX

+ dµ −
∫
AX

− dµ is the difference of two measures, and is

thus called a “signed measure.” As (2) suggests, we can think of X as a derivative
of the signed measure φ with respect to the measure µ. This is the so called
“Radon-Nikodym derivative.” In this context it is possible to formulate important
general questions that have clean conclusions via straight forward and/or clever
proofs. This is done in section 4.1 and section 4.2, and this gives us most of what
we need as we go forward. But before going on, in section 4.3 and section 4.4
we relate this new approach back to the more pedantic and more limited standard
approach represented by (1). Of course, the f in (1) must equal the Radon-Nikodym
derivative (viewed in the new context); but much is gained by this new perspective.

65
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1 Decomposition of Signed Measures
Definition 1.1 (Signed measure) A signed measure on a σ-field (or a field) A is
a set function φ : A → (−∞,+∞] for which φ(∅) = 0 and φ(

∑
An) =

∑
φ(An) for

all countable disjoint sequences of An’s in A (requiring
∑
An in A in the case of a

field). When additivity is required only on finite unions, then φ is called a finitely
additive (f.a.) signed measure. (If φ ≥ 0, then φ is a measure or f.a. measure.)

If |φ(Ω)| < ∞, then φ is called finite. If Ω =
∑∞

1 Ωn with all components Ωn ∈ A
and all values |φ(Ωn)| <∞, then φ is called σ-finite.

Proposition 1.1 (Elementary properties) (i) If φ(A) is finite and B ⊂ A, then
φ(B) is finite. Thus φ(Ω) finite is equivalent to φ(A) being finite for all A ∈ A.
(ii) If |φ(∑∞

1 An)| <∞, then
∑∞

1 |φ(An)| <∞ (so, it is absolutely convergent).

Proof. (i) Now,

(a finite number ) = φ(A) = φ(B) + φ(A \B)(a)

implies that φ(B) and φ(A \B) are both finite numbers.

(ii) Let A+
n equal An or ∅ as φ(An) is ≥ 0 or < 0. And let A−

n equal An or ∅ as

φ(An) is ≤ 0 or > 0. Then
∑
φ(A+

n ) = φ(
∑
A+
n ) <∞ by (i), since

∑
A+
n ⊂

∑
An.

Likewise,
∑
φ(A−

n ) = φ(
∑
A−
n ). Now, convergent series of numbers in [0,∞) may

be rearranged at will. Thus
∑ |φ(An)| =

∑
φ(A+

n )−
∑
φ(A−

n ) is finite. 2

Example 1.1 (The prototypical example) Let X be measurable. Then

φ(A) ≡
∫

A

X dµ is a signed measure if X− ∈ L1.(1)

Note that φ is finite if X ∈ L1. Also, φ is σ-finite if X is a.e. finite and µ is σ-finite.

Proof. Now, φ(∅) =
∫
∅ X dµ =

∫
X · 1∅ dµ =

∫
0 dµ = 0. Also,

φ(A) =
∫
A
X+ dµ−

∫
A
X− dµ ≥ −

∫
A
X− dµ > −∞(a)

for all A ∈ A. Finally,
φ(
∑∞

1 An) =
∫
ΣAn

X =
∫
ΣAn

X+ −
∫
ΣAn

X− with the X−-term finite

=
∑∫

An
X+ −∑

∫
An
X− by the MCT, twice

=
∑

(
∫
An
X+ −

∫
An
X−) =

∑∫
An
X =

∑∞
1 φ(An).(b)

Thus φ is a signed measure.

Note that |φ(A)| = |
∫
AX | ≤

∫
A |X | ≤

∫
|X | <∞ for all A, if X ∈ L1.

Let Ω ≡∑nΩn be a measurable decomposition for the σ-finite µ. Then the sets

Ωnm ≡ Ωn ∩ [m ≤ X < m+ 1] and Ωn,±∞ ≡ Ωn ∩ [X = ±∞], for n ≥ 1 and for all
integers m, is a decomposition showing φ to be σ-finite. 2
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Definition 1.2 (Continuous signed measure) A signed measure φ is continuous
from below (above) if φ( limAn) = lim φ(An) for all An ր (for all An ց, with at
least one φ(An) finite). We call φ continuous in case it is continuous both from
below and from above.

Proposition 1.2 (Continuity of signed measures)
A signed measure on either a field or a σ-field is countably additive and continuous.
Conversely, if a finitely additive signed measure on either a field or σ-field is either
continuous from below or is finite and continuous from above at ∅, then it is a
countably additive signed measure.

Proof. This result has nearly the same proof as does the corresponding result
for measures; see proposition 1.1.4. 2

Exercise 1.1 (a) Actually write out all details of the proof of proposition 1.2.
(b) If φ and ψ are signed measures, then so is φ+ ψ.

Theorem 1.1 (Jordan–Hahn decomposition) Let φ be a signed measure on
the measurable space (Ω,A), having events A. Then Ω can be decomposed into
events as Ω = Ω+ +Ω−, where

Ω+ is a positive set for φ, in that φ(A) ≥ 0 for all events A ⊂ Ω+,(2)

Ω− is a negative set for φ, in that φ(A) ≤ 0 for all events A ⊂ Ω−.(3)

Moreover, we obtain measures on the measurable space (Ω,A) via the definitions

φ+(A) ≡ φ(A ∩Ω+) and φ−(A) ≡ −φ(A∩Ω−) (with φ = φ+−φ−),(4)

with φ+ a measure and φ− a finite measure on (Ω,A). Of course, φ+(Ω−) = 0
and φ−(Ω+) = 0. We will call φ+, φ−, and |φ|(·) ≡ φ+ + φ− the positive part, the
negative part, and the total variation measure associated with φ; thus

|φ|(·) ≡ φ+(·) + φ−(·) is the total variation measure on (Ω,A),(5)

Moreover, the following relationships hold:

φ+(A) = sup{φ(B) : B ⊂ A,B ∈ A} ,
φ−(A) = − inf{φ(B) : B ⊂ A,B ∈ A}.(6)

Exercise 1.2 Identify φ+, φ−, |φ|, and |φ|(Ω) in the context of the prototypical
situation of example 1.1. Be sure to specify Ω+ and Ω−.

Proof. Let us note first that (6) follows from the previous parts of the theorem.
If B ⊂ A then φ(B) = φ(BΩ+) + φ(BΩ−) ≤ φ(BΩ+) = φ+(B) ≤ φ+(A), while
equality is actually achieved for the particular subset AΩ+. Thus, (6) holds.
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Consider claims (2) and (3). Let B denote some set having φ(B) < 0. [That
φ(B) > −∞ is crucial; this proof will not work on the positive side.] (If no such set
exists, let Ω+ ≡ Ω, giving |φ| = φ+ = φ and φ− ≡ 0.) We now show that

B contains a negative set C.(a)

If B is a negative set, use it for C. If not, then we will keep removing sets Ak with
φ(Ak) > 0 from B until only a negative set C is left. We will remove disjoint sets
Ak with φ(Ak) ≥ 1 as many times as we can, then sets with φ(Ak) ≥ 1

2 as many

times as we can, . . . . To this end, let

n1 ≡ min{i : φ(A1) ≥ 1/i for some A1 ⊂ B, with A1 ∈ A},
· · ·
nk ≡ min{i : φ(Ak) ≥ 1/i for some Ak ⊂ B \

∑k−1
j=1Aj , with Ak ∈ A}

· · · .
(b)

(If (n1, n2, . . .) = (1, 1, 2, 2, 2, 3, . . .), then φ(Ai) ≥ 1 for 1 ≤ i ≤ 2, 1
2 ≤ φ(Ai) < 1

for 3 ≤ i ≤ 5, . . ..) Let C ≡ B \∑k Ak, where the union is infinite (unless the

process of choosing nk’s terminates) and where only finitely many sets Ak exist for
each 1/i [else proposition 1.1(i) would be violated]. The c.a. of φ then gives

0 > φ(B) = φ(C) +
∑

k φ(Ak) ≥ φ(C) > −∞.(c)

Moreover, C is a negative set, since no subset can have measure exceeding 1/i for
any i. Now we know that we have at least one negative set. So we let

d ≡ inf{φ(C) : C is a negative set } < 0, and define Ω− ≡ ∪kCk,(d)

where Ck denotes a sequence of negative sets for which φ(Ck) ց d. Now, Ω−

is also a negative set (else one of the Ck’s would not be), and thus φ(Ω−) ≥ d,
because it must exceed the infimum of such values. But φ(Ω−) ≤ d also holds, since

φ(Ω−) = φ(Ck) + φ(Ω− \ Ck) ≤ φ(Ck) for all k gives φ(Ω−) ≤ d. Thus φ(Ω−) = d;

so, d must be finite. Then Ω+ is a positive set, since if φ(A) < 0 for some A ⊂ Ω+,
then the set Ω− ∪ A would have φ(A ∪ Ω−) < d (which is a contradiction). 2

Exercise 1.3 The set Ω+ is essentially unique, in that if Ω+
1 and Ω+

2 both satisfy
the theorem, then |φ|(Ω+

1 △Ω+
2 ) = 0.

Lebesgue Decomposition

Definition 1.3 (Absolute continuity of measures) Let µ and φ denote a
measure and a signed measure on a σ-field A. Call φ absolutely continuous with
respect to µ, denoted by φ ≪ µ, if φ(A) = 0 for each A ∈ A having µ(A) = 0. We
say φ is singular with respect to µ, denoted by φ ⊥ µ, if there exists a set N ∈ A
for which µ(N) = 0 while |φ|(N c) = 0.

Exercise 1.4 Let µ be a measure and let φ be signed measures on (Ω,A). Show
that the following are equivalent: (a) φ≪ µ. (b) φ+ ≪ µ and φ− ≪ µ. (c) |φ| ≪ µ.



1. DECOMPOSITION OF SIGNED MEASURES 69

Theorem 1.2 (Lebesgue decomposition) Let µ denote any σ-finite measure
on the measurable space (Ω,A). Let φ be any other σ-finite signed measure on this
space (Ω,A). Then there exists a unique decomposition of φ with respect µ as

φ = φac + φs where φac ≪ µ and φs ⊥ µ,(7)

with φac and φs being σ-finite signed measures. Moreover,

φac(A) =

∫

A

Z0 dµ for all A ∈ A(8)

for some finite A-measurable function Z0, which is unique a.e. µ.

Proof. By σ-finiteness and the Jordan–Hahn decomposition, we need only
give the proof if µ and φ are finite measures; just separately consider φ+Ωn

and φ−Ωn

(n = 1, 2, . . .) for a joint σ-finite decomposition Ω =
∑∞

1 Ωn of µ and |φ|. (To give
the details would be pedantic.) We now establish the existence of the decomposition
in the reduced problem when φ and µ are finite measures. Let

Z ≡ {Z : Z ≥ 0, Z ∈ L1 and
∫
A
Z dµ ≤ φ(A) for all A ∈ A}.(a)

Now, Z 6= ∅, since Z ≡ 0 is in Z.
Case 1. φ≪ µ: The first step is to observe that

Z1, Z2 ∈ Z implies Z1 ∨ Z2 ∈ Z.(b)

With A1 ≡ {ω ∈ A : Z1(ω) > Z2(ω)} and A2 ≡ AAc1, we have
∫
A
(Z1 ∨ Z2) dµ =

∫
A1
Z1 dµ+

∫
A2
Z2 dµ ≤ φ(A1) + φ(A2) = φ(A).(c)

Thus (b) holds. Now choose a sequence Zn ∈ Z such that
∫
Ω
Zn dµ→ c ≡ supZ∈Z

∫
Ω
Z dµ ≤ supZ∈Z φ(Ω) ≤ φ(Ω) <∞.(d)

We may replace Zn by Z̃n ≡ Z1∨· · ·∨Zn in (d). These Z̃n in (d) are anր sequence

of functions. Then let Z0 ≡ lim Z̃n. The MCT then gives (for any A ∈ A)
∫
A
Z0 dµ = lim

∫
A
Z̃n dµ ≤ limφ(A) ≤ φ(A), so that Z0 ∈ Z , and(e)

∫
Ω
Z0 dµ = lim

∫
Ω
Z̃n dµ = c <∞, showing that Z0 ≥ 0 is a.e. finite.(f)

(Redefine Z0 on a null set so that it is always finite.)

We now define

φac(A) ≡
∫
AZ0 dµ and φs(A) ≡ φ(A) − φac(A) for all A ∈ A.(g)

Then φac is a finite measure, which can be seen by applying example 1.1 with c
finite; and φac ≪ µ. Moreover,

φs ≡ φ− φac ≥ 0(h)

(since Z0 ∈ Z), so that φs is a finite measure by exercise 1.1. If φs(Ω) = 0, then
φ = φac and we are done, with φs ≡ 0. [In the next paragraph we verify that φs ≡ 0
always holds in Case 1; that is, we will verify that φs(Ω) = 0.]
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Assume φs(Ω) > 0. Then (since µ(Ω) is finite) there is some θ > 0 for which

φs(Ω) > θ µ(Ω).(i)

Let Ω+ and Ω− denote the Jordan–Hahn decomposition for φ∗ ≡ φs − θ µ. Then
µ(Ω+) > 0 must follow (while (i) is being assumed).(j)

[Assume (j) is not true, so that µ(Ω+) = 0. This implies φac(Ω
+) =

∫
Ω+ Zo dµ = 0.

It further implies that φs(Ω
+) = 0 (since φs = φ−φac ≪ µ, as φ≪ µ is assumed for

Case 1 and as φac≪µ is obvious from example 4.1.1). But φs(Ω
+)=0 contradicts (i)

by implying that

φs(Ω)− θ µ(Ω) ≡ φ∗(Ω) = −φ∗(Ω−) + φ∗(Ω+)

= −φ∗(Ω−) + [φs(Ω
+)− θµ(Ω+)] = −φ∗(Ω−) ≤ 0.(k)

Thus (j) must also hold, under the assumption made above that inequality (i) holds.]

Now, φs(AΩ
+) ≥ θ µ(AΩ+) (by the definition of Ω+ below (i) ). Thus (as φs ≥ 0

by (h) gives the inequality φs(AΩ
−) ≥ 0),

φ(A) = φac(A) + φs(A) =
∫
A Z0 dµ+ φs(AΩ

+) + φs(AΩ
−)

≥
∫
A
Z0 dµ+ φs(AΩ

+)

≥
∫
A Z0 dµ+ θ µ(AΩ+) as Ω+ is a positive set for φ∗ ≡ φs − θ µ

=
∫
A
(Z0 + θ 1Ω+) dµ for all A ∈ A.(l)

This implies both Zθ ≡ Z0 + θ 1Ω+ ∈ Z and
∫
Ω
Zθ dµ = c+ θ µ(Ω+) > c. But this

is a contradiction. Thus φs(Ω) = 0. Thus φ equals φac and satisfies (8), and the
theorem holds in Case 1. The a.s. µ uniqueness of Z0 follows from exercise 3.2.2.
(This also establishes the Radon–Nikodym theorem below.)

Case 2. General φ: Let ν ≡ φ+ µ, and note that both φ≪ ν and µ≪ ν. Then
by Case 1 we can infer that

φ(A) =
∫
AX dν and µ(A) =

∫
A Y dν for all A ∈ A(m)

for finite ν-integrable functions X ≥ 0 and Y ≥ 0 that are unique a.e. ν. Let

D ≡ {ω : Y (ω) = 0}, and then Dc = {ω : Y (ω) > 0}. Define

φs(A) ≡ φ(AD) and φac(A) = φ(ADc).(n)

Now µ(D) =
∫
D Y dν =

∫
D 0 dν = 0, and (n) gives φs(D

c) = φ(DcD) = φ(∅) = 0;

thus φs ⊥ µ. Is φac << µ? Let µ(A) = 0. Then µ(ADc) = 0. Then by (m),

0 = µ(ADc) =
∫
ADc Y dν; and thus Y = 0 a.e. ν in ADc, by exercise 3.2.1. But

Y > 0 on ADc, and so ν(ADc) = 0. Then (n) and (m) give φac(A) = φ(ADc) =∫
ADc X dν = 0, since ν(ADc) = 0. So, µ(A) = 0 implies φac(A) = 0. Thus φac ≪ µ.

Consider the uniqueness of the decomposition. If φ = φac + φs = φ̄ac + φ̄s, then

ψ ≡ φac − φ̄ac = φ̄s − φs satisfies both ψ ⊥ µ and ψ ≪ µ. Thus ψ ≡ 0. 2
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Exercise 1.5 Verify the following elementary facts for signed measures φ1, φ2, φ
and a measure µ on some measurable space (Ω,A).
(a) If φ1 ≪ µ and φ2 ≪ µ, then φ1 + φ2 ≪ µ
(b) If φ1 ⊥ µ and φ2 ⊥ µ, then φ1 + φ2 ⊥ µ
(c) If φ≪ µ and φ ⊥ µ, then φ ≡ 0. (This was used in the previous proof.)
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2 The Radon–Nikodym Theorem
Recall that the absolute continuity φ≪ µ means that

φ(A) = 0 whenever µ(A) = 0 with A ∈ A.(1)

Theorem 2.1 (Radon–Nikodym) Suppose both the signed measure φ and the
measure µ are σ-finite on a measurable space (Ω,A). Then φ ≪ µ if and only if
there exists uniquely a.e. µ a finite-valued A-measurable function Z0 on Ω for which

φ(A) =

∫

A

Z0 dµ for all A ∈ A .(2)

Moreover, φ is finite if and only if Z0 is integrable.

The function Z0 of (2) is often denoted by dφ
dµ , so that we also have the following

very suggestive notation:

φ(A) =

∫

A

dφ

dµ
dµ for all A ∈ A.

We call Z0 the Radon–Nikodym derivative (or the density) of φ with respect to µ.

Proof. The Lebesgue decomposition theorem shows that such a Z0 necessarily
exists. The sufficiency is just the trivial example 4.1.1. The “moreover” part is also
a trivial result. 2

Theorem 2.2 (Change of variable theorem) Let µ ≪ ν where µ and ν are
σ-finite measures on (Ω,A). If

∫
X dµ has a well-defined value in [−∞,∞], then

∫

A

X dµ =

∫

A

X

[
dµ

dν

]
dν for all A ∈ A ,(3)

One useful special case results from
∫ b

a

f dG =

∫ b

a

fg dH, with G ≡
∫ ·

a

g dH for a generalized df H,(4)

where g ≥ 0 on (a, b] is measurable, and where we agree that
∫ b
a ≡

∫
(a,b] .

Proof. Case 1. X = 1B, for B ∈ A: Then the Radon–Nikodym theorem gives

∫
A 1B dµ = µ(AB) =

∫
AB

dµ

dν
dν =

∫
A 1B

dµ

dν
dν .(a)

Case 2. X =
∑n

1 ci1Bi , for a partition Bi: Case 1 and linearity of the integral give

∫
A
X dµ =

∑n
i=1 ci

∫
A
1Bi dµ =

∑n
1 ci

∫
A
1Bi

dµ

dν
dν =

∫
A
X
dµ

dν
dν .(b)

Case 3. X ≥ 0: Let Xn ≥ 0 be simple functions that ր to X . Then the MCT
twice gives

∫
A
X dµ = lim

∫
A
Xn dµ = lim

∫
A
Xn

dµ

dν
dν =

∫
A
X
dµ

dν
dν .(c)
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Case 4. X measurable and at least one of X+, X− in L1: Then
∫
A
X dµ =

∫
A
X+ dµ−

∫
A
X− dµ

=
∫
A
X+ dµ

dν
dν −

∫
A
X− dµ

dν
dν =

∫
A
X

dµ

dν
dν ,(d)

so long as one of
∫
AX

+ dµ and
∫
AX

− dµ is finite. 2

Exercise 2.1 (Derivative of a sum, and a chain rule) Let µ and ν be σ-finite
measures on (Ω,A). Let φ and ψ be σ-finite signed measures on (Ω,A). Then

d(φ + ψ)

dµ
=
dφ

dµ
+
dψ

dµ
a.e. µ if φ≪ µ and ψ ≪ µ ,(5)

dφ

dν
=
dφ

dµ
· dµ
dν

a.e. ν if φ≪ µ and µ≪ ν.(6)

Show that dµ
dν = 1/ dνdµ holds a.e. µ and a.e. ν if µ≪ ν and ν ≪ µ.

Note that theorem 3.2.6 (of the unconscious statistician) is another change of
variable theorem. That is, if X : (Ω,A)→ (Ω̄, Ā ) and g : (Ω̄, Ā )→ (R̄, B̄ ), then

∫

(g◦X)−1(B)

g(X) dµ =

∫

g−1(B)

g dµX =

∫

B

y dµg(X)(y) for all B ∈ B,(7)

when one of the these integrals is well-defined. (See also exercise 6.3.3 below.)

Exercise 2.2 Let Pµ,σ2 denote the N(µ, σ2) distribution. Let P have the density
f ≡ dP/dλ with respect to Lebesgue measure λ for which f > 0.

(a) Show that λ≪ P with density 1/f .
(b) Show that Pµ,1 ≪ P0,1 and compute dPµ,1/dP0,1.
(c) Show that P0,σ2 ≪ P0,1 and compute dP0,σ2/dP0,1.
(d) Compute dP/dP0,1 and dP0,1/dP when P denotes the Cauchy distribution.

Exercise 2.3 Flip a coin. If heads results, let X be a Uniform(0, 1) outcome;
but if tails results, let X be a Poisson(λ) outcome. The resulting distribution on R
is labeled φ.
(a) Let µ denote Lebesgue measure on R. Find the Lebesgue decomposition of φ
with respect to this µ; that is, write φ = φac + φs.
(b) Let µ be counting measure on {0, 1, 2, . . .}. Find the Lebesgue decomposition
of φ with respect to this µ.
[If need be, see the definitions of various distributions in chapter 9.]

Exercise 2.4 Let µ be a σ-finite measure on (Ω,A). Define φ(A) ≡
∫
A
X dµ for

all A ∈ A for some µ-integrable function X . Show that

|φ|(A) =
∫
A
|X | dµ for all A ∈ A.
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Exercise 2.5 (Alternative definition of absolute continuity) Let φ be finite and
let µ be σ-finite, for measures on (Ω,A). Then φ≪ µ if and only if for every ǫ > 0
there exists δǫ > 0 such that µ(A) < δǫ implies φ(A) < ǫ. (Show that if µ is finite
and φ is not, then the claim could fail.)

Exercise 2.6 (Domination) If µ1, µ2, . . . are finite measures on some (Ω,A), then
there exists a finite measure µ on (Ω,A) such that µk ≪ µ for each k ≥ 1.

Exercise 2.7 (Halmos) Suppose µ1, µ2, . . . and ν1, ν2, . . . are finite measures on
some (Ω,A) for which µk ≪ νk for each k ≥ 1. Suppose also that

µ(A) = lim
n→∞

∑n
k=1 µk(A) and ν(A) = lim

n→∞

∑n
k=1 νk(A)

for all A ∈ A. Show that the following hold a.e. ν :

{d∑n
k=1 νk} /{dν} ր 1 and {d∑n

k=1 µk} /{dν} ր {dµ /dν} ,

{d∑n
k=1 µk} /{d

∑n
k=1 νk} → {dµ /dν} .

(8)

These can be thought of as theorems about Radon–Nikodym derivatives, about
absolute continuity of measures, or about change of variables.

Exercise 2.8 Let A denote the collection of all subsets A of an uncountable set
Ω for which either A or Ac is countable. Let µ(A) denote the cardinality of A.
Define φ(A) to equal 0 or∞ according as A is countable or uncountable. Show that
φ≪ µ. Then show that the Radon–Nikodym theorem fails.

Exercise 2.9 For a σ-finite measure µ and a finite measure ν on (Ω,A), let

φ(A) ≡ µ(A) − ν(A) for all A ∈ A .

(a) Show that φ is a signed measure. (b) Show that

φ(A) =
∫
A
(f − g) d(µ+ ν),

for measurable functions f and g with g ∈ L+1 (µ+ ν). (Note example 4.1.1.)
(c) Determine φ+, φ−, and |φ|; and determine |φ|(Ω) in case µ is also a finite
measure.

Exercise 2.10 (Total variation distance between probability measures) Define
P and Q to be probability measures on (Ω,A).
(a) Show that the total variation distance dTV (P,Q) between P and Q satisfies

dTV (P,Q) ≡ {supA∈A |P (A) −Q(A)|} = 1
2

∫
| p− q | dµ(9)

for any σ-finite measure µ dominating both P and Q (that is, P ≪ µ and Q≪ µ).

(b) Use part (a) to show that dTV (P,Q) = |P −Q| (Ω) /2 .
(c) Note specifically that the choice of dominating measure µ does not affect the
value of dTV (P,Q). (Note section 14.2 below.)
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Exercise 2.11 (Hellinger distance between probability measures) Let P and Q
denote probability measures on (Ω,A). Define the Hellinger distance H(P,Q) by

H2(P,Q) ≡ 1
2

∫
[
√
p−√q ]2 dµ(10)

for any measure µ dominating both P and Q. Show that the choice of dominating
measure µ does not affect the value of H(P,Q). (Note section 14.2 below.)

Exercise 2.12 Let φ be a σ-finite signed measure. Define
∫
X dφ =

∫
X dφ+ −

∫
X dφ−

when this is finite. Show that |
∫
X dφ| ≤

∫
|X | d|φ| .

Exercise 2.13 Let (Ω,A) be a measurable space, and letM denote the collection
of all finite signed measures µ on (Ω,A). Let ‖µ‖ ≡ |µ|(Ω). Thus ‖µ1 − µ2‖ =
|µ1 − µ2|(Ω). Show that (M, ‖ · ‖) is a complete metric space.
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3 Lebesgue’s Theorem
Theorem 3.1 (Lebesgue) Suppose F is an ր function on [a, b]. Then F has
an integrable derivative F ′ that exists and is finite a.e. λ on [a, b].

Proof. Consider the Dini derivates

D+F (x) ≡ lim suph→0+ [F (x+ h)− F (x)]/h ,
D−F (x) ≡ lim suph→0+ [F (x) − F (x− h)]/h ,
D+F (x) ≡ lim infh→0+ [F (x+ h)− F (x)]/h ,
D−F (x) ≡ lim infh→0+ [F (x) − F (x− h)]/h .

Trivially, D+F (x) ≥ D+F (x) and D−F (x) ≥ D−F (x). All four derivates having
the same finite value is (of course) the definition of F being differentiable at x, with
the common value of the derivates being called the derivative of F at x and being
denoted by F ′(x). Let

A ≡ {x : D+F (x) > D−F (x)}

≡ ⋃r,sArs ≡
⋃
r,s{x : D+F (x) > s > r > D−F (x)},(a)

where the union is over all rational r and s. To show that λ(A) = 0, it suffices
to show that all Ars have outer Lebesgue measure zero, in that λ∗(Ars) = 0. To
this end, let U be an open set for which Ars ⊂ U with λ(U) < λ∗(Ars) + ǫ. For
each x ∈ Ars we can specify infinitely many and arbitrarily small h for which
[x − h, x] ⊂ U and [F (x) − F (x − h)]/h < r. This collection of closed intervals
covers Ars in the sense of Vitali (see exercise 1.2.8). Thus some finite disjoint
collection of them has interiors I1 ≡ (x1 − h1, x1), . . . , Im ≡ (xm − hm, xm) for

which Brs ≡ Ars ∩ (
∑m

i=1 Ii) has λ
∗(Brs) > λ∗(Ars)− ǫ. Then

∑m
i=1 [F (xi)− F (xi − hi)] < r

∑m
i=1 hi ≤ r λ(U) < r [λ∗(Ars) + ǫ ] .(b)

For each y ∈ Brs we can specify infinitely many and arbitrarily small h for which

[y, y + h] ⊂ (some Ii) and [F (y + h) − F (y)]/h > s. This collection covers Brs
in the sense of Vitali. Thus some finite disjoint collection of them has interiors
J1 ≡ (y1, y1 + h1), . . . , Jn ≡ (yn, yn + hn) for which Crs ≡ Brs ∩ (

∑n
j=1 Jj) has

λ∗(Crs) > λ∗(Brs)− ǫ. Then
∑n

j=1 [F (yj+hj)−F (yj)] > s
∑n
j=1 hj ≥ s [λ∗(Brs)− ǫ ] > s [λ∗(Ars)−2ǫ ].(c)

Moreover, since the disjoint union of the Jj ’s is a subset of the disjoint union of the
Ii’s, results (b) and (c) yield

r [λ∗(Ars) + ǫ ] >
∑m

i=1 [F (xi)− F (xi − hi)]

≥∑n
j=1 [F (yj + hj)− F (yj)] > s [λ∗(Ars)− 2ǫ ](d)

for every ǫ > 0. That is, r λ∗(Ars) ≥ s λ∗(Ars). But r < s. Thus λ∗(Ars) = 0 for all
rational r and s. Thus λ∗(A) = 0. Analogously,, λ({x : D−F (x) > D+F (x)}) = 0.
So D−F (x) ≥ D−F (x) ≥ D+F (x) ≥ D+F (x) ≥ D−F (x) a.e. λ. Thus F ′ exists
a.e. λ.
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Now, the measurable function difference quotients

DnF (x) ≡ n[F ((x+ 1/n) ∧ b)− F (x)](e)

on [a, b] converge a.e. λ to F ′(x) on [a, b], so that F ′(x) is measurable. Applying
Fatou’s lemma to the DnF (which are ≥ 0, since F is ր ) gives

∫ b
a F

′(x) dx =
∫ b
a [ lim DnF (x)] dx ≤ lim

∫ b
a DnF (x) dx(f)

= lim
∫ b
a
n[F ((x+ 1/n) ∧ b)− F (x)] dx

= lim [
∫ b+1/n

b nF (b) dx −
∫ a+1/n

a nF (x) dx ] ≤ lim {F (b)−F (1 + 1/n)}(g)

≤ F (b)− F (a), using the monotonicity of F.(h)

Thus F ′ is integrable, and hence F ′ is also finite a.e. λ. (We now summarize this
result as a corollary, as situations with strict inequality are very revealing.) 2

Corollary 1 Suppose F is an ր function on [a, b]. Then F ′ exists a.e. λ and
∫ b
a
F ′(x) dx ≤ F (b)− F (a).(1)

So, F is differentiable a.e. λ, and its derivative F ′ is finite a.e. λ and satisfies (1).

The Lebesgue singular df in example 6.1.1 below will show that equality need
not hold in (1); this continuous df is constant valued on a collection of disjoint
intervals of total length 1. An example in Hewitt and Stromberg (1965, p. 278)
shows that F ′(x) = 0 is possible for all x, even with a ↑ F .

Theorem 3.2 (Term-by-term differentiation of series) Let gk be ր on [a, b] for
each k ≥ 1, and suppose that Sn(x) ≡

∑n
k=1 gk(x) converges at x = a and x = b.

Then Sn(x) → S(x) for all x in [a, b], for some finite-valued measurable function
S(x). Mainly, S′(·) exists a.s. λ and is given by

S′(x) =
∞∑

k=1

g′k(x).(2)

Corollary 1 If the power series S(x) ≡ ∑∞
n=1 an(x − a)n converges absolutely

for x = a + R, then for all |x − a| < R we may differentiate S(x) term by term.
Moreover, this is true for any number of derivatives of S.

Proof. Note that Sn(a) is a convergent sum. Now write

Sn(x) = Sn(a) + [Sn(x) − Sn(a)] = Sn(a) +
∑n

k=1 [gk(x) − gk(a)] .
Since ր sequences bounded above converge, the convergence at x = a and x = b
gives convergence at all x in the interval. We may assume all gk ≥ 0 on [a, b] with
gk(a) = 0; else replace gk by gk(·)−gk(a). Since S and all Sn areր, the derivatives
S′ and all S′

n exist a.e. λ by theorem 3.1 (of Lebesgue). Now,

S′
n(x) ≤ S′

n+1(x) ≤ S′(x) a.e. λ ;(a)
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both essentially follow from

S(x+ h)− S(x)
h

=
Sn(x+ h)− Sn(x)

h
+

∞∑

n+1

gk(x+ h)− gk(x)
h

(b)

≥ Sn(x+ h)− Sn(x)
h

.

From (a) we see (without having made use of gk(a) = 0) that

S′
n(·) converges a.e. λ with limS′

n ≤ S′ a.e. λ.(c)

Because S′
n ր, it suffices to show that S′

ni
→a.e. S

′ for some subsequence ni. Since

Sn(b)ր S(b), we may specify ni so large that 0 ≤ S(b)− Sni(b) < 2−i, and then

0 ≤ S(x) − Sni(x) =
∑∞
ni+1 gk(x) ≤

∑∞
ni+1 gk(b) = S(b)− Sni(b) < 2−i,(d)

for all x ∈ [a, b]. Thus

0 ≤∑∞
i=1 [S(x)− Sni(x)] ≤

∑∞
i=1 2

−i = 1 for all x ∈ [a, b],(e)

where the series in (e) has summands

hi(x) ≡ S(x) − Sni(x) that are ր in x.(f)

Thus conclusion (c) also applies to these hi’s (not just the gk’s), and we thus
conclude from (c) that the series

T ′
n ≡

∑n
i=1 h

′
i converges a.e. λ .(g)

But a series of real numbers can converge only if its nth term goes to 0; that is,

S′(x) − S′
ni
(x) = h′i(x)→ 0 a.e. λ.(h)

As noted above, this suffices for the theorem. 2

Exercise 3.1 Prove the corollary.

Example 3.1 (Taylor’s expansion) Suppose g(·) is defined in a neighborhood
of a. Let x∗ denote a generic point between x and a. Let

P1(x) ≡ g(a) + g′(a)(x − a) ,(3)

P2(x) ≡ P1(x) + g′′(a)(x− a)2/2! ,(4)

P3(x) ≡ P2(x) + g′′′(a)(x− a)3/3! , . . . ,(5)

R1(x) ≡ [g(x)− g(a)]/(x− a) or g′(a), as x 6= a or x = a,(6)

R2(x) ≡ 2! [g(x)− P1(x)]/(x − a)2 or g′′(a), as x 6= a or x = a,(7)

R3(x) ≡ 3! [g(x)−P2(x)]/(x−a)3 or g′′′(a), as x 6= a or x = a .(8)
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Then l’Hospital’s rule gives (provided g′(a), g′′(a), g′′′(a), . . . exist, respectively)

lim
x→a

R1(x) = g′(a) = R1(a),(9)

lim
x→a

R2(x) = lim
x→a

g′(x) − P ′
1(x)

x− a = lim
x→a

g′(x)− g′(a)
x− a = g′′(a) = R2(a),(10)

lim
x→a

R3(x) = lim
x→a

2! [g′(x)− P ′
2(x)]

(x− a)2 = lim
x→a

g′′(x) − P ′′
2 (x)

x− a

= lim
x→a

g′′(x)− g′′(a)
x− a = g′′′(a).(11)

Thus we find it useful to use the representations (with g(k)(a) abbreviating that
g(k)(·) exists at a, and with g(k)(·) abbreviating that g(k)(x) exists for all x in a
neighborhood of a)

g(x) =

{
P1(x) + [R1(x)− g′(a)](x − a) if g′(a),

P1(x) + [g′(x∗)− g′(a)](x − a) if g′(·) ,(12)

g(x) =





P2(x) + [R2(x) − g′′(a)](x− a)/2! if g′′(a),

P2(x) + [g′′(x∗)− g′′(a)](x− a)2/2!
= P1(x) + g′′(x∗)(x − a)2/2! if g′′(·) ,

(13)

g(x) =





P3(x) + [R2(x) − g′′(a)](x− a)3/3! if g′′′(a),

P3(x) + [g′′′(x∗)− g′′′(a)](x − a)3/3!
= P2(x) + g′′′(x∗)(x− a)3/3! if g′′′(·) . 2

(14)

Exercise 3.2 (a) Show that if g′′(x) exists, then

g′′(x) = limh→0
1
h2 {g(x+ h)− 2g(x) + g(x− h)} .(15)

(b) An analogous result holds for any g(2k)(x).

Exercise 3.3 Prove the Vitali covering theorem. (See exercise 1.2.6.)

Exercise 3.4 Let f(x) =
∑∞

0 ak x
k/
∑∞

1 bk x
k in some interval. Suppose that

all ak, bk > 0 and ak/bk ↑. Then f ′(x) > 0 for all x in that interval. (This result is
useful in conjunction with the monotone likelihood ratio principle.)
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4 The Fundamental Theorem of Calculus

Definition 4.1 (Bounded variation) Let F denote a real-valued function on
[a, b]. The total variation of F over [a, b] is defined by

V ba F ≡ V[a,b]F

≡ sup
{ n∑

k=1

|F (xk)− F (xk−1)| : a ≡ x0 < x1 < · · · < xn ≡ b, n ≥ 1
}
.(1)

We say that F is of bounded variation (BV) on [a, b] if V ba F <∞.

It is clear that

V ba F = V ca F + V bc F for a ≤ c ≤ b and F of BV.(2)

Definition 4.2 (Absolutely continuous functions) A real-valued function F
on any subinterval I of the line R is said to be absolutely continuous if for all ǫ > 0
there exists a δǫ > 0 such that

n∑

k=1

|F (dk)− F (ck)| < ǫ whenever
n∑

k=1

(dk − ck) < δǫ(3)

with n ≥ 1 and with disjoint subintervals (ck, dk) contained in I.

Definition 4.3 (Lipschitz condition) A real-valued function F on any subinterval
I of R is said to be Lipschitz if for some finite constant M we have

|F (y)− F (x)| ≤M |y − x| for all x and y in I.(4)

We first establish some elementary relationships among the Lipschitz condition,
absolute continuity, bounded variation, and the familiar property of beingր. These
concepts have proven to be important in the study of differentiation. We will
soon proceed further in this direction, and we will also consider the relationship
between ordinary derivatives and Radon–Nikodym derivatives. We first recall from
theorem 1.3.1 (the correspondence theorem) that every generalized df F can be
associated with a Lebesgue–Stieltjes measure µF via µF ((a, b]) ≡ F (b)− F (a).

Proposition 4.1 (The basics) Let λ denote Lebesgue measure.
(i) If F is of BV on [a, b], then

F (x) = F1(x)−F2(x) with F1(x) ≡ V xa F and F2(x) ≡ V xa F−F (x)(5)

both beingր on [a, b]. Also, F ′ = F ′
1−F ′

2 a.e. λ, with F ′
1 and F ′

2 both integrable.

(ii) If F is absolutely continuous, then it is of BV. The F1 and F2 in (i) are both
absolutely continuous and ր.
(iii) Lipschitz functions are absolutely continuous.
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Proof. Consider (i). Now, F1(x) = V xa F is obviously ր; use (2). Then F2 is
also ր , since for x ≤ y we have

F2(y)− F2(x) = [V ya F − F (y)]− [V xa F − F (x)]

= V yx F − [F (y)− F (x)] ≥ 0.(a)

Since F1 and F2 are ր, their derivatives F ′
1 and F ′

2 exist a.e. λ and are integrable
by theorem 4.3.1 (Lebesgue’s theorem).

Consider (ii). Suppose that F (·) is absolutely continuous. Letting ǫ = 1 and
choosing δ1 so small that the equally spaced values a ≡ x0 < x1 < · · · < xn ≡ b
have mesh ≡ (b− a)/n < δ1, we have from (2) that

V ba F =
∑n

k=1V[xk−1,xk]F ≤
∑n

k=11 = n;(b)

and thus F is of BV. But we must still show that F1 is absolutely continuous if F is.
So we suppose that F is absolutely continuous, and specify that

∑n
1 (dk−ck) < δǫ/2

for some choice of n, ck’s, and dk’s. We now show that these same n, ck, dk ‘work’
for F1. Well, for each fixed k with 1 ≤ k ≤ n and the tiny number ǫ/(2n), the
definition of the BV of F gives

F1(dk)− F1(ck) = V[ck,dk]F <
∑mk

j=1 |F (an,k,j)− F (an,k,j−1)|+ (ǫ/2n)(c)

for some choice of ck ≡ an,k,0 < · · · < an,k,mk
≡ dk. These add to give

∑n
k=1 |F1(dk)− F1(ck)| =

∑n
k=1|V[a,dk] − V[a,ck]| =

∑n
k=1V[ck,dk]F

≤∑n
k=1 (

∑mk

j=1 |F (an,k,j)− F (an,k,j−1)|+ (ǫ/2n))(d)

≤ (ǫ/2) + (ǫ/2) = ǫ(e)

by absolute continuity of F , since it follows from above that
∑n

k=1

∑mk

j=1 (an,k,j − an,k,j−1) =
∑n

k=1 (dk − ck) < δǫ/2.(f)

Consider (iii). Being Lipschitz implies absolute continuity with δǫ = ǫ/M . 2

Exercise 4.1 For F of BV on [a, b], let F1(x) ≡ V xa F+ and F2(x) ≡ V xa F−, where

V xa F
± ≡ sup{∑n

k=1 [F (xk)− F (xk−1)]
± : a ≡ x0 < · · · < xn ≡ x, n ≥ 1}.

Verify that F − F (a) = F1 − F2 with F1 and F2 both ր (an alternative to (5)).

Example: Let F (x) equal x, 2 − x, x − 4 on [0, 1], [1, 3], [3, 4]. Determine the
decomposition of (5) for this F , as well as the decomposition of this exercise.

Exercise 4.2 Let f be continuous on [a, b], and define F (x) =
∫ x
a
f(y) dy for

each a ≤ x ≤ b. Then F is differentiable at each x ∈ (a, b) and F ′ = f on (a, b).
[Since f is continuous, we need only the Riemann integral. Can we extend this to
the Lebesgue integral? Can we reverse the order, and first differentiate and then
integrate? The next theorem answers these questions.]
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Theorem 4.1 (Fundamental theorem of calculus) (i) Let F be absolutely
continuous on [a, b], and let λ denote Lebesgue measure. Then F ′ exists a.e. λ and

F (x) − F (a) =
∫ x

a

F ′ dλ for all x ∈ [a, b]; also, F ′ =
dµF
dλ

a.e. λ.(6)

(ii) If F (x) − F (a) =
∫ x
a
f dλ for some f that is integrable with respect to λ on

[a, b], then F is absolutely continuous on [a, b]. Moreover, f = F ′ = dµF

dλ a.e. λ.

Remark 4.1 (a) The fundamental theorem of calculus can be summarized by
saying that F is absolutely continuous if and only if it is the integral of its derivative.
The ordinary derivative F ′ is, in fact, also a Radon–Nikodym derivative of the signed
measure µF naturally associated with F ; proposition 4.2 below makes this clear.

(b) If F is of BV on [a, b], then the derivative F ′ exists a.e. λ on [a, b] and is

integrable with respect to Lebesgue measure λ and
∫ b
a F

′(x) dλ(x) ≤ F (b) − F (a);
see (4.3.1). The Lebesgue singular df F of (6.1.9) below yields a strict inequality.]

(c) The Lipschitz condition represents “niceness with a vengeance,” as it guarantees
that all difference quotients are uniformly bounded. 2

Proof. Consider the converse. If F (x) ≡ F (a)+
∫ x
a
f(y)dy for a ≤ x ≤ b, then F

is absolutely continuous by the absolute continuity of the integral theorem. Then F
is of bounded variation on [a, b] and F ′ exists a.e. λ in [a, b], by proposition 4.1(ii).
Moreover, F ′ is integrable, using (4.3.1). But does F ′ = f a.e. λ?
Case 1: Suppose |f | is bounded by some finiteM on [a, b]. We could consider f+ and
f− separately, but we will simply assume without loss of generality that f ≥ 0. Then

the difference quotient DnF (x) ≡ n
∫ x+1/n

x f(y)dy of F also satisfies |DnF | ≤ M

on [a, b], and DnF (x) → F ′(x) a.e. Applying the DCT (with dominating function

identically equal to M) once for each fixed x ∈ (a, b) gives
∫ x
a F

′(y) dy =
∫ x
a limDnF (y) dy = lim

∫ x
a n [F (y + 1/n)− F (y)] dy

= lim [n
∫ x+1/n

x
F (y) dy − n

∫ a+1/n

a
F (y) dy ]

= F (x)− F (a) by continuity of F

=
∫ x
a
f(y)dy.(a)

Thus F ′(y) = f(y) a.e. on [a, b] by exercise 3.2.2 (refer also to the prototypical
example 4.1.1).
Case 2: Suppose f is integrable. Again, f ≥ 0 may be assumed. Let fn(·) ≡ n∧f(·),
with f − fn ≥ 0. Now,

∫ x
a fn has derivative fn a.e. on [a, b], by case 1. Thus

F ′(x) = d
dx

∫ x
a f(y)dy = d

dx

∫ x
a fn(y)dy +

d
dx

∫ x
a [f(y)− fn(y)]dy ≥ fn(x) + 0(b)

for all n, and hence F ′(x) ≥ f(x) a.e. on [a, b]. Thus

∫ b
a
F ′(x)dx ≥

∫ b
a
f(x)dx = F (b)− F (a), which is ≥

∫ b
a
F ′(x)dx(c)
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by (4.3.1). The two inequalities in (c) combine to give
∫ b
a
[F ′(x)− f(x)] dx = 0 with F ′(x) − f(x) ≥ 0 a.e.,(d)

so that F ′ = f a.e. on [a, b] by exercise 3.2.1.

Consider the direct half when F is absolutely continuous on [a, b]. Without loss,
suppose that F is ր (by proposition 4.1(ii)), so that F ′ exists a.e. on [a, b] (see

theorem 4.3.1) and that F ′ is integrable (see (4.3.1)). Use

µF ((a, x]) ≡ F (x) − F (a) for all x ∈ [a, b](e)

and the correspondence theorem to associate a Lebesgue–Stieltjes measure µF with
F (which is a generalized df). We will show that µF << λ in proposition 4.2 below.
Then the Radon–Nikodym will give

F (x) − F (a) =
∫ x
a
f dλ for all x ∈ [a, b], with f ≡ dµF /dλ. 2(f)

Now apply the converse half of the fundamental theorem of calculus to conclude
that F ′ = f ≡ dµF /dλ a.e. on [a, b]. 2

Proposition 4.2 (i) Let F beր and absolutely continuous on a subinterval [a, b]

of the line R. Then the Lebesgue–Stieltjes measure µF (as in (e) above) satisfies
µF ≪ λ (name its Radon–Nikodym derivative dµF /dλ), and

F (x) − F (a) =
∫ x
a
fdλ for all x ∈ [a, b], with f ≡ dµF /dλ =a.e. F

′.(7)

(ii) Let F be absolutely continuous on R, and fix a. Then (7) holds for all x in R.

Proof. Let µ ≡ µF and fix the finite interval [a, b]. Given ǫ > 0, let δǫ > 0 be as

in the definition (3) of absolute continuity. Let A ∈ B be a subset of [a, b] having
λ(A) < δǫ/2. Recalling our definition (1.2.1) of λ via Carathéodory coverings, we
can claim that Lebesgue measure satisfies

λ(A) = inf{∑∞
n=1λ(An) : A ⊂

⋃∞
n=1An for An’s in the field BF }.(a)

Thus (for some fixed choice of sets in the field BF ), we can write

A ⊂ ⋃∞
1 (cn, dn] , where

∑∞
1 (dn − cn) < λ(A) + δǫ/2 < δǫ(b)

(recall that each An in the field BF is a finite disjoint union of intervals (c, d] with
c and d finite, with finiteness following from A ⊂ [a, b]). Thus

µF (A) ≤ µF (
⋃∞

1 (cn, dn]) ≤
∑∞

1 µF ((cn, dn])(c)

=
∑∞

1 [F (dn)− F (cn)] = lim
m

∑m
1 [F (dn)− F (cn)]

≤ lim
m

ǫ = ǫ (since F is absolutely continuous)(d)

with
∑m

1 (dn − cn) < δǫ. Thus µF (A) < ǫ whenever λ(A) < δǫ, so that µF (A) = 0

whenever λ(A) = 0. Now apply the Radon–Nikodym theorem to obtain f as in (7).

(Now, let F beր and absolutely continuous on R. Just apply (7) with A = [k, k+1]

for every −∞ < k < ∞. Adding up on k gives µF (A) = 0 whenever λ(A) = 0, for

any A ∈ B. Thus µF ≪ λ.) 2
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Exercise 4.3 (Absolutely continuous dfs) Let F be ր, right continuous and
bounded on R, with F (−∞) = 0. Define µF via µF ((a, b] ) = F (b) − F (a) for all
a < b. Show that µF ≪ λ if and only if F is an absolutely continuous function on R.

Exercise 4.4 (a) Show that the composition g(h) of two absolutely continuous
functions is absolutely continuous when h is monotone.
(b) Show that g(h) need not be absolutely continuous without restrictions on h.
(c) Define a continuous function on [0, 1] that is not absolutely continuous.
(d) The functions g+ h and g · h are absolutely continuous when both f and g are.

Exercise 4.5∗ Suppose that h : [a, b] → (0,∞) is absolutely continuous on [a, b].
Show that log h is also absolutely continuous on [a, b].

Example 4.1 (Change of variable; densities of transformed rvs) Let X be
a rv on (Ω,A, P ) with df FX ≪ λ ≡ (Lebesgue measure) and density fX . Let

Y ≡ g(X) where g−1 is ↑ and absolutely continuous.(8)

Then

FY (y) ≡ P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)) ,

where the composition FY = FX(g−1) of these absolutely continuous functions is
absolutely continuous. So the fundamental theorem of calculus tells us that FY is
the integral of its derivative. We can then compute this derivative from the ordinary
chain rule. Thus

FY (b)− FY (a) =
∫ b
a
F ′
Y (r) dλ(r) =

∫ b
a
[F ′
X(g−1(r)) d

dr g
−1(r)] dλ(r)

for all a ≤ b. Thus FY ≪ λ with density

fY (y) = fX(g−1(y)) d
dy g

−1(y)(9)

on the real line. Call (d/dy) g−1(y) the Jacobian of the transformation. 2

Exercise 4.6 (Specific step functions that are dense in L2) Let h ∈ L2([0, 1],B, λ).
Consider the following two approximations to h(·). Let

h̄m(t) ≡ m
∫ i/m
(i−1)/m

h(s) ds and ȟm(t) ≡ h(i/(m+ 1))

for (i− 1)/m < t ≤ i/m and m ≥ 1. Show that:

h̄m → h a.s. and L2.(10)

ȟm → h a.s. and L2 provided that h is ր .(11)

[Hint. Show that 0 ≤
∫ 1

0
(h̄m − h)2 dt =

∫ 1

0
(h2 − h̄2m) dt, and then

h̄m(t) = m(i/m− t) {
∫ i/m
t

h ds/(i/m− t)}

+ m(t− (i− 1)/m) {
∫ t
(i−1)/m

h ds/(t− (i − 1)/m)} → h(t) a.s.

Alternatively, use the fact that the continuous functions are dense in L2.]
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Exercise 4.7∗ (Another characterization of absolute continuity)
(a) F is Lipschitz on [a, b] iff F is differentiable a.e. λ on [a, b] with F ′ bounded.
(b) Absolutely continuous functions on R map B into B and null sets into null sets.
(c) A continuous function of BV is absolutely continuous iff it maps B into B.
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Chapter 5

Measures and Processes on
Products

1 Finite-Dimensional Product Measures
Definition 1.1 (Product spaces) Suppose (Ω,A) and (Ω′,A′) are measurable
spaces. Define

A×A′ ≡ σ[F ] where F ≡
{ m∑

i=1

(Ai×A′
i) : m ≥ 1, Ai ∈ A and A′

i ∈ A′
}
,(1)

F0 ≡ {A×A′ : A ∈ A and A′ ∈ A′}.(2)

Here A × A′ ≡ {(ω, ω′) : ω ∈ A, ω′ ∈ A′} is called a measurable rectangle. The

σ-field A × A′ ≡ σ[F ] is called the product σ-field. (Ω × Ω′,A × A′) is called the

product measurable space. The sets A× Ω′ and Ω×A′ are called cylinder sets.

Proposition 1.1 F is a field. (See figure 5.1, and write the displayed set as a
disjoint union of sets in F0.)

A1

A1

′

A2

A2

′

Figure 1.1  The field F.

Theorem 1.1 (Existence of the product measure) Let (Ω,A, µ) and (Ω′,A′, ν)
be σ-finite measure spaces. Define φ on the field F via

φ
( m∑

i=1

(Ai ×A′
i)
)
=

m∑

i=1

µ(Ai)× ν(A′
i).(3)

87
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Then φ is a well-defined and σ-finite measure on the field F . Moreover, φ extends
uniquely to a σ-finite measure, called the product measure and also denoted by φ,
on (Ω× Ω′,A×A′). Even when completed, this measure is still unique and is still
referred to as the product measure φ.

Proof. (See the following exercise; it mimicks the proof of the correspondence
theorem. Here, F0 and F play the roles of all finite intervals I and the field CF .
Although the proof asked for in exercise 1.1 below is “obvious,” it still requires some
tedious detail.) We will give a better proof herein very soon. 2

Exercise 1.1 Verify that φ is well-defined on F0, and that φ is countably additive
on F0. Then verify that φ is well-defined on F , and that φ is countably additive on
F . Thus φ is a σ-finite measure on F , so that the conclusion of theorem 1.1 follows
from the Carathéodory extension of theorem 1.2.1 and its corollary.

Exercise 1.2∗ Use induction to show that theorem 1.1 extends to n-fold products.

Example 1.1 (Lebesgue measure in n dimensions, etc.) (a) We define

(Rn,Bn) =
∏n
i=1(R,B) and (R̄n, B̄n) ≡

∏n
i=1(R̄, B̄ )

to be the n-fold products of the real line R with the Borel sets B and of the extended
real line R̄ with the σ-field B̄ ≡ σ[B, {+∞}, {−∞}], respectively. Recall from
example 2.1.1 that Bn = σ[Un], where Un denotes all open subsets of Rn. We will
refer to both Bn and B̄n as the Borel sets.
(b) Let λ denote Lebesgue measure on (R,B), as usual. We extend λ to (R̄, B̄ ) by
the convention that λ({+∞}) = 0 and λ({−∞}) = 0. Then

(Rn,Bn, λn) ≡
∏n
i=1(R,B, λ) and (R̄n, B̄n, λn) ≡

∏n
i=1(R̄, B̄, λ)(4)

provides us with a definition of n-dimensional Lebesgue measure λn as the natural
generalization of the concept of volume. It is clear that

(Rm ×Rn,Bm × Bn, λm × λn) = (Rm+n,Bm+n, λm+n),(5)

and that this holds on the extended Euclidean spaces as well. (It is usual not to
add the ̂symbol in dealing with the completions of these particular measures.)
(c) Now, λ is just a particular Lebesgue–Stieltjes measure on (R,B). Any Lebesgue–
Stieltjes measure µF on (R,B) or (R̄, B̄ ) yields an obvious n-fold product on either
(Rn,Bn) or (R̄n, B̄n), which could appropriately be denoted by µF × · · · × µF .
Further, we will let Fn denote the field consisting of all finite disjoint unions of sets
of the form I1×· · ·× In where each Ik is of the form (a, b],(−∞, b] or (a,+∞) when
considering (Rn,Bn) (or of the form (a, b], [−∞, b], or (a,+∞] when considering
(R̄n, B̄n)). (That is, in the case of (Rn,Bn) there is the alternative field Fn that
also generates the σ-field Bn; and this Fn is made up of simpler sets than is the
field B × · · · × B used in definition 1.1.)
(d) The Halmos approximation lemma now shows that if (µF × · · · × µF )(A) <∞
and if ǫ > 0 is given, then (µF × · · · × µF )(A△Cǫ) < ǫ for some Cǫ in (the simpler
field) Fn. That is, the simpler field gives us a nicer conclusion in this example,
because its sets C are simpler. (Or, use Aǫ in the field F of (1) in place of Cǫ.) 2
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Exercise 1.3 Any Lebesgue–Stieltjes measure µF1 ··×µFn on (Rn,Bn), in example 1.1
is a regular measure. Show this for n = 2 (appeal to theorem 1.3.1).

Definition 1.2 (Sections) (a) Let X denote a function on Ω× Ω′. For each ω
in Ω, the function Xω(·) on Ω′ defined by Xω(ω

′) ≡ X(ω, ω′) for each ω′ in Ω′ is
called an ω-section of X(·, ·) . An ω′-section Xω′(·) of X(·, ·) is defined analogously.

(b) Let C be a subset of Ω×Ω′. For each ω in Ω, the set Cω = {ω′ : (ω, ω′) is in C }
is called the ω-section of C. An ω′-section of C is defined analogously.

Theorem 1.2 (Product measure) Let (Ω,A, µ) and (Ω′,A′, ν) denote finite
measure spaces. Let C ∈ A×A′. Then:

Every Cω′ ∈ A and every Cω ∈ A′ whenever C ∈ A×A′,(6)

φ(C) ≡
∫

Ω′

µ(Cω′) dν(ω′) =

∫

Ω

ν(Cω) dµ(ω) for every C ∈ A×A′,(7)

and this φ is exactly the product measure φ = µ× ν of theorem 1.1 .

Proof. We first show (6). This result is trivial for any C in F0, or any C in F .
Now let S denote the class of all sets C in A×A′ for which (6) is true. Then S is
trivially seen to be a σ-field, using

(∪nCn)ω′ = ∪nCn,ω′ and (Cc)ω′ = (Cω′)c.(a)

But since F ⊂ S, we have that A×A′ = σ[F ] equals S.
Consider (7). Note that if the sets Cn converge monotonically to some set C,

then 1Cn converges monotonically to 1C and

every section of 1Cn converges monotonically

to the corresponding section of 1C .
(b)

Let M denote the collection of all sets C in A × A′ for which (7) holds. Clearly,
M contains F0 and F . We now use (b) to show that M is a monotone class; it
will then follow by proposition 1.1.6 that M = σ[F ] = A × A′. Let Cn denote a
sequence of sets in the classM that converge monotonically (we will consider only
the ր case, since we only need to take complements in the ց case), and we give
the name C to the limiting set. Since 1Cn ր 1C , the function 1C is (A × A′)-
measurable, and thus every section of 1C is measurable by (6). Now, for fixed ω′

the number h(ω′) ≡ µ(Cω′) =
∫
Ω 1Cω′ (ω)dµ(ω) is (by the MCT and (b)) the ր

limit of the sequence of numbers hn(ω
′) ≡ µ(Cn,ω′) =

∫
Ω
1Cn,ω′ (ω)dµ(ω), for each

ω′ in Ω′. Thus the function h on Ω′ is the limit of the functions hn on Ω′; and since
Cn is in M, the functions hn are A′-measurable by (7); thus h is A′-measurable
by proposition 2.2.2. Moreover, the finite ր numbers φ(Cn) are bounded above by

µ(Ω) ν(Ω′), and thus converge to some number; call it φ(C). That is,

φ(C) ≡ lim
n
φ(Cn) = lim

n

∫
Ω′ {
∫
Ω
1Cn,ω′ (ω)dµ(ω)} dν(ω′) for Cn ∈ M(c)



90 CHAPTER 5. MEASURES AND PROCESSES ON PRODUCTS

= lim
n

∫
Ω′ hndν =

∫
Ω′{lim

n
hn} dν =

∫
Ω′ hdν by the MCT and hn ր h(d)

=
∫
Ω′ {
∫
Ω 1Cω′ (ω)dµ(ω)} dν(ω′) by the definition of h

=
∫
Ω′µ(Cω′) dν(ω′) .(e)

(Since φ(C) is finite, we see that h is ν-integrable. Thus h(ω′) is finite for a.e. [ν] ω′.)
The argument for each fixed ω is symmetric, and it gives the second equality in (7).
Thus C is inM, makingM the monotone class A×A′; and (b) holds. [Thus the
result (7) holds for the set function φ. But is φ a measure?]

In this paragraph we will show that the product measure φ of theorem 1.1 exists,
and is defined by (e). To this end, let D1, D2, . . . be pairwise disjoint sets in A×A′,
and let Cn ≡

∑n
1 Dk ր C ≡∑∞

1 Dk. Then linearity of both single integrals shows
(in the second equality) that

∑∞
1 φ(Dk) = lim

n

∑n
1φ(Dk) = lim

n
φ(
∑n

1Dk) = lim
n
φ(Cn)(f)

= φ(C) = φ(
∑∞

1 Dk), by (c) through (e)(g)

so that φ is c.a., and a measure on A×A′. We have just verified that the product
measure of (3) exists on A×A′, and is given by (7). That is, we have just proven
theorem 1.1 and given the representation (7) for φ(C). Note that the product

measure φ also satisfies φ(C) =
∫
Ω×Ω′ 1C(ω, ω

′) dφ(ω, ω′). 2

Exercise 1.4 Give the details to verify that
∑n

1 φ(Dk) = φ(
∑n

1 Dk) in line (f) of
the proof above of the product measure theorem.

Theorem 1.3 (Fubini) Let (Ω,A, µ) and (Ω′,A′, ν) be σ-finite measure spaces.
Let φ = µ × ν on (Ω × Ω′,A × A′). Suppose that X(ω, ω′) is φ-integrable (i.e.,

X−1(B̄ ) ⊂ A×A′ and
∫
Ω×Ω′ X dφ is finite). Then:

All ω′-sections Xω′(·) of X are A-measurable functions on Ω.(8)

For a.e. [ν] fixed ω′, the function Xω′(·) = X(·, ω′) is µ-integrable.(9)

The function h(ω′) ≡
∫

Ω

Xω′(ω) dµ(ω) is a ν-integrable function of ω′.(10)

∫

Ω×Ω′

X(ω, ω′)dφ(ω, ω′) =

∫

Ω′

[

∫

Ω

X(ω, ω′)dµ(ω)]dν(ω′) =

∫

Ω′

h(ω′)dν(ω′).(11)

[Setting X equal to 1C in (11) for C ∈ A × A′ shows how the value φ(C) of the
product measure φ at C was defined as an iterated integral; recall (7).]

Corollary 1 (Tonelli) Let X be A×A′-measurable and suppose either
∫ [ ∫

|X | dµ
]
dν <∞ or

∫ [ ∫
|X | dν

]
dµ <∞ or X ≥ 0.(12)

Then the claims of Fubini’s theorem are true, including
∫
X dφ =

∫ [ ∫
X dµ

]
dν =

∫ [ ∫
X dν

]
dµ.(13)
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Corollary 2 (µ× ν null sets) A set C in A ×A′ is (µ × ν)-null if and only if
almost every ω-section of C is a ν-null set. That is, for C ∈ A×A′ we have

µ× ν(C) = 0 if and only if ν(Cω) = 0 for a.e. [µ] ω in Ω.(14)

Proof. By using the σ-finiteness of the two measures to decompose both Ω and
Ω′, we may assume in this proof that both µ and ν are finite measures. We begin
by discussing only measurability questions.

We will first show that

all ω′-sections of an (A×A′)-measurable function X are A-measurable.(a)

The previous theorem shows that

all ω′-sections Xω′ of X are A-measurable

whenever X = 1C for some C ∈ A×A′.
(b)

Now let X denote any (A×A′)-measurable function. Then for any B in B̄,

X−1
ω′ (B) = {ω : X(ω, ω′) ∈ B} = {ω : (ω, ω′) ∈ X−1(B)}(c)

is the ω′-section of the indicator function of the set C = X−1(B); so (b) shows that
any arbitrary ω′-section of this X is A-measurable, and so establishes (a) and (8).

We now turn to all the other claims of the Fubini and Tonelli theorems. By
theorem 1.2 they hold for all (A × A′)-measurable indicator functions. Linearity
of the various integrals shows that the theorems also hold for all simple functions.
Applying the MCT to the various integrals shows that the theorems also hold for all
(A×A′)-measurable X ≥ 0. Then linearity of the integral shows that the theorems
also hold for all X for whichever of the three integrals exists finitely (the double
integral or either iterated integral).

Corollary 2 follows immediately by applying (13) and exercise 3.2.2 (only the
zero function) to the integral of the function 1C . 2

Corollary 3 All this extends naturally to n dimensions.

Exercise 1.5 (Fubini’s (11) can fail if X is not φ-integrable) Let Ω = (0, 1) and
Ω′ = (1,∞), both equipped with the Borel sets and Lebesgue measure.

(i) Let f(x, y) = e−xy−2e−2xy for all x ∈ Ω = (0, 1) and y ∈ Ω′ = (1,∞). Show that:

∫ 1

0
[
∫∞
1
f(x, y) dy] dx =

∫ 1

0
1
x [e

−x − e−2x] dx is > 0.(a)

∫∞
1

[
∫ 1

0
f(x, y) dx] dy =

∫∞
1

1
y [e

−2y − e−y] dy is < 0.(b)

(ii) Why does Fubini’s theorem fail here? (Solve f(x, y) = 0, and use this to divide
the domain of f . Integrate over each of these two regions separately.)
(iii) Construct another example of this type.
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2 Random Vectors on (Ω,A, P )

We will now treat measurable functions from a probability space (Ω,A, P ) to a
Euclidean space (Rn,Bn), with n ≥ 1. Let x ≡ (x1, . . . , xn)

′ denote a generic vector
in the Euclidean space Rn.

Definition 2.1 (Random vectors) Suppose X ≡ (X1, . . . , Xn)
′ is such that

X : Ω → Rn is Bn-A-measurable. Then X is called a random vector (which is also
abbreviated rv ). Define the joint distribution function (or just df ) of X by

F (x) ≡ FX1,...,Xn(x1, . . . , xn) = P (
⋂n
i=1[Xi ≤ xi] ) .

Write x ≤ y to denote that xi ≤ yi for all 1 ≤ i ≤ n; and now define the basic

rectangles (x, y ] ≡ ×ni=1(xi, yi] whenever x ≤ y. Let

F (x, y ] ≡ P (⋂ni=1[xi < Xi ≤ yi] ) for all x ≤ y.(1)

Proposition 2.1 (Measurability) Now, X ≡ (X1, . . . , Xn)
′ : Ω→ Rn or R̄n is

such that

X is

{
Bn-A-measurable
B̄n-A-measurable

if and only if each Xi is
{B-A-measurable
B̄-A-measurable.

Thus, a random vector is measurable if and only if each coordinate rv is measurable.

Proof. We give the details for finite-valued functions. (⇒) Now,

[Xi ≤ xi] = X−1
i ((−∞, xi] )

= X−1(R × · · · ×R× (−∞, xi]×R× · · · ×R) ∈ A.

(⇐) Also, [X ≤ x ] = ∩ni=1[Xi ≤ xi] ∈ A, since each Xi is measurable, where

σ[Hn] ≡ σ[ {all (−∞, x1]× · · · × (−∞, xn]} ] = Bn .

Moreover, using (2.1.12) for the final equality,

F(Xn) ≡ X−1
n (Bn) = X−1

n (σ[Hn]) = σ[X−1
n (Hn)] ⊂ A,

with the set inclusion shown in the first line. That is, X−1(Bn) ⊂ A. 2

Exercise 2.1 (Joint df) A joint df F is ր and right continuous and satisfies

All F (x1, . . . , xi−1,−∞, xi+1, . . . , xn) = 0 and F (∞, . . . ,∞) = 1,(2)

F (x1, . . . , xi−1,+∞, xi+1, . . . , xn)

= FX1,...,Xi−1,Xi+1,...,Xn(x1, . . . , xi−1, xi+1, . . . , xn)(3)

for all j = 1, . . . , n and x1, . . . , xn.
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Exercise 2.2 Suppose F : Rn → R is ր and right continuous and satisfies (2)
and (3). Then there exists a unique probability measure P ≡ PF on Bn that satisfies

P ((x, y ] ) = F (x, y ] for all x ≤ y.(4)

This is a generalization of the correspondence theorem to n > 1. Now note that
the identity function X(ω) ≡ ω, for each ω ∈ Rn, is a random vector on (Rn,Bn)
that has as its joint df the function F above. Thus, given any joint df F , there is a
random vector X having F as its joint df. This is in the spirit of example 2.2.1.

Definition 2.2 (Joint density of rvs) Let X ≡ (X1, . . . , Xn)
′ denote a rv. Define

Pn(B) ≡ P (X ∈ B) for all B ∈ Bn, so that Pn defines the induced distribution of
X on (Rn,Bn). Let λn denote Lebesgue measure on (Rn,Bn). If Pn ≪ λn, then

a finite-valued Radon-Nikodym derivative fn ≡ dPn/dλn exists (and is unique a.e.
λn) for which

P (X ∈ B) =
∫
B
· · ·
∫
fn(x1, . . . , xn) dx1 × · · · × dxn for all B ∈ Bn.(5)

When this is true, fn(· · ·) is called the joint density (or, the density) of the rv X.
(For one-dimensional rvs, we often denote the distribution, df, and density of X by
PX(·), FX(·), and fX(·). For two-dimensional rvs (X,Y )′, we often use PX,Y (·),
FX,Y (·, ·), and fX,Y (·, ·).)

Exercise 2.3 (Marginal densities) Suppose that (X1, . . . , Xn)
′ has the induced

distribution Pn, and Pn ≪ λn with joint density fn (as in the previous definition).

Let 1 ≤ i1 < · · · < im ≤ n, with m ≤ n, and let 1 ≤ j1 < · · · < jn−m ≤ n denote the

complementary indices. Show that the induced distribution Pm of (Xi1 , . . . , Xim)′

satisfies Pm ≪ λm, and that its joint density is given by

fm(xi1 , . . . , xim) =
∫∞
−∞ · · ·

∫∞
−∞ fn(x1, . . . , xn) dxj1 × · · · × dxjn−m(6)

on Rm. We also call fm the marginal density of (Xi1 , . . . , Xim)′.

Exercise 2.4 (Hoeffding–Fréchet bounds)
(i) Show that Ha(u, v) ≡ u ∧ v and Hb(u, v) ≡ (u + v − 1)+ are dfs on [0, 1]2 with
Uniform(0, 1) marginal dfs. Determine the sets on which the densities of Ha and
Hb are positive. Draw suitable pictures of both of the joint dfs Ha and Hb. Make
qualitative comments about the correlation of these two distributions.

(ii) Suppose that F (x, y) is a df on R2 with marginal dfs G(x) ≡ F (x,∞) and

H(y) ≡ F (∞, y), respectively. Show that

Hb(G(x), H(y)) ≤ F (x, y) ≤ Ha(G(x), H(y))

for all (x, y) ∈ R2.
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3 Countably Infinite Product Probability Spaces

We now begin to carry out the program discussed in section 2.5. That is, we will
extend the notion of rvs and product probability measures to a countably infinite
number of dimensions.

Notation 3.1 (R∞ and B∞) Let

R∞ ≡
∏∞
n=1R ≡ {(x1, x2, . . .) : xn ∈ R for all n ≥ 1}.(1)

Let I denote an interval of the type (c, d ], (−∞, d], (c,+∞), or (−∞,∞). An
n-dimensional rectangle will mean any set of the form I1 × · · · × In ×R×R× · · ·,
where each interval Ii is of the type above. A finite-dimensional rectangle is an
n-dimensional rectangle, for some n ≥ 1. A cylinder set is defined as a set of the
form Bn ×R×R× · · · with Bn in Bn for some n ≥ 1. Thus:

CI ≡ {all finite-dimensional rectangles}(2)

= {I1 × · · · × In ×R×R× · · · : n ≥ 1, all Ii as above},

CF ≡ {all finite disjoint unions of finite-dimensional rectangles},(3)

C∞ ≡ {all cylinder sets} ≡ {Bn ×R×R× · · · : n ≥ 1, Bn ∈ Bn}.(4)

Both CF and C∞ are fields, and a trivial application of exercise 1.1.1 shows that

B∞ ≡ σ[CI ] = σ[CF ] = σ[C∞].(5)

Thus, extending a measure from CI to B∞ will be of prime interest to us. We first
extend the criterion for measurability from n dimensions to a countably infinite
number of dimensions. 2

Proposition 3.1 (Measurability on B∞) (a) Now, X ≡ (X1, X2, . . .)
′ : Ω→ R∞

is B∞-A-measurable if and only if each Xn is B-A-measurable.

(b) If X is B∞-A-measurable and if (i1, i2, . . .) is an arbitrary sequence of integers,
then Y ≡ (Xi1 , Xi2 , . . .)

′ is B∞-A-measurable.

Exercise 3.1 Prove proposition 3.1.

Notation 3.2 We will use the notation

F(Xi) ≡ X−1
i (B) and F(Xi1 , Xi2 , . . .) ≡ Y−1(B∞) = σ[

⋃∞
n=1X

−1
in

(B)](6)

to denote the minimal sub σ-fields of A relative to which the quantities Xi and
Y ≡ (Xi1 , Xi2 , . . .) are measurable. 2

Now suppose that Pn is a probability measure on (Rn,Bn), for each n ≥ 1.
The question is: When can we extend the collection {Pn : n ≥ 1} to a measure
on (R∞,B∞)? Reasoning backwards to see what conditions the family of finite-
dimensional distributions should satisfy leads to the following definition.
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Definition 3.1 (Consistency) Finite-dimensional distributions {(Rn,Bn, Pn)}∞n=1

are consistent if for every n ≥ 1, every B1, . . . , Bn ∈ B, and every 1 ≤ i ≤ n,

Pn−1((X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈ B1 × · · · ×Bi−1 ×Bi+1 · · · ×Bn)

= Pn((X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn) ∈ B1×· · ·×Bi−1×R×Bi+1×· · ·×Bn).(7)

Theorem 3.1 (Kolmogorov’s extension theorem) An extension of any
consistent family of probability measures {(Rn,Bn, Pn)}∞n=1 to a probability P (·)
on (R∞,B∞) necessarily exists, and it is unique.

We will first summarize the main part of this proof as a separately stated result
that seems of interest in its own right.

Theorem 3.2 ((R∞,B∞) extension theorem; Breiman) Let P on CI satisfy:

(a) P ≥ 0 and P (R∞) = 1.

(b) If D =
∑m

j=1Dj for n-fold rectangles D and Dj, then P (D) =
∑m

1 P (Dj).

(c) If D denotes any fixed n-dimensional rectangle, then there exists a sequence
of compact n-dimensional rectangles Dj for which Dj ր D and P (Dj) ր P (D).
[That is, P is well-defined and additive on n-dimensional rectangles and satisfies
something like continuity from below.]
Then there exists a unique extension of P to B∞.

Proof. (Recall the continuity result of proposition 1.1.3.) Now,

CF ≡ {all finite disjoint unions of finite-dimensional rectangles}

= {a field generating B∞}.(p)

For A =
∑m

1 Dj ∈ CF , define P (A) ≡
∑m
j=1 P (Dj).

First, we will show that P is well-defined on CF . Let A =
∑m

1 Dj =
∑m′

1 D′
k.

Now, D′
k = D′

kA =
∑m

1 D′
kDj and Dj = DjA =

∑m′

1 DjD
′
k. Thus

P (A) =
∑m

1 P (Dj) =
∑m

1 P (
∑m′

1 DjD
′
k) =

∑m
1

∑m′

1 P (DjD
′
k)(q)

=
∑m′

1

∑m
1 P (D

′
k ∩Dj) =

∑m′

1 P (
∑m

1 D
′
k ∩Dj) =

∑m′

1 P (D′
k) = P (A).(r)

Next, we will show that P is f.a. on CF . So we let A1, . . . , Am ∈ CF be such that

A ≡∑m
1 Ai ∈ CF also. Then, writing Ai =

∑mi

1 Dij with Di1, . . . , Di,mi disjoint,

P (A) = P (
∑m

1 Ai) = P (
∑m

1

∑mi

1 Dij) =
∑m

1

∑mi

1 P (Dij) =
∑m

1 P (Ai),(s)

(using condition (b) in each of the last two equalities), since P is well-defined.
We will now show that P is continuous from above at ∅. Let An’s in CF be such

that An ց ∅. We must show that P (An)ց 0. Assume not. Then P (An)ց ǫ > 0;

and by going to subsequences, we may assume that An = A∗
n×

∏∞
n+1R, where each

A∗
n is a finite union of disjoint rectangles (repeat some members of the sequence if
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necessary in order to have A∗
n ⊂ Rn). By condition (c), choose B∗

n ⊂ A∗
n such that

B∗
n is a finite union of compact disjoint rectangles in Rn with

P (An \Bn) < ǫ/2n+1, where Bn ≡ B∗
n ×

∏∞
n+1R.(t)

Let Cn =
⋂n

1Bk ≡ C∗
n ×

∏∞
n+1R, with C∗

n compact in Rn (the Bn’s need not be

ց, but the Cn’s are). Then we observe that Cn ց ∅, since Cn ⊂ Bn ⊂ An with

An ց ∅; but we also have P (Cn) ≥ ǫ/2, since
P (An \ Cn) ≤

∑n
k=1P (An \Bk) ≤

∑n
k=1P (Ak \Bk) ≤

∑n
1 ǫ/2

k+1 ≤ ǫ/2.(u)

But Cn ց with P (Cn) ≥ ǫ/2 for all n is not compatible with the conclusion that

Cn ց ∅: Let x(1) ∈ C1, . . . , x
(n) ∈ Cn, . . . , where x(n) ≡ (x

(n)
1 , x

(n)
2 , . . .). Choose an

initial subsequence N1 such that x
(N1)
1 → (some x1) ∈ C∗

1 ; then choose a further

subsequence N2 such that (x
(N2)
1 , x

(N2)
2 ) → (some (x1, x2)) ∈ C∗

2 ; . . . . Along the

diagonal subsequence, say N , we have x
(N)
j → xj , for all j. Now, x = (x1, x2, . . .) ∈

Cn for all n. Hence Cn 6ց ∅. But this is a contradiction, and thus allows us to

claim that P (An)ց 0 for any An’s in CF that satisfy An ց ∅.
Now apply the continuity of measures in proposition 1.1.3, and then apply the

Carathéodory extension of theorem 1.2.1 to complete the proof. 2

Proof. We now turn to the Kolmogorov extension theorem. The P defined by

P (B1×· · ·×Bn×· · ·) ≡ Pn(B1×· · ·×Bn) = Pm+n(B1×· · ·×Bn×R×· · ·×R)(v)

is a well-defined f.a. probability on CI = {all finite-dimensional rectangles}; this
follows from the consistency condition (7). Thus (a) and (b) of theorem 3.2 hold.

We will now verify (c). Fix n. Let Dn be an arbitrary but fixed n-dimensional
rectangle. It is clearly possible to specify compact n-dimensional rectangles Dnj for

which Dnj ր Dn as j → ∞. Write Dj = Dnj ×
∏∞
n+1R and D = Dn ×

∏∞
n+1R,

so that Dj ր D. Thus, by the continuity of signed measures in proposition 1.1.3,

P (Dj) = Pn(Dnj)ր Pn(Dn) = P (D),(w)

since Pn is a measure on (Rn,Bn). Thus (c) holds. The conclusion follows from
theorem 3.2. 2

Example 3.1 (Coordinate rvs) Once consistent probability measures Pn(·) on
(Rn,Bn) have been extended to a probability measure P (·) on (R∞,B∞), it is
appropriate then to define Xn(x1, x2, . . .) = xn, for each n ≥ 1. These are rvs on

the probability space (Ω,B, P ) ≡ (R∞,B∞, P ). Moreover,

P ((X1, . . . , Xn) ∈ Bn) = P ((X1, . . . , Xn)
−1(Bn)) = P (X−1(Bn ×

∏∞
n+1R))

= P (Bn ×
∏∞
n+1R) = Pn(Bn)(8)

for all Bn ∈ Bn. We thus have a realization of X ≡ (X1, X2, . . .) : Ω → R∞
that is B∞-A-measurable, and each (X1, . . . , Xn) induces the distribution Pn on

(Rn,Bn). This is the natural generalization of example 2.2.1 and the comment
below exercise 5.2.2. 2
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Theorem 3.3 (The finite dimensional dfs define probability theory)
Let X = (X1, X2, . . .)

′ denote any random element on (R∞,B∞). Then PX can be
determined solely by examination of the finite-dimensional distributions of X. Also,
whether or not there exists a finite rv X such that Xn converges to X in the sense
of →a.s., →p, →r, or →d can be similarly determined.

Proof. Let C denote the π̄-system consisting of R∞ and of all sets of the

form
∏n

1 (−∞, xi]×
∏∞
n+1R, for some n ≥ 1 and all xi ∈ R. The finite-dimensional

distributions (even the finite-dimensional dfs) determine P∞ on C, and hence on
B∞ = σ[C] (appeal to Dynkin’s π-λ theorem of proposition 1.1.5). To emphasize

the fact further, we now consider each convergence mode separately.
→d: Obvious.

→r: E|Xn −X |r → 0 if and only if E|Xn −Xm|r < ǫ for all n,m ≥ some Nǫ.

→p: Xn →p X if and only if P (|Xn −Xm| > ǫ) < ǫ for all n,m ≥ some Nǫ.

→a.s.: Xn →a.s. X if and only if

1 = P (∪∞n=1 ∩∞m=n [|Xm −Xn| ≤ ǫ]) for all ǫ > 0

= lim
n

lim
N
P (∩Nm=n[|Xm −Xn| ≤ ǫ]) = lim

n
lim
N
{a function of FXn,...,XN }.

The proof is complete 2

Example 3.2 (Equivalent experiments) Perhaps I roll an ordinary die n times
with the appearance of an even number called “success.” Perhaps I draw a card at
random n times, each time from a freshly shuffled deck of standard playing cards,
with “red” called “success.” Perhaps I flip a fair coin n times with “heads” called
“success.” Note that (X1, . . . , Xn) has the same distribution in all three cases.
Thus, if I report only the data from one of these experiments, you can not hope to
determine which of the three experiments was actually performed. These are called
equivalent experiments. 2
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4 Random Elements and Processes on (Ω,A, P )

Definition 4.1 (Projections and finite-dimensional subsets) Let MT denote a
collection of functions that associate with each t of some set T a real number
denoted by either xt or x(t). [T is usually a Euclidean set such as [0, 1], R, or
[0, 1]× R. The collectionMT is often a collection of “nice” functions, such as the
continuous functions on T .] For each integer k and all (t1, . . . , tk) in T we let πt1,...,tk
denote the projection mapping of MT into k-dimensional space Rk defined by

πt1,...,tk(x) ≡ (x(t1), . . . , x(tk)).(1)

Then for any B in the set of all k-dimensional Borel subsets Bk of Rk, the set
π−1
t1,...,tk(B) is called a finite-dimensional subset of MT .

Exercise 4.1 Show that the collection M0
T of all finite-dimensional subsets of

MT is necessarily a field. (This is true no matter what collection MT is used.)

Definition 4.2 (Measurable function spaces, finite-dimensional distributions, ran-
dom elements, and normal processes) We let MT denote the σ-field generated
by the fieldM0

T . We callM0
T andMT the finite-dimensional field and the finite-

dimensional σ-field, respectively. Call the measurable space (MT ,MT ) ameasurable
function space over T .

Given any probability space (Ω,A, P ) and any measurable space (Ω∗,A∗), an
A∗-A-measurable mapping X : Ω → Ω∗ will be called a random element. We
denote this by X : (Ω,A) → (Ω∗,A∗) or by X : (Ω,A, P ) → (Ω∗,A∗), or even by
X : (Ω,A, P ) → (Ω∗,A∗, P ∗), where P ∗ denotes the induced probability on the
image space.

A random element X : (Ω,A, P ) → (MT ,MT , P
∗) in which the image space

is a measurable function space will be called a process. The finite-dimensional
distributions of a process are the distributions induced on (Rk,Bk) by the projection

mappings πt1,...,tk : (MT ,MT , P
∗) → (Rk,Bk). If all of the finite-dimensional

distributions of a process X are multivariate normal (see section A.3 below), then
we call X a normal process.

Definition 4.3 (Realizations and versions) If two random elements X and Y
(possibly from different probability spaces to different measurable function spaces)
have identical induced finite-dimensional distributions, then we refer to X and Y
as different realizations of the same random element and we call them equivalent
random elements. We denote this by agreeing that

X ∼= Y means that X and Y are equivalent random elements.

[We will see in chapter 12 that a process called Brownian motion can be realized on
both the (R[0,1],B[0,1]) of (3) and (C, C), where C ≡ C[0,1] denotes the space of all

continuous functions on [0, 1] and C ≡ C[0,1] denotes its finite-dimensional σ-field.]

If X and Y are defined on the same probability space and P (Xt = Yt) = 1 for
all t ∈ T , then X and Y are called versions of each other. (In chapter 12 we will

see versions X and Y of Brownian motion where X : (Ω,A, P ) → (R[0,1],B[0,1])
and Y : (Ω,A, P ) → (C[0,1], C[0,1]). Of course, this X and Y are also different
realizations of Brownian motion.)
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Definition 4.4 (Finite-dimensional convergence, →fd) Suppose X,X1, X2, . . .
denote processes with image space (MT ,MT ). If the convergence in distribution

πt1,...,tk(Xn) = (Xn(t1), . . . , Xn(tk))→d (X(t1), . . . , X(tk)) = πt1,...,tk(X)(2)

holds for all k ≥ 1 and all t1, . . . , tk in T , then we write Xn →fd X as n→∞, and
we say that the finite-dimensional distributions of Xn converge to those of X .

The General Stochastic Process

Notation 4.1 (RT ,BT ) We now adopt the convention that

(RT ,BT ) denotes the measurable function space with RT ≡
∏
t∈TRt,(3)

where each Rt is a copy of the real line. Thus RT consists of all possible real-
valued functions on T , and BT is the smallest σ-field with respect to which all πt
are measurable. We call a process X : (Ω,A, P ) → (RT ,BT ) a general stochastic
process. We note that a general stochastic process is also a process. But we do not
yet know what BT looks like.

A set BT ∈ BT is said to have countable base t1, t2, . . . if

BT = π−1
t1,t2,...(B∞) for some B∞ ∈ B∞;(4)

here B∞ is the countably infinite-dimensional σ-field of section 5.3. Let BC denote
the class of countable base sets defined by

BC ≡ {BT ∈ BT : BT has a countable base}.(5)

[Recall F(X1, X2, . . .) and F(Xs : s ≤ t) measurability from section 2.5.] 2

Proposition 4.1 (Measurability in (RT ,BT )) Now, BC is a σ-field. In fact, BC
is the smallest σ-field relative to which all πt are measurable; that is,

BT = BC.(6)

Also (generalizing proposition 5.2.1),

X is BT -A-measurable if and only if Xt is B-A-measurable for each t ∈ T.(7)

Proof. Clearly, BT is the smallest σ-field containing BC ; so (6) will follow
from showing that BC is a σ-field. Now, C is closed under complements, since

π−1
t1,t2,...(B∞)c = π−1

t1,t2,...(B
c
∞). Suppose that B1, B2, . . . in BC have countable bases

T1, T2, . . ., and let T0 = ∪∞m=1Tm. Then using the countable set of distinct coor-

dinates in T0, reexpress each Bm as Bm = π−1
T0

(B∞
m ) for some B∞

m ∈ B∞. Then

∪∞m=1Bm = π−1
T0

(∪∞m=1B
∞
m ) is in BC. Thus BC is closed under countable unions.

Thus BC is a σ-field.
Now to establish (7): Suppose X is BT -A-measurable. Then

X−1
t (B) = X−1(π−1

t (B)) ∈ A for B ∈ B,(a)

so that each Xt is B-A-measurable. Suppose that each Xt is B-A-measurable.
Then exercise 5.3.1 shows that (Xt1 , Xt2 , . . .) is B∞-A-measurable for all sequences

t1, t2, . . . of elements of T . That is, X−1(BC) ⊂ A. Since BT = BC , we thus have

X−1(BT ) ⊂ A, and hence X is BT -A-measurable. 2
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Remark 4.1 (Consistency of induced distributions in (RT ,BT )) Any general
stochastic process X : (Ω,A, P )→ (RT ,BT ) has a family of induced distributions

P ∗
t1,...,tk

(Bk) = P (X−1 ◦ π−1
t1,...,tk(Bk)) for all Bk ∈ Bk(8)

for all k ≥ 1 and all t1, . . . , tk ∈ T . These distributions are necessarily consistent in
the sense that

P ∗
t1,...,tk

(B1 × · · · ×Bi−1 ×R×Bi+1 × · · · ×Bk)(9)

= P ∗
t1,...,ti−1,ti+1,...,tk

(B1 × · · · ×Bi−1 ×Bi+1 × · · · ×Bk)

for all k ≥ 1, all B1, . . . , Bk ∈ B, all 1 ≤ i ≤ k, and all t1, . . . , tk ∈ T . [The next
result gives a converse. It is our fundamental result on the existence of stochastic
processes with specified distributions.] 2

Theorem 4.1 (Kolmogorov’s consistency theorem) Given a consistent set
of distributions as in (9), there exists a distribution P on (RT ,BT ) such that
the identity map X(ω) = ω, for all ω ∈ RT , is a general stochastic process
X : (RT ,BT , P ) → (RT ,BT ) whose family of induced distributions is the P ∗

t1,...,tk
of (9).

Exercise 4.2 Prove theorem 4.1. [Define P ∗(B) = P (π−1
Ti

(B)) for B ∈ BC and
each countable subset Ti of T . Use notational ideas from the proof of proposition 4.1
to show easily that P ∗(·) is well-defined and countably additive.]

Example 4.1 (Comment on (R[0,1],B[0,1])) The typical function x in RT has no

smoothness properties. Let T = [0, 1] and let C denote the subset of R[0,1] that
consists of all functions that are continuous on [0, 1]. We now show that

C 6∈ B[0,1] .(10)

Let (Ω,A, P ) denote Lebesgue measure on the Borel subsets of [0, 1]. Let ξ(ω) = ω.
Now let X : (Ω,A, P ) → (R[0,1],B[0,1]) via Xt(ω) = 0 for all ω ∈ Ω and for

all t ∈ T . Let Y : (Ω,A, P ) → (R[0,1],B[0,1]) via Yt(ω) = 1{t}(ξ(ω)). Now, all

finite-dimensional distributions of X and Y are identical. Note, however, that
[ω : X(ω) ∈ C] = Ω, while [ω : Y (ω) ∈ C] = ∅. Thus C cannot be in B[0,1]. 2

Smoother Realizations of General Stochastic Processes

Suppose now that X is a process of the type X : (Ω,A, P )→ (RT ,BT , P ∗). As the
previous example shows, X is not the unique process from (Ω,A, P ) that induces
the distribution P ∗ on (RT ,BT ). We now let MT denote a proper subset of RT
and agree thatMT denotes the σ-field generated by the finite-dimensional subsets
of MT . Suppose now that X(ω) ∈ MT for all ω ∈ Ω. Can X be viewed as a
process X : (Ω,A, P )→ (MT ,MT , P̃ ) such that (MT ,MT , P̃ ) has the same finite-
dimensional distributions as does (RT ,BT , P ∗)? We now show that the answer is
necessarily yes. Interesting cases arise when the functions of the MT above have
smoothness properties such as continuity. The next result is very important and
useful.
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Theorem 4.2 (Smoother realizations of processes) Consider an arbitrary
measurable mapping X : (Ω,A, P )→ (RT ,BT , P ∗).
(i) Let MT ⊂ RT . Then we can view X as a process X : (Ω,A) → (MT ,MT ) if
and only if every sample path X·(ω) = X(·, ω) is in MT and every Xt(·) ≡ X(t, ·)
is a random variable.

(ii) Let X(Ω) ⊂ MT ⊂ RT . Then X : (Ω,A, P )→ (MT ,MT , P̃ ), where the finite-
dimensional distributions of (MT ,MT , P̃ ) are the same as those of (RT ,BT , P ∗).
(iii) Comment: All this is true even when MT is not in the class BT .

Proof. (i) (⇐) Note first thatMT ∩BT =MT (recall definition 4.2). Moreover,
when X(Ω) ⊂MT , it necessarily follows that

X−1(MT ) = X−1(MT ∩ BT ) = X−1(MT ) ∩X−1(BT ) = Ω ∩X−1(BT )

= X−1(BT ).(a)

Since each Xt is a rv, we have X−1(BT ) ⊂ A by (7). Thus X−1(MT ) ⊂ A, and we

see that X is indeed anMT –A–measurable mapping from Ω to MT . Note further
that the natural pairs of generator sets (π−1

t1,...,tk
((−∞, r1]× · · · × (−∞, rk]) in BT ,

or π−1
t1,...,tk

((−∞, r1]× · · · × (−∞, rk]) ∩MT inMT ) have the same inverse images

under X ; thus the finite dimensional distributions induced from (Ω,A) to (RT ,BT )
and to (MT ,MT ) are identical.

(⇒) Clearly, X : Ω→MT implies X : Ω→ RT . Also, for any t ∈ T and any B ∈ B,

X−1(π−1
t (B)) = X−1(MT ∩ π−1

t (B)) since X : Ω→MT

∈ X−1(MT ) sinceMT =MT ∩ BT

∈ A since X isMT –A–measurable.(b)

Thus each Xt is a rv, and so X is BT –A–measurable by (7).

(ii) This is now clear, and it summarizes the most useful part of this theorem. 2

Exercise 4.3 LetM denote any non-void class of subsets of Ω, and let M denote
any non-void subset. Show that

σ[M] ∩M = σ[M∩M ].(11)

Remark 4.2 It is interesting to consider the case where MT is a countable or
finite set. The resulting (MT ,MT , P̃ ) is the natural probability space. 2
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Chapter 6

Distribution and Quantile
Functions

1 Character of Distribution Functions
Let X : (Ω,A, P )→ (R,B, PX) be a rv with distribution function (df) FX , where

FX(x) ≡ P (X ≤ x) = PX((−∞, x] ) for−∞ < x <∞.(1)

Then F ≡ FX was seen earlier to satisfy

F is ր and right continuous, with F (−∞) = 0 and F (+∞) = 1.(2)

Because of the proposition below, any function F satisfying (2) will be called a df.
[If F is ր, right continuous, 0 ≤ F (−∞), and F (+∞) ≤ 1, we earlier agreed to
call F a sub-df. As usual, F (a, b] ≡ F (b)− F (a) denotes the increments of F , and
∆F (x) ≡ F (x)− F−(x) = F (x) − F (x−) is the mass of F at x.]

(a) Call F discrete if F is of the form F (·) =∑j bj 1[aj,∞)(·) with
∑

j bj = 1, where
the aj form a non-void finite or countable set. Such measures µF have Radon–
Nikodym derivative

∑
j bj 1{aj}(·)with respect to counting measure on the aj ’s.

(b) A df F is called absolutely continuous if F (·) =
∫ ·
∞ f(y) dλ(y) for some f ≥ 0 that

integrates to 1 over R. The corresponding measure has Radon-Nikodym derivative
f with respect to Lebesgue measure λ; this f is also called a probability density.
Moreover, F is an absolutely continuous function and the ordinary derivative F ′ of
the df F exists a.e. λ and satisfies F ′ = f as λ.

(c) A df F is called singular if µF (N
c) = 0 for a λ-null set N .

Proposition 1.1 (There exists an X with df F ) If F satisfies (2), then there
exists a probability space (Ω,A, P ) and a rv X : (Ω,A, P ) → (R,B) for which the
df of X is F . We write X ∼= F .

Proof. Example 2.2.1 shows that X(r) = r on (R,B, µF ) is one example. 2
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Theorem 1.1 (Decomposition of a df) Any df F can be decomposed as

F = Fd + Fc = Fd + Fs + Fac = (Fd + Fs) + Fac ,(3)

where Fd, Fc, Fs, and Fac are the unique sub-dfs of the following types (unique
among those sub-dfs equal to 0 at −∞):

Fd is a step function of the form
∑

j bj1[aj ,∞) (with all bj > 0).(4)

Fc is continuous.(5)

Fs and Fs + Fd are both singular with respect to Lebesgue measure λ.(6)

Fac(·) =
∫ ·
−∞ fac(y) dλ(y)

for some fac ≥ 0 that is finite, measurable, and unique a.e. λ,

and this Fac(·) is absolutely continuous on the whole real line.

(7)

Proof. Let {aj} denote the set of all discontinuities of F , which can only be
jumps; and let bj ≡ F (aj) − F−(aj). There can be only a countable number of
jumps, since the number of jumps of size exceeding size 1/n is certainly bounded
by n. Now define Fd ≡

∑
j bj1[aj ,∞), which is obviously ր and right continuous,

since Fd(x, y] ≤ F (x, y] ց 0 as y ց x (the inequality holds, since the sum of
jump sizes over every finite number of jumps between a and b is clearly bounded
by F (x, y], and then just pass to the limit). Define Fc = F − Fd. Now, Fc is ր,
since for x ≤ y we have Fc(x, y] = F (x, y]− Fd(x, y] ≥ 0. Now, Fc is the difference
of right-continuous functions, and hence is right continuous; it is left continuous,
since for xր y we have

Fc(x, y] = F (x, y]−∑x<aj≤y bj = F−(y)−F (x)−
∑

x<aj<y
bj → 0−0 = 0.(a)

We turn to the uniqueness of Fd. Assume that Fc + Fd = F = Gc + Gd for some

other Gd ≡
∑

j b̄j1[āj ,∞) with distinct āj ’s and
∑

j b̄j ≤ 1. Then Fd−Gd = Gc−Fc
is continuous. If Gd 6= Fd, then either some jump point or some jump size disagrees.
No matter which disagrees, at some a we must have

∆Fd(a)−∆Gd(a) 6= 0,(b)

contradicting the continuity of Gc − Fc = Fd − Gd. Thus Gd = Fd, and hence
Fc = Gc. This completes the first decomposition.

We now turn to the further decomposition of Fc. Associate a measure µc with
Fc via µc((−∞, x]) = Fc(x). Then the Lebesgue decomposition theorem shows
that µc = µs + µac, where µs(B) = 0 and µac(B

c) = 0 for some B ∈ B; we say
that µs and µac are orthogonal. Moreover, this same Lebesgue theorem implies the
claimed uniqueness and shows that fac exists with the uniqueness claimed. Now,
Fac(x) ≡ µac((−∞, x]) =

∫ x
−∞ fac(y) dy is continuous by Fac(x, y] ≤ µac(x, y] → 0

as y → x or as x→ y. Thus Fs ≡ Fc−Fac is continuous, and Fs(x) = µs((−∞, x]).
In fact, Fac is absolutely continuous on R by the absolute continuity of the integral.
(Now Fc = Fs + Fac decomposes Fc with respect to λ, while F = (Fd + Fs) + Fac
decomposes F with respect to λ.) 2
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Example 1.1 (Lebesgue singular df) Define the Cantor set C by

C ≡ {x ∈ [0, 1] : x =
∑∞

n=1 2an/3
n, with all an equal to 0 or 1}.(8)

[Thus the Cantor set is obtained by removing from [0, 1] the open interval (13 ,
2
3 ) at

stage one, then the open intervals (19 ,
2
9 ) and (79 ,

8
9 ) at stage two, . . . .] Finally, we

define F on C by

F (
∑∞

n=1 2an/3
n) =

∑∞
n=1 an/2

n.(9)
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Figure 1.1  Lebesgue singular function.

Now note that {F (x) : x ∈ C} = [0, 1], since the right-hand side of (9) represents
all of [0, 1] via dyadic expansion. We now define F “linearly” on Cc (the first three
“components” are shown in figure 1.1 above). Since the resulting F is ր and
achieves every value in [0, 1], it must be that F is continuous. Now, F assigns no

mass to the “flat spots” whose lengths sums to 1 since 1
3 +

2
9 +

4
27 + · · · =

1/3
1−2/3 = 1.

Thus F is singular with respect to Lebesgue measure λ, using λ(Cc) = 1 and
µF (C

c) = 0. Call this F the Lebesgue singular df. [The theorem in the next section
shows that removing the flat spots does, even for a general df F , leave only the
essentials.] We have, in fact, shown that

F : C → [0, 1] is 1-1, is ↑, and is continuous; so F−1 : [0, 1]→ C is 1-1.2(10)

Exercise 1.1 Let X ∼= N(0, 1) (as in (A.1.22) below), and let Y ≡ 2X .
(a) Is the df F (·, ·) of (X,Y ) continuous?
(b) Does the measure µF on R2 have a density with respect to two-dimensional
Lebesgue measure? [Hint. Appeal to corollary 2 to Fubini’s theorem.]

Exercise 1.2 Show that the Cantor set C is perfect (thus, each x ∈ C is an
accumulation point of C) and totally disconnected (between any c1 < c2 in C there
is an interval that lies entirely in Cc). (Note that the cardinality of C equals that of
[0, 1].) At which points is 1C(·) continuous?

Definition 1.1 Two rvs X and Y are said to be of the same type if Y ∼= aX + b
for some a > 0. Their dfs are also said to be of the same type.



106 CHAPTER 6. DISTRIBUTION AND QUANTILE FUNCTIONS

2 Properties of Distribution Functions
Definition 2.1 The support of a given df F ≡ FX is defined to be the minimal
closed set C having P (X ∈ C) = 1. A point x is a point of increase of F if every
open interval U containing x has P (X ∈ U) > 0. A realizable t-quantile of F , for
0 < t < 1, is any value z for which F (z) = t. (Such a z need not exist.) Define Ut
to be the maximal open interval of x’s for which F (x) = t (this flat spot will be an
interval as F is ր).

Theorem 2.1 (Jumps and flat spots) Let C denote the support of F . Then:
(a) C ≡ (

⋃
0≤t≤1 Ut)

c is a closed set having P (C) = 1.

(b) C is equal to the set of all points of increase.
(c) C is the support of F .

(d) F has at most a countable number of discontinuities, and these discontinuities
are all discontinuities of the jump type.
(e) F has an at most countable number of flat spots (the nonvoid Ut’s). These are
exactly those t’s that have more than one realizable t-quantile.

[We will denote jump points and jump sizes of F by ai’s and bi’s. The t values and
the λ(Ut) values of the multiply realizable t-quantiles will be seen in the proof of
proposition 6.3.1 below to correspond to the jump points cj and the jump values
dj of the function K(·) ≡ F−1(·), and there are at most countably many of them.]

Proof. (a) For each t there is a maximal open interval Ut (possibly void) on
which F equals t, and it is bounded for each 0 < t < 1. Now, P (X ∈ Ut) = 0
using proposition 1.1.2. Note that C ≡ (∪tUt)c is closed (since the union of an
arbitrary collection of open sets is open). Hence Cc = ∪0≤t≤1 Ut = ∪(an, bn),
where (a1, b1), . . . are (at most countably many) disjoint open intervals, and all
those with 0 < t < 1 must be finite. Now, by proposition 1.1.2, for the finite
intervals we have P (X ∈ (an, bn)) = limǫ→0 P (X ∈ [an + ǫ, bn − ǫ])= limǫ→0 0 = 0,
where P (X ∈ [an + ǫ, bn− ǫ]) = 0 holds since this finite closed interval must have a
finite subcover by Ut sets. If (an, bn) = (−∞, bn), then P (X ∈ (−∞, bn)) = 0, since
P (X ∈ [−1/ǫ, bn − ǫ]) = 0 as before. An analogous argument works if (an, bn) =
(an,∞). Thus P (X ∈ Cc) = 0 and P (X ∈ C) = 1. Note that the Ut’s are just the
(an, bn)’s in disguise; each Ut ⊂ some (an, bn), and hence Ut = that (an, bn). Thus
Ut is nonvoid for at most countably many t’s.

(b) Let x ∈ C. We will now show that it is a point of increase. Let U denote a
neighborhood of x, and let t ≡ F (x). Assume P (U) = 0. Then x ∈ U ⊂ Ut ⊂ Cc,
which is a contradiction of x ∈ C. Thus all points x ∈ C are points of increase.
Now suppose conversely that x is a point of increase. Assume x 6∈ C. Then x ∈
some (an, bn) having P (X ∈ (an, bn)) = 0, which is a contradiction. Thus x ∈ C.
Thus the closed set C is exactly the set of points of increase.

(c) Assume that C is not the minimal closed set having probability 1. Then

P (C̃) = 1 for some closed C̃  C. Let x ∈ C \ C̃ and let t = F (x). Since C̃c is
open, there is an open interval Vx with x ∈ Vx ⊂ C̃c and P (X ∈ Vx) = 0. Thus
x ∈ Vx ⊂ ( some Ut) ⊂ Cc. So x 6∈ C, which is a contradiction. Thus C is minimal.

So, (d) and (e) follow. See also the summary following proposition 6.3.1. 2
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3 The Quantile Transformation
Definition 3.1 (Quantile function) For any df F (·) we define the quantile
function (qf) (which is the inverse of the df) by

K(t) ≡ F−1(t) ≡ inf{x : F (x) ≥ t} for 0 < t < 1.(1)

F(·)

K(·)

Figure 3.1  The df F(·) and the qf K(·) = F –1(·).

Theorem 3.1 (The inverse transformation) Let

X ≡ K(ξ) ≡ F−1(ξ), where ξ ∼= Uniform(0, 1).(2)

The following are all true.

[X ≤ x] = [ξ ≤ F (x)] for every real x.(3)

1[X≤·] = 1[ξ≤F (·)] on R, for every ω.(4)

X ≡ K(ξ) ≡ F−1(ξ) has df F .(5)

1[X<·] = 1[ξ<F−(·)] on R, for a.e. ω;(6)

failure occurs if and only if ξ(ω) equals the height of a flat spot of F .
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Proof. Fix an arbitrary x. Now, ξ ≤ F (x) implies X = F−1(ξ) ≤ x by (1). If
X = F−1(ξ) ≤ x, then F (x + ǫ) ≥ ξ for all ǫ > 0; so right continuity of F implies
F (x) ≥ ξ. Thus (3) holds; (4) and (5) are then immediate.

If ξ(ω) = t where t is not in the range of F , then (6) holds. If ξ(ω) = t where
F (x) = t for exactly one x, then (6) holds. If ξ(ω) = t where F (x) = t for at least
two distinct x’s, then (6) fails; theorem 6.2.1 shows that this can happen for at
most a countable number of t’s. (Or: Graph a df F that exhibits the three types
of points t, and the rest is trivial with respect to (6), since the value of F at any
other point is immaterial. Specifically, (6) holds for ω unless F has a flat spot at
height t ≡ ξ(ω). Note figure 3.1.) 2

Definition 3.2 (Convergence in quantile) Let Kn denote the qf associated with
df Fn, for each n ≥ 0. We write Kn →d K0 to mean that Kn(t) → K0(t) at each
continuity point t of K0 in (0, 1). We then say that Kn converges in quantile to K0,
or Kn converges in distribution to K.

Proposition 3.1 (Convergence in distribution equals convergence in quantile)

Fn →d F if and only if Kn →d K.(7)

Proof. Suppose Fn →d F . Let t ∈ (0, 1) be such that there is at most one
value x having F (x) = t (that is, this is not a multiply realizable t-quantile). Let
z ≡ F−1(t).

First: We have F (x) < t for x < z, where x will always denote a continuity point
of F . Thus Fn(x) < t for n ≥ (some Nx). Thus F−1

n (t) ≥ x for n ≥ Nx. Thus

lim inf F−1
n (t) ≥ x, when x < z is a continuity point of F . Thus lim inf F−1

n (t) ≥ z,
since there are continuity points x that ր z. Second: We also have F (x) > t for

z < x, with x a continuity point. Thus Fn(x) > t, and hence F−1
n (t) ≤ x for n ≥

(some Nx). Thus lim supF−1
n (t) ≤ x. Thus lim supF−1

n (t) ≤ z, since there are
continuity points x that ց z. Thus Kn(t) = F−1

n (t) → z = K(t). The proof of
the converse is virtually identical. 2

Exercise 3.0 Give the proof of the converse for the previous proposition.

Summary F−1
n (t) → F−1(t) for all but at most a countably infinite number of

t’s (namely, for all but those t’s that have multiply realizable t-quantiles; these
correspond to the heights of flat spots of F , and these flat spot heights t are exactly
the discontinuity points of K).

Exercise 3.1 (Left continuity of K) Show that K(t) = F−1(t) is left continuous
on (0, 1). [Note that K is discontinuous at t ∈ (0, 1) if and only if the corresponding
Ut is nonvoid (see theorem 6.2.1). Likewise, the jump points cj and the jump sizes
dj of K(·) are equal to the t values and the λ(Ut) values of the multiply realizable
t-quantiles.] [We earlier agreed to use ai and bi for the jump points and jump sizes
of the associated df F .]
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Exercise 3.2 (Properties of dfs) (i) For any df F we have

F ◦ F−1(t) ≥ t for all 0 ≤ t ≤ 1,

and equality fails if and only if t ∈ (0, 1) is not in the range of F on [−∞,∞].
(ii) (The probability integral transformation) If X has a continuous df F , then
F (X) ∼= Uniform(0, 1). In fact, for any df F ,

P (F (X) ≤ t) ≤ t for all 0 ≤ t ≤ 1 ,

with equality failing if and only if t is not in the closure of the range of F .
(iii) For any df F we have

F−1 ◦ F (x) ≤ x for all −∞ < x <∞ ,

and equality fails if and only if F (y) = F (x) for some y < x. Thus

P (F−1 ◦ F (X) 6= X) = 0 whenever X ∼= F.

(iv) If F is a continuous df and F (X) ∼= Uniform(0, 1), then X ∼= F .

(v) Graph F ◦ F−1 and F−1 ◦ F for the df F in figure 8.4.1.

Proposition 3.2 (The randomized probability integral transformation) Let X
denote an arbitrary rv. Let F denote its df, and let (aj , bj)’s denote an enumeration
of whatever pairs (jump point, jump size) the df F possesses. Let η1, η2, . . . denote
iid Uniform(0, 1) rvs (that are also independent of X). Then both

ξ̇ ≡ F (X)−∑j bjηj 1[X=aj]
∼= Uniform(0, 1) and(8)

X = F−1(ξ̇) = K(ξ̇).(9)

[We have reproduced the original X from a Uniform(0, 1) rv that was defined using
both X and some independent extraneous variation. Note figure 3.1.]

Proof. We have merely smoothed out the mass bj that F (X) placed at F (aj)
by subtracting the random fractional amount ηjbj of the mass bj . 2

Exercise 3.3 (Change of variable) Suppose Y ∼= G and X = H−1(Y ) ∼= F , where
H is ր and right continuous on the real line with left-continuous inverse H−1.

(a) Then set g,X, µ, µX , A
′ in the theorem of the unconscious statistician equal to

g,H−1, G, F, (−∞, x] to conclude that
∫
(−∞,H(x)]

g(H−1) dG =
∫
(−∞,x]

g dF,(10)

since (H−1)−1((−∞, x]) = {t : H−1(t) ≤ x} = {r : r ≤ H(x)} as in (3). Check it.

(b) Let G = I, H = F , and Y = ξ ∼= Uniform(0, 1) above, for any df F . Let g
denote any measurable function. Then (via part (a), or via (2) and (3))

∫ F (x)

0
g(F−1(t)) dt =

∫
(−∞,x]

g dF, and
∫ 1

F−(x)
g(F−1(t)) dt =

∫
[x,∞)

g dF.(11)

(c) Exercise 3.5.3 established E|X | =
∫∞
0
P (|X | > y) dy (note (6.4.11) below) and

∫
[x,∞) y dF|X|(y) = xP (|X | ≥ x) +

∫∞
x P (|X | ≥ y) dy ; so(12)

∫
[0,x]

y dF|X|(y) =
∫ x
0
P (|X | > y) dy − xP (|X | > x) .(13)

Interpret these formulas in terms of various shaded areas shown in figure 8.4.1.
Also, relate these areas to (11) with g(y) = y and X ≥ 0.
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Exercise 3.4 Let h be measurable on [0, 1]. Then

∫
(−∞,x]

h(F−) dF ≤
∫ F (x)

0
h(t) dt ≤

∫
(−∞,x]

h(F ) dF if hր .(14)

Reverse the inequalities if hց.

Proof. We now prove proposition 1.2.3. Let D be a subset of [0, 1] that
is not Lebesgue measurable; its existence is guaranteed by proposition 1.2.2. Let
B ≡ F−1(D) for the Lebesgue singular df F . Then (6.1.10) shows that B is a
subset of the Cantor set C. Since λ(C) = 0 and B ⊂ C, then B is a Lebesgue set
with λ(B) = 0; that is, B ∈ B̂λ. We now assume that B is Borel set (and seek a
contradiction). Now F−1 is measurable by (6.1.10), and so (F−1)−1(B) ∈ B. But

(F−1)−1(B) = {r : F−1(r) ∈ B} = {r : F−1(r) ∈ F−1(D)} = D /∈ B,(a)

since F−1 is one-to-one on [0, 1]. This is a contradiction. Thus B ∈ B̂λ \ B. 2

The Elementary Skorokhod Construction Theorem

Let X0, X1, X2, . . . be iid F . Then Xn →d X0, but the Xn do not converge to X0 in
the sense of →a.s., →p, or →r. However, when general Xn →d X0, it is possible to
replace the Xn’s by rvs Yn having the same (marginal) dfs, for which the stronger
result Yn →a.s. Y0 holds.

Theorem 3.2 (Skorokhod) Suppose that Xn →d X0. Define ξ(ω) = ω for

each ω ∈ [0, 1] so that ξ ∼= Uniform(0, 1) on (Ω,A, P ) ≡ ([0, 1],B ∩ [0, 1], λ), for

Lebesgue measure λ. Let Fn denote the df of Xn, and define Yn ≡ F−1
n (ξ) for all

n ≥ 0. Let DK0 denote the at most countable discontinuity set of K0. Then both

Yn ≡ Kn(ξ) ≡ F−1
n (ξ) ∼= Xn

∼= Fn for all n ≥ 0 and

Yn(ω)→ Y0(ω) for all ω 6∈ DK0 .
(15)

Proof. This follows trivially from proposition 3.1. 2

Exercise 3.5 (Wasserstein distance) For k = 1 or 2, define

Fk ≡ {F : F is a df, and
∫
|x|k dF (x) <∞} , and

dk(F1, F2) ≡ {
∫ 1

0
|F−1

1 (t)− F−1
2 (t)|k dt}1/k for all F1, F2 ∈ Fk .

(a) Show that all such (Fk, dk) spaces are complete metric spaces, and that

dk(Fn, F0)→ 0 (with all {Fn}∞0 ∈ Fk ) if and only if

Fn →d F0 and
∫
|x|k dFn(x)→

∫
|x|k dF0(x) .

(16)

(The rvs Yn ≡ F−1
n (ξ) of (15) satisfy Yn →L2 Y0 if σ2

n → σ2
0 .)

(b) Apply these conclusions to the empirical df and qf.
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4 Integration by Parts Applied to Moments
Integration by Fubini’s theorem or “integration by parts” formulas are useful in
many contexts. Here we record a few of the most useful ones.

Integration by Parts

Proposition 4.1 (Integration by parts formulas) Suppose that both the left-
continuous function U and the right-continuous function V are monotone functions.
Then for any a ≤ b we have both

U+(b)V (b)− U(a)V−(a) =

∫

[a,b]

U dV +

∫

[a,b]

V dU and(1)

U(b)V (b)− U(a)V (a) =

∫

(a,b]

U dV +

∫

[a,b)

V dU,(2)

where U+(x) ≡ limyցx U(y) and V−(x) ≡ limyրx V (y). [Symbolically, written as

d(UV ) = U−dV + V+dU , it implies also that
∫
h d(UV ) =

∫
h [U− dV + V+ dU ] for

any measurable h ≥ 0.]

a

a

b

b

1[x′ < y′]

Figure 4.1  Integration by parts.

1[x′ ≥ y′]

Proof. We can apply Fubini’s theorem at steps (a) and (b) to obtain

[U+(b)− U(a)] [V (b)− V−(a)] =
∫
[a,b]{

∫
[a,b] dU} dV

=
∫
[a,b]

∫
[a,b] [1[x′<y′](x, y) + 1[x′≥y′](x, y)] dU(x) dV (y)(a)

=
∫
[a,b]

[U(y)− U(a)] dV (y) +
∫
[a,b]

[V (x)− V−(a)] dU(x)(b)

=
∫
[a,b]

UdV − U(a) [V (b)− V−(a)] +
∫
[a,b]

V dU − V−(a) [U+(b)− U(a)].

Algebra now gives (1). Add U(a) [V (b)−V−(a)]+V−(a) [U+(b)−U(a)] to each side
of (1) to obtain (2). 2

Exercise 4.1 How should the left side of (1) be altered if we replace [a, b] in
both places on the right side of (1) by (a, b), or by (a, b], or by [a, b)? [Just plug in
a+ or a− as well as b+ or b− on both sides of the equation d(UV ) = U−dV +V+dU

so as to include or exclude that endpoint; this will give the proper formulation.]
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Useful Formulas for Means, Variances, and Covariances

If ξ ∼= Uniform(0, 1) and F is an arbitrary df, then the rv X ≡ F−1(ξ) has df F .
Thinking of X as F−1(ξ) presents alternative ways to approach problems.
We will do this often! Note that this X = F−1(ξ) satisfies both

X =

∫

(0,1)

F−1(t) d1[ξ≤t] and X =

∫

(−∞,∞)

x d1[X≤x] ,(3)

where 1[ξ≤t] is a random df that puts mass 1 at the point ξ(ω) and 1[X≤x] is a random
df that puts mass 1 at the point x. If X has a finite mean µ, then (depending on
which representation of X we use)

µ =

∫

(0,1)

F−1(t) dt and µ =

∫

(−∞,∞)

x dF (x).(4)

Moreover, when µ is finite we can combine the two previous formulas to write

X − µ =

∫

(0,1)

F−1(t) d(1[ξ≤t] − t) = −
∫

(0,1)

(1[ξ≤t] − t) dF−1(t)(5)

or

X − µ =

∫

(−∞,∞)

x d(1[X≤x] − F (x)) = −
∫

(−∞,∞)

(1[X≤x] − F (x)) dx.(6)

The first formula in each of (5) and (6) is trivial; the second follows from integration

by parts. For example, (5) is justified by |t F−1(t)| ≤ |
∫ t
0
F−1(s) ds| → 0 as t→ 0

when E|X | =
∫ 1

0
|F−1(t)| dt < ∞, and the analogous result (1 − t)F−1(t) → 0

as t → 1. For (6), we note that x[1 − F (x)] ≤
∫
(x,∞) y dF (y) → 0 as x → ∞ if

E|X | < ∞. So when E|X | < ∞, Fubini’s theorem seems to give (see exercise 4.2
for the rigorous proof of (8))

Var[X ] = E

{∫

(0,1)

(1[ξ≤s] − s) dF−1(s)

∫

(0,1)

(1[ξ≤t] − t) dF−1(t)

}
(a)

=

∫

(0,1)

∫

(0,1)

E{(1[ξ≤s] − s)(1[ξ≤t] − t)} dF−1(s) dF−1(t)(b)

=

∫

(0,1)

∫

(0,1)

[s ∧ t− st] dF−1(s) dF−1(t) (when E|X | <∞)(7)

=

∫

(0,1)

∫

(0,1)

[s ∧ t− st] dF−1(s) dF−1(t) (even if E|X | =∞)(8)

via (5), and the parallel formula

Var[X ] =

∫ ∞

−∞

∫ ∞

−∞
[F (x ∧ y)− F (x)F (y)] dx dy(9)

via (6). Of course, we already know, when E(X2) <∞, that

Var[X ] =

∫ 1

0

[F−1(t)− µ]2 dt and Var[X ] =

∫ ∞

−∞
(x− µ)2 dF (x).(10)
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Proposition 4.2 (Other formulas for means, variances, and covariances)
(i) If X ≥ 0 has df F , then

∫ ∞

0

P (X > x) dx = EX =

∫ ∞

0

(1− F (x)) dx and EX =

∫ 1

0

F−1(t) dt.(11)

(ii) If E|X | <∞, then

E(X) = −
∫ 0

−∞
F (x) dx +

∫ ∞

0

(1− F (x)) dx =

∫ 1

0

F−1(t) dt.(12)

(iii) Let r > 0. If X ≥ 0, then
∫ ∞

0

P (Xr > x) dx = E(Xr ) =

∫ ∞

0

r xr−1(1− F (x)) dx =

∫ 1

0

[F−1(t)]r dt(13)

In fact, one of the two integrals is finite if and only if the other is finite.

(iv) Let (X,Y ) have joint df F with marginal dfs FX and FY . Let G and H be ր
and left continuous. Then

Cov[G(X), H(Y )] =

∫ ∞

−∞

∫ ∞

−∞
[F (x, y)− FX(x)FY (y)] dG(x) dH(y)(14)

whenever this covariance is finite. Note the special case G = H = I for Cov[X,Y ].

Hint. Without loss, G−(0) = G+(0) = H−(0) = H+(0). Make use of the fact that
G(x) =

∫
[0,∞) 1[0,x)(s) dG−(s) in the first quadrant, etc.

(v) Let K be ր and left continuous and ξ ∼= Uniform(0, 1) (perhaps K = h(F−1)
for an ր left-continuous function h, and for X ≡ F−1(ξ) for a df F ). When finite,

Var[K(ξ)] =

∫ 1

0

∫ 1

0

[s ∧ t− st] dK(s) dK(t) and(15)

Var[K(ξ)] =

∫ ∞

−∞

∫ ∞

−∞
[F (x ∧ y)− F (x)F (y)] dh(x) dh(y) = Var[h(X)](16)

follow from (8) and (14).

(vi) If X ≥ 0 is integer-valued, then

EX =
∑∞
k=1 P (X ≥ k) and EX2 =

∑∞
k=1 (2k − 1)P (X ≥ k).(17)

Exercise 4.2 (W̃insorized X) Let X̃a,a′ ≡ K̃a,a′(ξ), where ξ ∼= Uniform(0,1).

Here, K̃a,a′ equals K+(a), K(t), K(1 − a′) according as 0 < t ≤ a, a < t < 1 − a′,
1− a′ ≤ t < 1. We say that X has been W̃insorized outside (a, 1− a′).
(a) Use the Fubini/Tonelli combination (as above) to check that

E(K̃2
a,a′(ξ))− (E(K̃a,a′(ξ))

2 = Var[K̃a,a′(ξ)]

=
∫ 1

0

∫ 1

0
1(a,1−a′)(s) 1(a,1−a′)(t) (s ∧ t− st) dK(s) dK(t);

essentially, obtain (8) for X̃a,a′ . Then let (a ∨ a′) → 0 , and apply the MCT, to
obtain (7) for general X . (Use (6.6.2) to see that (8) holds even if E|X | =∞.)

(b) Establish (9) using similar methods.
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Exercise 4.3 (a) Prove formulas (11)–(13). [Hint. Use integration by parts.]

(b) Prove the formula (14).

Exercise 4.4 Prove the formulas in (17).

Exercise 4.5 Give an extension of (13) to arbitrary rvs.

Exercise 4.6 (a) Use Fubini and use integration by parts to show twice that for
arbitrary F and for every x ≥ 0 we have

∫
[0,x] y

2 dF (y) = 2
∫ x
0 t P (X > t) dt− x2P (X > x).(18)

(b) Verify (6.3.12) and (6.3.13) once again, with the current methods.

Exercise 4.7 (Integration by parts formulas) We showed in proposition 4.1 earlier

that d(UV ) = U−dV + V+dU (with left continuous U and right continuous V ).

(i) Now show (noting that dU− = dU+) that

dU2 = d(U−U+) = U−dU +U+dU = (2U +∆U)dU for ∆U ≡ U −U−.(19)

(ii) Apply proposition 4.1 to 1 = U · (1/U) to obtain

d(1/U) = −{1/(U+U−)} dU = −{1/(U(U +∆U))} dU.(20)

(iii) Show by induction that for k = 1, 2, . . . we have

dUk = (
∑k−1

i=0 U
i
+U

k−i−1
− ) dU.(21)

Exercise 4.8 Show that for an arbitrary df F we have

d(F/(1 − F )) = {1/((1− F )(1 − F−))} dF.(22)

Exercise 4.9 For any df F we have
∫
[F (x + θ)− F (x)] dx = θ for each θ ≥ 0.

Exercise 4.10 (Stein) SupposeX ∼= (0, σ2) with df F . Then g(x) ≡
∫∞
x y dF (y)/σ2

is a density. (And g(x) = −
∫ x
−∞ y dF (y)/σ2 is also true.)

Exercise 4.11 (a) Show that
∫∞
0
{P (|X | > x)}1/2 dx <∞ implies EX2 <∞.

(b) Show that {
∫∞
0 {P (|X | > x)}1/2 dx ≤ r

r−2 ‖X‖r for any r > 2, so that the

integral on the left is finite whenever X ∈ Lr for any r > 2.

Hint. Verify (a) when X is bounded, via (13) and Markov. Then apply the MCT.

Consider (b). Bound
∫∞
0 =

∫ c
0 +

∫∞
c ≤ c+

∫∞
c via Markov, and then choose “c” to

minimize the bound.
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5 Important Statistical Quantities

Notation 5.1 (T̆rimming, W̃insorizing, and Ťruncating, and dom(a, a′))
Let dom(a, a′) denote [0, 1 − a′) if X ≥ 0, or (a, 1] if X ≤ 0, or (a, 1 − a′) other-

wise. Let K̃a,a′(·) denote K(·) Winsorized outside the domain of Winsorization
dom(a, a′). Thus when X takes both positive and negative values and we suppose

that “a” and “a′ ” are specified so small that K+(a) < 0 < K(1−a′), it follows that

K̃a,a′(t) equals K+(a), K(t), K(1− a′)
as 0 < t ≤ a, a < t < 1− a′, 1− a′ ≤ t < 1

(1)

(while a ≡ 0 and K̃(a) ≡ K(0) if X ≥ 0, etc). Let ξ denote a Uniform(0, 1) rv. Let

µ̃(a, a′) ≡ µ̃K(a, a′) ≡ EK̃a,a′(ξ) ≡
∫ 1

0
K̃a,a′(t) dt,(2)

which is the (a, a′)-Winsorized mean of the rv K(ξ), and let

σ̃2(a, a′) ≡ σ̃2
K(a, a′) ≡ Var[K̃a,a′(ξ)] =

∫ 1

0 K̃
2
a,a′(t) dt− µ̃(a, a′)2

=
∫ 1

0

∫ 1

0 [s ∧ t− st] dK̃a,a′(s) dK̃a,a′(t)(3)

denote the (a, a′)-Winsorized variance (recall (6.4.8)). For general X , let

µ̃(a) ≡ µ̃(a, a) , σ̃2(a) ≡ σ̃2(a, a) , and K̃a(·) ≡ K̃a,a(·) ;(4)

but µ̃(a) ≡ µ̃0,a if X ≥ 0, etc.

We now let 0 ≤ kn < n− k′n ≤ n denote integers, and then let

an ≡ kn/n and a′n ≡ k′n/n , so that 0 ≤ an < 1− a′n ≤ 1 .

Let K̃n(·) denote K(·) Winsorized outside dom(an, a
′
n). Let

µ̌n ≡ µ̌K(an, a
′
n) ≡

∫ 1−a′n
an

K(t) dt, µ̆n ≡ µ̆K(an, a
′
n) ≡ µ̌n/(1− an − a′n),

µ̃n ≡ µ̃K(an, a
′
n) ≡ µK̃n

≡ EK̃n(ξ) ≡
∫ 1

0
K̃n(t) dt,

(5)

so that µ̆n is the (an, a
′
n)-trimmed mean, µ̃n is the (an, a

′
n)-Winsorized mean, and

µ̌n is herein called the (an, a
′
n)-truncated mean of the rv K(ξ). Then let

σ̃2
n ≡ σ̃2

K(an, a
′
n) ≡ σ2

K̃n
≡ Var[K̃n(ξ)] =

∫ 1

0

∫ 1

0
[s ∧ t− st] dK̃n(s) dK̃n(t)(6)

denote the (an, a
′
n)-Winsorized variance. When they are finite, the mean µ and

variance σ2 satisfy

µ ≡ µK =
∫ 1

0K(t) =
∫
x dF (x) = E(X) = EK(ξ),

σ2 ≡ σ2
K =

∫ 1

0

∫ 1

0
[s ∧ t− st] dK(s) dK(t) = EX2 − µ2 = EK2(ξ)− µ2.

Let a· ≡ inf{t : K(t) ≥ 0}, and let a◦ ≡ a· ∧ (1 − a·). (But a· ≡ 0 if X ≥ 0, and

a· ≡ 1 if X ≤ 0.) Now, (K − µ̃n)+ and (K − µ̃n)− denote the positive and negative

parts of K − µ̃n, and let

K̄n ≡ [K − µ̃n] and K̄2
n ≡ −[(K − µ̃n)−]2 + [(K − µ̃n)+]2 on (0, 1).(7)
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In this context, we may wish to assume that both

(kn ∧ k′n)→∞ and (an ∨ a′n)→ 0;(8)

and perhaps we will also assume

a′n/an → 1 and/or (kn − k′n)/(kn ∧ k′n)→ 0 .

We will refer to kn, k
′
n as the trimming/Winsorizing numbers and an, a

′
n as the

trimming/Winsorizing fractions. Describe the case of (8) as slowly growing to ∞.

Now suppose that Xn1, . . . , Xnn is an iid sample with df F and qf K. Let
Xn:1 ≤ · · · ≤ Xn:n denote the order statistics (that is, they are the ordered values

of Xn1, . . . , Xnn). Let Kn(·) on [0, 1] denote the empirical qf that equals Xn:i on

((i − 1)/n, i/n], for 1 ≤ i ≤ n, and that is right continuous at zero. Now let

X̄n ≡
1

n

n∑

k=1

Xnk = µKn(0, 0) and S2
n ≡

1

n

n∑

k=1

(Xnk−X̄n)
2 = σ2

Kn
(0, 0)(9)

denote the sample mean and the “sample variance.” We also let

X̌n ≡
1

n

n−k′n∑

i=kn+1

Xn:i = µ̌Kn(an, a
′
n) , X̆n ≡

1

n− kn − k′n

n−k′n∑

i=kn+1

Xn:i ,(10)

X̃n ≡
1

n

[
knXn:kn+1 +

n−k′n∑

i=kn+1

Xn:i + k′nXn−k′n

]
= µ̃Kn(an, a

′
n)(11)

denote the sample (an, a
′
n)-truncated mean, the sample (an, a

′
n)-trimmed mean,

and the sample (an, a
′
n)-Winsorized mean. Let X̃n:1, . . . , X̃n:n denote the (an, a

′
n)-

Winsorized order statistics, whose empirical qf is K̃n. Now note that

X̃n =
1

n

n∑

i=1

X̃n:i = µ
K̃n

; let S̃2
n ≡

1

n

n∑

i=1

(X̃n:i − X̃n)
2 = σ2

K̃n
(12)

denote the sample (an, a
′
n)-Winsorized variance. Let

σ̆2
n ≡ σ̃2

n/(1− an − a′n)2 and S̆2
n ≡ S̃2

n/(1− an − a′n)2.
Of course, X̄n, Sn, X̆n, S̃n estimate µ, σ, µ̆n, σ̃n. We also define the standardized
estimators

Zn ≡
√
n (X̄n − µ)

σ
and Žn ≡

√
n (X̆n − µ̆n)

σ̆n
=

√
n (X̌n − µ̌n)

σ̃n
,(13)

and the Studentized estimators

Tn ≡
√
n (X̄n − µ)

Sn
and T̆n ≡

√
n (X̆n − µ̆n)

S̆n
=

√
n (X̌n − µ̌n)

S̃n
.(14)

[The first formula for T̆n is for statistical application, while the second formula
is for probabilistic theory.] We will very often assume that these independent rvs
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Xn1, . . . , Xnn having df F and qfK are defined in terms of independent Uniform(0, 1)
rvs ξn1, . . . , ξnn via (see above (6.4.3))

Xnk ≡ K(ξnk) for 1 ≤ k ≤ n.(15)

(If we start with iid K rvs X1, . . . , Xn and then define Uniform(0,1) rvs ξ̇1, . . . ξ̇n

via (6.3.8), then the Xk ≡ F−1(ξ̇k) (as in (6.3.9)) are just the original Xk’s.) Thus
the device of (15) is broadly useful.

We define the sample median Ẍn to equal Xn:(n+1)/2 or (Xn:n/2 +Xn:n/2+1)/2,
according as n is odd or even.

In the previous context, let ξn:1 < · · · < ξn:n denote the order statistics of iid
Uniform(0, 1) rvs. Let Rn ≡ (Rn1, . . . , Rnn)

′ denote the ranks of these ξn1, . . . , ξnn,
and let Dn ≡ (Dn1, . . . , Dnn)

′ denote their antiranks. Thus the rank vector Rn is a
random permutation of the vector (1, 2, . . . , n)′, while Dn is the inverse permutation;
and these satisfy

ξnDnk
= ξn:k and ξnk = ξn:Rnk

.(16)

We will learn later that

(ξn:1, . . . , ξn:n) and (Rn1, . . . , Rnn) are independent random vectors.(17)

Such notation is sometimes used throughout the remainder of this book. 2

The Empirical DF

Notation 5.2 (Empirical dfs and processes) Let X1, X2, . . . be iid with
df F and qf K. The empirical df Fn of (X1, . . . , Xn) is defined by

Fn(x) ≡
1

n

n∑

k=1

1(−∞,x](Xk) =
1

n

n∑

k=1

1[Xk≤x] for −∞ < x <∞.(18)

This is a step function on the real line R that starts at height 0 and jumps by height
1/n each time the argument reaches another observation as it moves from left to
right along the line. We can think of Fn as an estimate of F . The important study
of the empirical process

En(x) ≡
√
n [Fn(x) − F (x)] for x ∈ R(19)

will allow us to determine how this estimator Fn of F performs.

We also let ξ1, ξ2, . . . be iid Uniform(0, 1), with true df the identity function I
on [0, 1] and with uniform empirical df

Gn(t) ≡
1

n

n∑

k=1

1[0,t](ξk) =
1

n

n∑

k=1

1[ξk≤t] for 0 ≤ t ≤ 1.(20)

The corresponding uniform empirical process is given by

Un(t) ≡
√
n [Gn(t)− t] for t ∈ [0, 1].(21)
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If we now define an iid F sequence X1, X2, . . . via Xk ≡ F−1(ξk) = K(ξk), then the

empirical df and empirical process of these (X1, . . . , Xn) satisfy

(Fn − F ) = [Gn(F )− I(F )] on R and En = Un(F ) on R,

valid for every ω,
(22)

as follows by (6.3.3). (If we use the ξ̇k’s of (6.3.8), then the Fn on the left in (22)
is everywhere equal to the Fn of the original Xk’s.) Thus our study of properties
of En can proceed via a study of the simpler Un, which is then evaluated at a
deterministic F . (Recall also in this regard theorem 5.3.3 about probability being
determined by the finite dimensional distributions.) 2
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6 Infinite Variance
Whenever the variance is infinite, the Winsorized variance σ̃2 of the previous section
completely dominates the square µ̃2 of the Winsorized mean. Let K̃a,a′ denote K
Winsorized outside (a, 1− a′).

Theorem 6.1 (Gnedenko–Kolmogorov) Every nondegenerate qf K satisfies

lim sup
a∨a′→0

{
∫ 1−a′
a |K(t)| dt}2/

∫ 1−a′
a K2(t) dt = 0 whenever EK2(ξ) =∞,(1)

Var[K̃a,a′(ξ)]/EK̃
2
a,a′(ξ)→ 1 as (a∨a′)→ 0 whenever EK2(ξ) =∞ .(2)

Proof. Let h > 0 be continuous, symmetric about t = 1/2, ↑ to ∞ on

[1/2, 1), and suppose it satisfies Ch ≡
∫ 1

0
h2(t) dt < ∞. Let b ≡ 1 − a′. Then

Cauchy–Schwarz provides the bound

{
∫ b
a
|K(t)| dt}2 = {

∫ b
a
h(t)|K(t)/h(t)| dt}2 ≤

∫ b
a
h2(t) dt

∫ b
a
[K2(t)/h2(t)] dt.(a)

Fix c ≡ cǫ so close to zero that Ch/h
2(c) < ǫ. Fix cǫ, and let a ∨ a′ → 0. Then

{
∫ b
a |K(t)| dt}2/

∫ b
aK

2(t) dt ≤ Ch
∫ b
a [K

2(t)/h2(t)] dt/
∫ b
aK

2(t) dt

≤ Ch
{∫ 1−c

c
K2(t) dt

h2(1/2)
+

(
∫ c
a
+
∫ b
1−c)K

2(t) dt

h2(c)

}/∫ b
aK

2(t) dt(b)

≤ Ch{
∫ 1−c
c K2(t) dt/h2(1/2)}/

∫ b
aK

2(t) dt+ ǫ(c)

< 2ǫ for a and b near enough to 0 and 1, since EK2(ξ) =∞.(d)

Then (2) follows from [aK+(a) + a′K(1− a′)]2/ [aK2
+(a) + a′K2(1− a′)]→ 0. 2

Exercise 6.1 (Comparing contributions to the variance) Let K(·) be arbitrary.
Establish the following elementary properties of qfs (of non-trivial rvs):

lim sup
a∨a′→0

[aK2
+(a) + a′K2(1− a′)]/σ̃2

{
= 0 if EK2(ξ) <∞,
≤ 1 if EK2(ξ) =∞.(a)

lim sup
a∨a′→0

∫ 1−a′
a K2(t) dt/σ̃2

{
<∞ always,
≤ 1 if EK2(ξ) =∞.(b)

lim sup
a∨a′→0

{a|K+(a)|+ a′|K(1− a′)|}/σ̃
{
= 0 always,
= 0 if EK2(ξ) =∞.(c)

lim sup
a∨a′→0

∫ 1−a′
a
|K(t)| dt/σ̃

{
<∞ always,
= 0 if EK2(ξ) =∞.(d)

lim sup
a∨a′→0

E|K̃a,a′(ξ)|/σ̃
{
<∞ always,
= 0 if EK2(ξ) =∞.(e)
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Exercise 6.2 Let 0 < r < s. Show that for every nondegenerate qf K we have

lim sup
a∨a′→0

{
∫ 1−a′
a
|K(t)|r dt}s/r

/∫ 1−a′
a
|K(t)|s dt = 0 if E|K(ξ)|s =∞.(3)

Exercise 6.3 (An added touch) Let K ≥ 0 be ց on (0, 1) with
∫ 1

0
K(t) dt <∞.

Then there exists a positive ց function h(·) on (0, 1) with h(t) → ∞ as t → 0 for

which
∫ 1

0 h(t)K(t) dt <∞. (Note exercise 3.5.22.)

Proposition 6.1 Let X have sth absolute moment E|X |s =∞, and let 0 < r < s.

Let |X |sn ≡ 1
n

∑n
1 |Xk|s for iid rvs X1, X2, . . . distributed as X , etc. Then

[ |X |rn ]s/r/ |X |sn →a.s. 0 (using remark 6.1).(4)

Remark 6.1 It is useful to give this proof now even though it will not be until

the SLLN (theorem 8.4.2) that we prove E |X |s < ∞ yields |X |sn →a.s. E |X |s.
Likewise, E|X |s =∞ yields |X |sn →a.s. ∞. These will be used in the proofs below.

Proof. We follow the proof of Gnedenko–Kolmogorov’s theorem 6.6.1, as we
give the proof of (4) for s = 2 and r = 1. Let Kn denote the empirical qf. Let
h be positive, continuous, symmetric about t = 1

2 , ↑ to ∞ on [ 12 , 1) and suppose it

satisfies Ch ≡
∫ 1

0 h2(t) dt <∞. Define a = 1 − b = 1/(2n). Then Cauchy–Schwarz
gives the bound

(
∫ b
a
|Kn(t)| dt)2 = (

∫ b
a
h(t)|Kn(t)/h(t)| dt)2 ≤

∫ b
a
h2(t) dt

∫ b
a
[K2

n(t)/h
2(t)] dt

= Ch
∫ b
a
[K2

n(t)/h
2(t)] dt.(a)

Let c ≡ cǫ be fixed so close to zero that Ch/h
2(c) < ǫ/8. Then

{ 1
n

∑n
1 |Xk| }2/X2

n ≤ 4{
∫ b
a
|Kn(t)| dt}2/X2

n

(the “4” comes from the definition of a and b,

which gives only half of the two end intervals)

≤ 4Ch
∫ b
a
[K2

n(t)/h
2(t)] dt/X2

n by (a)

≤ 4Ch

{∫ 1−c
c

K2
n(t) dt

h2(1/2)
+

(
∫ c
a +

∫ b
1−c)K

2
n(t) dt

h2(c)

}
/X2

n(b)

≤ 4Ch
h2(1/2)

{
∫ 1−c
c

K2
n(t) dt/X

2
n}+

4Ch
h2(c)

· {X2
n/ X

2
n}(c)

< ǫ
2 + ǫ

2 · 1 = ǫ for all n exceeding some nǫ,(d)

using remark 6.1 for X2
n →a.s. ∞ in the final step. (Thus the numerator of the

leading term in (c) converges a.s. to a finite number, while the denominator has an
a.s. limit exceeding 2/ǫ times the numerator.) 2
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Exercise 6.4 (a) Prove proposition 6.1 for general 0 < r < s.

(b) Prove that (4) holds in the sense of →p 0 if all Xn1, . . . , Xnn are iid as X .

Proposition 6.2 (Equivalent versions of negligibility)
For any vector X ≡ (X1, . . . , Xn), let

D2
n ≡ [max1≤k≤n

1
n |Xk − X̄n|2 ] / S2

n where S2
n ≡ X2

n − (X̄n)
2.(5)

Let X1, X2, . . . be iid as X , and set Xn = (X1, . . . , Xn)
′. Then

D2
n →a.s. 0 if and only if [max1≤k≤n

1
n X

2
k ] /X

2
n →a.s. 0 .(6)

Let Xn1, . . . , Xnn be iid as X , for each n ≥ 1. Set X = (Xn1, . . . , Xnn)
′. Then

D2
n →p 0 if and only if [max1≤k≤n 1

n X
2
nk ] /X

2
n →p 0 .(7)

Proof. Consider (6). Note that

D2
n =



max

∣∣∣∣∣∣
Xk√
nX2

n

− X̄n√
nX2

n

∣∣∣∣∣∣





2

/
{1− (X̄n)

2/X2
n }.(a)

Since 0 ≤ (X̄n)
2/X2

n ≤ 1 always holds by the Liapunov inequality, we have

|X̄n| /
√
nX2

n ≤ 1/
√
n→a.s. 0 always holds for all rvs.(b)

Thus the second term in the numerator always goes to zero for all rvs (independent,
or not). Now consult remark 6.1 for the following two claims. The denominator of
(a) converges a.s. to 1− 0 = 1 if EX2 =∞ (by (4)), while the denominator of (a)
converges a.s. to (1 − E2X/EX2) < 1 if EX2 <∞. Thus D2

n(ω)→ 0 for a.e. fixed
(X1(ω), X2(ω), . . .) if and only if the lead term in the numerator of (a) goes to zero

for a.e. fixed ω; that is, if and only if [max |Xk| ]/{nX2
n}1/2 → 0 for a.e. fixed ω.

This gives (6). Then (7) follows by going to subsequences, using exercise 6.4. 2

Proposition 6.3 Let X ≥ 0 with EXs =∞ have df F and qf K. The rth partial
absolute moment Mr(·) is defined on [0, 1] by

Mr(t) ≡
∫ 1−t
0 Kr(u) du =

∫ 1

t mr(u) du , where mr(t) ≡ [K(1− t)]r.(8)

Then, for 0<r<s,

tms(t)/Ms(t)→ 0 implies tmr(t)/Mr(t)→ 0.(9)

(The result (C.2.20) below, especially (and all the rest of sections C.2-C.3,are very
much in the spirit of (9) and (2).)

Proof. Raising to a power increases a maximum more than an average, and so

tmr(t)

Mr(t)
=

tKr(1− t)∫
(t,1] K

r(1− u) du ≤
t

1− t
Ks(1− t)

1
1−t

∫
(t,1]

Ks(1− u) du =
tms(t)

Ms(t)
(10)

for all t so close to 1 that K(1− t) > 1. This establishes (9). 2
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The CLT and Slowly Varying Functions

Let Xn1, . . . , Xnn be iid with df F and qf K ≡ F−1. The central limit theorem
(CLT) states that Z̄n ≡

√
n [X̄n − µ]/σ →d N(0, 1) when σ2 is finite. In this case

t [K2
+(ct) ∨K2(1− ct)] / σ2 → 0 as t→ 0, for each fixed c > 0;(11)

just extend the calculation (6.4.6) to the second moment case.

What if σ2 is infinite? Let ξ denote a Uniform(0, 1) rv. Let X ≡ K(ξ), so that

X has df F . Let X̃(a) ≡ K̃a,a(ξ), with mean µ̃(a) ≡
∫ 1

0
K̃a,a(t) dt and variance

σ̃2(a) =
∫ 1

0

∫ 1

0 [r ∧ s− rs] dK̃a,a(r) dK̃a,a(s),(12)

which increases to σ2 as a ց 0, whether σ2 is finite or infinite. This expression
makes no reference to any mean (such as µ or µ̃(a)). This is nice! It turns out that

Z̄n ≡
√
n [X̃n − µ̃(1/n)] / σ̃(1/n)→d N(0, 1)(13)

if and only if (exercise 10.1.8 will provide good motivation for this condition)

t [K2
+(ct) ∨K2(1− ct)] / σ̃2(t)→ 0 as t→ 0, for each fixed c > 0.(14)

This (14) holds if and only if σ̃2(t) does not grow too fast; that is, if and only if

σ̃2(ct)/σ̃2(t)→ 1 as t→ 0, for each fixed c > 0.(15)

It is appropriate to examine such slow variation of σ̃2(t) in the infinite-variance
case. We shall do so very carefully in appendix C, in both the df domain and the
quantile domain. (This appendix C could have appeared as ∗-starred sections at
the end of chapter 8 on the weak law of large numbers (WLLN).) Often this slow
variation question is made rather difficult, by examining this problem in the context
of the CLT and by treating it in the context of the general theory of slowly varying
functions. But the equivalence of all the conditions in the appendix will follow from
a careful treatment of the easier WLLN and treating slowly varying functions in
an elementary fashion from simple pictures and a dash of Cauchy–Schwarz. The
connection to the CLT will not be made until the ∗-starred sections 10.5–10.5.
When all is said and done, we will have established the following theorem.

Theorem 6.2 (A studentized CLT) Let Xn1, . . . , Xnn’s be row independent, all
with nondegenerate df F . Conditions (14) and (15) are each equivalent to any of:

√
n [X̄n − µ̃(1/n)]/σ̃(1/n)→d N(0, 1) .(16)

S2
n/σ̃

2(1/n)→p 1 .(17)

D2
n ≡ [ max

1≤k≤n
1
n (Xnk−X̄n)

2 ] / S2
n →p 0 (OR, [ max

1≤k≤n
1
n X

2
nk] /X

2
n →p 0.)(18)

U(x) ≡
∫
[ y2≤x] y

2 dF (y) satisfies U(cx)/U(x)→ 1, for each c > 1.(19)

R(x) ≡ x2 P ( |X | > x)/
∫
[ y2≤x] y

2 dF (y)→ 0 as x→∞.(20)

(To apply this theorem, just verify (19) or (20) and then claim that (16), (17),
and (18) hold. These trivially imply that

√
n [X̄n − µ̃(1/n)]/Sn →d N(0, 1), which

leads to an asymptotically valid confidence interval for µ̃(1/n).)



Chapter 7

Independence and
Conditional Distributions

1 Independence

The idea of independence of events A and B is that the occurrence or nonoccurrence
of A has absolutely nothing to do with the occurrence or nonoccurrence of B. It is
customary to say that A and B are independent events if

P (AB) = P (A)P (B).(1)

Classes C and D of events are called independent classes if (1) holds for all A ∈ C
and all B ∈ D. We need to define the independence of more complicated objects.

Definition 1.1 (Independence) Consider a fixed probability space (Ω,A, P ).
(a) Consider various sub σ-fields of A. Call such σ-fields A1, . . . ,An independent
σ-fields if they satisfy

P (A1 ∩ · · · ∩ An) =
∏n

1P (Ai) whenever Ai ∈ Ai for 1 ≤ i ≤ n.(2)

The σ-fields A1,A2, . . . are called independent σ-fields if A1, . . . ,An are independent
for each n ≥ 2. (Use this definition for arbitrary classes A1, . . . ,An, too.)
(b) Rvs X1, . . . , Xn are called independent rvs if the σ-fields F(Xi) ≡ X−1

i (B)
(for 1 ≤ i ≤ n) are independent. Rvs X1, X2, . . . are called independent rvs if all
X1, . . . , Xn are independent.
(c) Events A1, . . . , An are independent events if σ[A1], . . . , σ[An] are independent
σ-fields; here note that

σ[Ai] = {φ,Ai, Aci ,Ω}.(3)

The next exercise is helpful because it will relate the rather formidable definition
of independent events in (3) back to the simple definition (1).

123
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Exercise 1.1 (a) Show that P (AB) = P (A)P (B) if and only if {∅, A,Ac,Ω} and
{∅, B,Bc,Ω} are independent σ-fields. [Thus we maintain the familiar (1).]
(b) Show that A1, . . . , An are independent if and only if

P (Ai1 · · ·Aik) =
∏k
j=1P (Aij )

whenever 1 ≤ i1 < · · · < ik ≤ n with 1 ≤ k ≤ n.
(4)

Remark 1.1 When discussing a pair of possibly independent events, one should
draw the Venn diagram as a square representing Ω divided into half vertically (with
respect to A,Ac) and into half horizontally (with respect to B,Bc) creating four
cells (rather than as the familiar two-circle picture). Also, if one writes on the table
the probability of each of the four combinations AB, ABc, AcB, AcBc, one has the
contingency table superimposed on the picture. (See figure 1.1.) [This extends to
two partitions (A1, . . . , Am) and (B1, . . . , Bn), but not to three events.] 2

B

Bc

A Ac

P(AB) P(AcB)

P(ABc) P(AcBc)

Figure 1.1  The 2 × 2 table.

Theorem 1.1 (Expectation of products) Suppose X and Y are independent
rvs for which g(X) and h(Y ) are integrable. Then g(X)h(Y ) is integrable, and

E[g(X)h(Y )] = Eg(X) Eh(Y ) .(5)

Proof. The assertion is obvious for g = 1A and h = 1B. Now hold g = 1A fixed,
and proceed through simple and nonnegative h. Then with h held fixed, proceed
through simple, nonnegative, and integrable g. Then extend to integrable h. 2
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Proposition 1.1 (Extending independence on π-systems)
(a) Suppose the π-system C and a class D are independent. Then

σ[C] and D are independent.

(b) Suppose the π-systems C and D are independent. Then

σ[C] and σ[D] are independent σ-fields.

(c) If C1, . . . , Cn are independent π-systems (see (2)), then

σ[C1], . . . , σ[Cn] are independent σ-fields.

Proof. (a) Fix D ∈ D, and define

CD ≡ {A ∈ σ[C] : P (AD) = P (A)P (D)}.(i)

We now demonstrate that CD is a λ-system (that trivially contains C). Trivially,
Ω ∈ CD. If A,B ∈ CD with A ⊂ B, then

P ((A \B)D) = P (AD \BD) = P (AD)− P (BD)

= P (A)P (D)− P (B)P (D) = P (A \B)P (D);(j)

and this implies that A \B ∈ CD. If An ր A with all An ∈ CD, then
P (AD) = P (limAnD) = limP (AnD) = limP (An)P (D) = P (A)P (D);(k)

and this implies that A ∈ CD. Thus CD is a λ-system, and it trivially contains the
π-system C. Thus CD ⊃ λ[C] = σ[C], using (1.1.19) for the equality. Finally, this is

true for every D ∈ D.
Just apply part (a) to the π-system D and the arbitrary class σ[C] to obtain (b).

The now minor (c) is left to exercise 1.3. 2

Theorem 1.2 LetX1, X2, . . . be independent rvs on (Ω,A, P ). Let i ≡ (i1, i2, . . .)
and j ≡ (j1, j2, . . .) be disjoint sets of integers. (a) Then

F(Xi1 , Xi2 , . . .) and F(Xj1 , Xj2 , . . .) are independent σ-fields.(6)

(b) This extends immediately to countably many disjoint sets of integers.

Corollary 1 (Preservation of independence)
Any rvs h1(Xi1 , Xi2 , . . .), h2(Xj1 , Xj2 , . . .), . . . (that are based on disjoint sets of the
underlying independent rvs Xk) are themselves independent rvs, for any choice of
the B-B∞-measurable functions h1, h2, . . . .

Proof. Let C denote all sets of the form C ≡ [Xi1 ∈ B1, . . . , Xim ∈ Bm],
for some m ≥ 1 and for B1, . . . , Bm in B. Let D denote all sets of the form
D ≡ [Xj1 ∈ B′

1, . . . , Xjn ∈ B′
n] for some n ≥ 1 and sets B′

1, . . . , B
′
n in B. Both C

and D are π̄-systems, while σ[C] = F(Xi1 , Xi2 , . . .) and σ[D] = F(Xj1 , Xj2 , . . .).

In fact, F(Xi1 , Xi2 , . . .) = X−1

i (B∞) = X−1

i (σ[C∞]) = σ[X−1

i (C∞)] = σ[C]. Thus
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P (C ∩D) = P ({∩mk=1[Xik ∈ Bk]} ∩ {∩nl=1[Xjl ∈ B′
l ]})(p)

=
∏m
k=1P (Xik ∈ Bk)

∏n
l=1P (Xjl ∈ B′

l) by independence

= P (∩mk=1[Xik ∈ Bk]) P (∩nl=1[Xjl ∈ B′
l]) by independence

= P (C)P (D),(q)

so that C and D are independent classes. Thus σ[C] and σ[D] are independent
by proposition 1.1(b), as is required for (6). The extension to countably many
disjoint sets of indices is done by induction using proposition 1.1(c), and is left to
the exercises. [The corollary is immediate.] 2

Exercise 1.2 Prove theorem 1.2(b).

Exercise 1.3 Prove proposition 1.1(c).

Criteria for Independence

Theorem 1.3 The rvs (X1, . . . , Xn) are independent rvs if and only if

FX1,...,Xn(x1, . . . , xn) = FX1(x1) · · ·FXn(xn) for all x1, . . . , xn.(7)

Proof. Clearly, independence implies that the joint df factors. For the converse
we suppose that the joint df factors. Then for all x1, . . . , xn we have

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) · · ·P (Xn ≤ xn).

That is, the classes Ci ≡ {[Xi ≤ xi] : xi ∈ R} are independent, and they are

π-systems, with σ[Ci] = F(Xi). Independence of X1, . . . , Xn then follows from
proposition 1.1(c). 2

Exercise 1.4 Rvs X,Y that take on only a countable number of values are
independent if and only if P ([X = ai][Y = bj ]) = P (X = ai)P (Y = bj) for all i, j.

Exercise 1.5 Show that rvs X,Y having a joint density f(·, ·) are independent

if and only if the joint density factors to give f(x, y) = fX(x)fY (y) for a.e. x, y.

Remark 1.2 That rv’s X,Y are independent if and only if their characteristic
function factors appears as theorem 9.5.3 below. 2
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2 The Tail σ-Field

Definition 2.1 (The tail σ-field) Start with an arbitrary random element
X ≡ (X1, X2, . . .) from (Ω,A, P ) to (R∞,B∞). Then T ≡ ⋂∞

n=1F(Xn, Xn+1, . . .) is

called the tail σ-field, and any event D ∈ T is called a tail event.

Theorem 2.1 (Kolmogorov’s 0-1 law) If X1, X2, . . . are independent rvs,
then P (D) equals 0 or 1 for all tail events D in the tail σ-field T .

Proof. Fix a set D ∈ T , and then let D ∈ F(X) = X−1(B∞). By the
Halmos approximation lemma of exercise 1.2.3 and the introduction to section 2.5,
there exists an integer n and a set Dn in the nth member of ∪mF(X1, . . . , Xm) =

∪mX−1
m (Bm) = (a field) such that P (Dn∆D)→ 0. Thus both P (D∩Dn)→ P (D)

and P (Dn) → P (D) occur. Happily, D ∈ T ⊂ F(Xn+1, . . .), so that D and
Dn ∈ F(X1, . . . , Xn) are independent. Hence

P 2(D)← P (D)P (Dn) = P (D ∩Dn)→ P (D),

yielding P 2(D) = P (D). Thus P (D) = 0 or 1. 2

Remark 2.1 (Sequences and series of independent rvs converge a.s., or
almost never) Note that for any Borel sets B1, B2, . . . in B,

[Xn ∈ Bn i.o.] equals lim [Xn ∈ Bn] =
⋂∞
n=1

⋃∞
m=n [Xm ∈ Bm] ∈ T ,(1)

since
⋃∞
m=n[Xm ∈ Bm] ∈ F(Xn, . . .). Also,

lim [Xn ∈ Bn] =
⋃∞
n=1

⋂∞
m=n [Xm ∈ Bm] = (

⋂∞
n=1

⋃∞
m=n [Xm ∈ Bcm])c

= ( lim [Xn ∈ Bcn])c ∈ T .(2)

Note also that

[ω : Xn(ω)→ (some finite X(ω))]c = [ω : Xn(ω) 6→ (some finite X(ω))]

=
⋃∞
k=1

⋂∞
n=1

⋃∞
m=n [ω : |Xm(ω)−Xn(ω)| > 1/k] ∈ (

⋃∞
k=1T ) = T .(3)

Likewise, if Sn =
∑n
i=1 Xi, then

[ω : Sn(ω)→ (some finite S(ω))]c

=
⋃∞
k=1

⋂∞
n=1

⋃∞
m=n [ω : |∑m

i=n+1Xi(ω)| > 1/k] ∈ T .(4)

The following result has thus been established. 2

Theorem 2.2 Sequences and series of independent rvs can only converge either
a.s. or almost never.
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The Symmetric σ-Field

Definition 2.2 (Symmetric sets) Let π denote any mapping of the integers onto
themselves that (for some finite n) merely permutes the first n integers. Let
X ≡ (X1, X2, . . .) be B∞-measurable, and set Xπ ≡ (Xπ(1), Xπ(2), . . .). Then

A ≡ X−1(B) for some B ∈ B∞ is called a symmetric set if A = X−1
π (B) for all

such π. Let S denote the collection of all symmetric sets.

Exercise 2.1 (Hewitt–Savage 0-1 law)
Let X ≡ (X1, X2, . . .) have iid coordinates Xk.
(a) Show that P (A) equals 0 or 1 for every A in S.
(b) Show that S is a σ-field, called the symmetric σ-field.
(c) Show that the tail σ-field T is a subset of the symmetric σ-field S.
(d) Give an example where T is a proper subset of S.
[Hint. Use the approximation lemma of exercise 1.2.3 as it was used above.]
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3 Uncorrelated Random Variables
Recall from definition 3.4.1 that X ∼= (µ, σ2) denotes that X has mean µ and a
variance σ2 that is assumed to be finite.

Definition 3.1 (Correlation) If X1, . . . , Xn have finite variances, then we call
them uncorrelated if Cov[Xi, Xj] ≡ E{(Xi − EXi)(Xj − EXj)} = 0 for all i 6= j.
Define the dimensionless quantity

Corr[Xi, Xj ] ≡
Cov[Xi, Xj ]√
Var[Xi]Var[Xj ]

to be the correlation between Xi and Xj. If X ≡ (X1, . . . , Xn)
′, then the n× n

covariance matrix of X is defined to be the matrix Σ ≡ |[σij ]| whose (i, j)th element
is σij ≡ Cov[Xi, Xj].

Proposition 3.1 Independent rvs with finite variances are uncorrelated.

Proof. Now,

Cov[X,Y ] = E[(X − µX)(Y − µY )] = E(X − µX)E(Y − µY ) = 0 · 0 = 0,(a)

where

0 ≤ {Cov[X,Y ]}2 ≤ Var[X ] Var[Y ] <∞(b)

by Cauchy–Schwarz. 2

Note from (b) (or recall from (3.4.14)) that

|Corr[X,Y ] | ≤ 1 for any X and Y having finite variances.(1)

Proposition 3.2 If (X1, . . . , Xn) are uncorrelated and Xi
∼= (µi, σ

2
i ), then

n∑

1

aiXi
∼=
( n∑

1

ai µi,

n∑

1

a2i σ
2
i

)
.(2)

In particular, suppose X1, . . . , Xn are uncorrelated (µ, σ2). Then

X̄n ≡
1

n

n∑

1

Xi
∼=
(
µ,
σ2

n

)
, while

√
n(X̄n − µ)/σ ∼= (0, 1),(3)

provided that 0 < σ <∞. Moreover

Cov

[ m∑

i=1

aiXi,
n∑

j=1

bjYj

]
= Cov

[ m∑

i=1

ai (Xi − µXi),
n∑

j=1

bj (Yj − µYj )

]

=
m∑

i=1

n∑

j=1

ai bj Cov[Xi, Yj ] .(4)

Note that if

Y = AX, then ΣY = AΣXA
′.(5)

Proof. This is trivial. 2
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4 Basic Properties of Conditional Expectation
The Lebesgue integral is a widely applicable tool that extended the value of the
Reimann approach. It allows more general “heavy duty results.” So too, we now
need to extend and rigorize our elementary approach to conditional expectation, in
a way that keeps the useful results intact. (Illustrations follow the definitions.)

Definition 4.1 (Conditional expectation) Let (Ω,A, P ) denote a probability
space. Let D denote a sub σ-field of A. Let Y be a rv on (Ω,A, P ) for which
E|Y | <∞. By E(Y |D)(·) we mean any D-measurable function on Ω such that

∫

D

E(Y |D)(ω) dP (ω) =
∫

D

Y (ω) dP (ω) for all D ∈ D.(1)

Such a function exists and is unique a.e. P , as is seen below; we call this the
conditional expectation of Y given D. If X is another rv on (Ω,A, P ), then

E(Y |X)(ω) ≡ E(Y |F(X))(ω);(2)

we recall that F(X) ≡ X−1(B) for the Borel subsets B of the real line R.

Justification of definition 4.1. Let E|Y |<∞. Define a signed measure ν on D by

ν(D) ≡
∫
D Y dP for all D ∈ D.(a)

Now, ν is a signed measure on (Ω,D) by example 4.1.1, and the restriction of P to
D (denoted by P |D) is another signed measure on (Ω,D). Moreover, that ν ≪ P |D
is trivial. Thus the Radon–Nikodym theorem guarantees, uniquely a.e. P |D, a
D-measurable function h such that (recall exercise 3.2.3 for the second equality)

ν(D) =
∫
Dh d(P |D) =

∫
Dh dP for all D ∈ D.(b)

Now, being D-measurable and unique a.s. P |D implies that the function h is unique
a.s. P . Define E(Y |D) ≡ h. Radon–Nikodym derivatives are only unique a.e., and
any function that works is called a version of the Radon–Nikodym derivative. 2

Proposition 4.1 Suppose that Z is a rv on (Ω,A) that is F(X)-measurable.
Then there exists a measurable function g on (R,B) such that Z = g(X).

Proof. This is just proposition 2.2.5 again. 2

Notation 4.1 Since E(Y |X) = E(Y |F(X)) is F(X)-measurable, the previous
proposition shows that h ≡ E(Y |X) = g(X) for some measurable function g
on (R,B). The theorem of the unconscious statistician gives

∫
X−1(B) g(X) dP =∫

B g dPX , where we have written the general set D ∈ F(X) as D = X−1(B) for
some B ∈ B. Thus we may define E(Y |X = x) = g(x) to be a B-measurable
function on R for which∫

B

E(Y |X = x) dPX(x) =

∫

X−1(B)

Y (ω) dP (ω) for all B ∈ B.(3)

This function E(Y |X = x) exists and is unique a.s. PX , as above. In summary:

If g(x) ≡ E(Y |X = x), then h(ω) ≡ E(Y |X)(ω) = g(X(ω)). 2(4)



4. BASIC PROPERTIES OF CONDITIONAL EXPECTATION 131

Definition 4.2 (Conditional probability) Since P (A) = E1A for standard
probability, define the conditional probability of A given D, denoted by P (A|D), by

P (A|D) ≡ E(1A|D).(5)

Equivalently, P (A|D) is a D-measurable function on Ω satisfying

P (A ∩D) =

∫

D

P (A|D) dP for all D ∈ D,(6)

and it exists and is unique a.s. P . Also,

P (A|X) ≡ P (A|F(X)).

Thus P (A|X)(ω) = g(X(ω)), where g(x) ≡ P (A|X = x) is a B-measurable function
satisfying

P (A ∩X−1(B)) =

∫

B

P (A|X = x) dPX(x) for all B ∈ B.(7)

This function exists and is unique a.s. PX .

Discussion 4.1 (Discrete case; elementary treatment) Given that the event B
has occurred (with P (B) > 0), how likely is it now for the event A to occur. The
classic elementary approach defines the conditional probability of A given B by
P (A|B) ≡ P (AB)/P (B). Thus we have taken a revisualized view of things, while
regarding B as the updated sample space. For any event B, only that portion AB
of the event A is relevant (as B was known to have occurred). Thus all that matters
is the probabilistic size P (AB) of AB relative to the probabilistic size P (B) of B.
The resulting P (·|B) is a probability distribution over AB ≡ {AB : A ∈ A}.

For discrete rvs X and Y with mass function p(·, ·) this leads to
pY |X=x(y) ≡ p(x, y)/ pX(x), for each x for which pX(x) 6= 0,

for the conditional mass function. It is then natural to define

E(ψ(Y )|X = x) ≡∑all y ψ(y) pY |X=x(y), for each x with pX(x) 6= 0

when E|ψ(Y )| <∞. It is then elementary to show that E(Y ) = E(E(ψ(Y )|X)). 2

Exercise 4.1 (“Discrete” conditional probability; general case) Suppose
Ω =

∑
iDi, and then define D = σ[D1, D2, . . .]. Show that (whether the summation

is finite or countable) the different expressions needed on the different sets Di of
the partition D can be combined together via

P (A|D) =
∑

i

P (ADi)

P (Di)
1Di ,(8)

where (just for definiteness) P (ADi)
P (Di)

≡ P (A) if P (Di) = 0. For general Y ∈ L1 show

that the function E(Y |D) takes the form

E(Y |D) =
∑

i

{
1

P (Di)

∫

Di

Y dP

}
1Di ,(9)
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with the term in braces defined to be 0 if P (Di) = 0 (just for definiteness).
(We note that the standard elementary approach to conditional probability is, in
the discrete case, embedded within (8) and (9)—but it sits there “sideways.”.)
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Figure 4.1  Conditional probability and conditional expectation.
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Remark 4.1 It will be seen that

0 ≤ P (A|D) ≤ 1 a.s. P,(10)

P (
∑∞

1 Ai|D) =
∑∞

1 P (Ai |D) a.s. P,(11)

P (∅|D) = 0 a.s. P,(12)

A1 ⊂ A2 implies P (A1|D) ≤ P (A2|D) a.s. P.(13)

[To see these, just apply parts (16)(monotonicity) and (17)(MCT) of theorem 4.1
appearing below.] These properties remind us of a probability distribution. 2

Example 4.1 Let an urn consist of six balls identical except for the numbers
1, 2, 2, 3, 3, 3. Let X1 and X2 represent a sample of size two drawn with replacement,
and set Y = X2 and S = X1 + X2. Consider figure 4.1 below. In the figure (a)
we see the sample space Ω of (X1, X2) with the values of S superimposed, while
the figure (b) superimposes the probability function on the same representation of
Ω. In the figure (c) we picture the five “diagonal sets” that generate D ≡ S−1(B).
The three-part figure (d) depicts P (Y = i |D)(·) as a D-measurable function on Ω
for each of the three choices [Y = 1], [Y = 2], and [Y = 3] for A, while the figure
(e) depicts E(Y |D)(ω) as a D-measurable function. [Had we used the elementary
definition of P (Y = · |S = k) as a function of y for each fixed k, then the conditional
distributions would have been those shown along the five diagonals in the figure (f),
while E(Y |S = k) is shown at the end of each diagonal.] 2

Discussion 4.2 (Continuous case; an elementary treatment) For discrete rvs, the
conditional distribution is specified by

g(y|x) ≡ P (Y = y |X = x) ≡ P (Y = y and X = x)/P (X = x).

(This is in line with discussion 4.1.) One “natural approximation” of this approach
for continuous rvs considers

g(y|x) = lim
h→0

∫ x+h
x−h fX,Y (r, y) dr /

∫ x+h
x−h fX(r) dr .

But making this approach rigorous fails without sufficient smoothness, and leads
to a tedious and limited theory. So elementary texts just suggest the even more
blatant and “less rigorous” imitation of the discrete result via

g(y|x)∆y .
=
fX,Y (x, y)∆x∆y

fX(x)∆x

.
=
fX,Y (x, y)∆y

fX(x)
.

Discussion 4.3 suggests that the general approach of this section should ultimately
lead to this same elementary result in the case when densities do exist.

Moreover, if (x(t), y(t)), a ≤ t ≤ b, parametrizes a smooth curve (imagine a circle
about the origin, or a line of slope 135◦), it is definition 4.2 that leads rigorously to
formulas of the type

f(x(t), y(t))
√

(dx/dt)2 + (dy/dt)2
∫ b
a
f(x(t′), y(t′))

√
(dx/dt′)2 + (dy/dt′)2 dt′

for a ≤ t ≤ b

for the conditional density at the point t given that one is on the curve. 2
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Discussion 4.3 (Continuous case; general treatment) Let us consider the current
approach to conditional probability. We will illustrate it in a special case. Let
A ∈ B2 denote a two-dimensional Borel set. Let T ≡ T (X) ≡ (X2

1 + X2
2 )

1/2, so
that T = t defines (in the plane Ω = R2) the circle Ct ≡ {(x1, x2) : x21 + x22 = t2}.
Let B ∈ B1 denote a one-dimensional Borel set of t’s, and then let D ≡ T−1(B) =

∪{Ct : t ∈ B}. Requirements (6) and (7) (in a manner similar to exercise 4.1, but
from a different point of view than used in discussion 4.1) become

P (AD) = P (A ∩ (∪{Ct : t ∈ B})) =
∫
∪{Ct:t∈B} P (A|T )(x) dPX(x)

≡
∫
∪{Ct:t∈B} hA(x ) dPX(x ) =

∫
B gA(t) dPT (t) ≡

∫
B P (A|T = t) dPT (t).

So if gA(·) is given a value at t indicating the probabilistic proportion of A ∩ Ct
that belongs to A (or h(x ) is given this same value at all x ∈ Ct), then the above
equation ought to be satisfied. (When densities exist, such a value would seem

to be gA(t) =
∫
Ct

1A(x ) pX(x ) dx /
∫
Ct
pX(x ) dx, while hA(x ) = gA(T (x )) would be

assigned this same value at each x ∈ Ct.) Requirements (1) and (2) become
∫
∪{Ct:t∈B} Y dP =

∫
∪{Ct:t∈B} h(x) dP (x) =

∫
B g(t) dPT (t)

(When densities exist, then E(Y |T = t) = g(t) =
∫
Ct
Y (x) p(x) dx/

∫
Ct
p(x) dx

seems appropriate, with h(x) getting the same value for all x in Ct.) 2

Exercise 4.2 (A) (i) Mimic discussion 4.2 in case T ≡ X1 +X2, instead.
(ii) Make up another interesting example.

(B) (iii) Repeat example 4.1 and the accompanying figure, but now in the context
of sampling without replacement.
(iv) Make up another interesting example.

Exercise 4.3 Let Y be a rv on some (Ω,A, P ) that takes on the eight values 1, . . . , 8
with probabilities 1/32, 2/32, 3/32, 4/32, 15/32, 4/32, 1/32, 2/32, respectively. Let
C ≡ F(Y ), and let Ci ≡ [Y = i] and pi ≡ P (Ci) for 1 ≤ i ≤ 8. Let D ≡
σ[{C1+C5, C2+C6, C3+C7, C4+C8}], E ≡ σ[{C1+C2+C5+C6, C3+C4+C7+C8}],
and F ≡ {Ω, ∅}.
(a) Represent Ω as a 2× 4 rectangle having eight 1× 1 cells representing C1, . . . , C4

in the first row and C5, . . . , C8 in the second row. Enter the appropriate values of
Y (ω) and pi in each cell, forming a table. Evaluate E(Y ).
(b) Evaluate E(Y |D). Present this function in a similar table. Evaluate E(E(Y |D)).
(c) Evaluate E(Y |E). Present this function in a similar table. Evaluate E(E(Y |E)).
(d) Evaluate E(Y |F). Present this function in a similar table. Evaluate E(E(Y |F)).

For the most part, the use of regular conditional probabilities (as defined in
the next section) can be avoided by appeal to the following theorem. Just as with
the Reimann integral, we want to use the old method for most examples, but need
the new method to justify heavy duty mathematical arguments. The next theorem
shows that this is possible, and it shows how to do it. The next section shows that
the old thinking is still possible as well. Just knowing that is enough to go only so,
it is optional to read the rest of this chapter.
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Theorem 4.1 (Properties of conditional expectation) Let X,Y, Yn be
integrable rvs on (Ω,A, P ). Let D be a sub σ-field of A. Let g be measurable.
Then for any versions of the conditional expectations, the following hold:

(Linearity) E(aX + bY |D) = aE(X |D) + bE(Y |D) a.s. P (or, a.s. P |D)).(14)

EY = E [E(Y |D)].(15)

(Monotonicity) X ≤ Y a.s. P implies E(X |D) ≤ E(Y |D) a.s. P.(16)

(MCT) If 0 ≤ Yn ր Y a.s. P, then E(Yn|D)ր E(Y |D) a.s. P.(17)

(Fatou) If 0 ≤ Yn a.s. P, then E( lim Yn|D) ≤ limE(Yn|D) a.s. P.(18)

(DCT) If all |Yn| ≤ X and Yn →a.s. Y, then E(Yn|D)→a.s. E(Y |D) .(19)

If Y is D-measurable and XY ∈ L1(P ), then E(XY |D) =a.s. Y E(X |D) .(20)

If F(Y ) and D are independent, then E(Y |D) = EY a.s. P.(21)

(Stepwise smoothing). If D ⊂ E ⊂ A, then E[E(Y |E)|D] = E(Y |D) a.s. P.(22)

If F(Y,X1) is independent of F(X2), then E(Y |X1, X2) = E(Y |X1) a.s. P.(23)

Cr, Hölder, Liapunov, Minkowski, and Jensen inequalities hold for E(·|D).(24)

Jensen: g(E(Y |D)) ≤a.s. E[g(Y )|D] for g convex with g(Y ) integrable.

Let r ≥ 1. If Yn →Lr Y , then E(Yn|D)→Lr E(Y |D). In fact,(25)

E|E(X |D)− E(Y |D)|r ≤ E|X − Y |r.

hD(·) is a determination of E(Y |D) if and only if(26)

E(XY ) = E(XhD) for all D-measurable rvs X.

If P (D) = 0 or 1 for all D ∈ D, then E(Y |D) = EY a.s. P.(27)

Proof. We first prove (14). Now, by linearity of expectation,
∫
D [ aE(X |D) + bE(Y |D)] dP = a

∫
D E(X |D) dP + b

∫
D E(Y |D) dP

= a
∫
DX dP + b

∫
D Y dP by definition of E(X |D), etc.(a)

=
∫
D [ aX + b Y ] dP for all D ∈ D, as required.

To prove (15), simply note that

E Y =
∫
Ω Y dP =

∫
Ω E(Y |D) dP = E [E(Y |D) ].(b)
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For (16), use (14) for the first step of
∫
D{E(Y |D)− E(X |D)} dP =

∫
D E(Y −X |D) dP

=
∫
D(Y −X) dP ≡ ν(D) ≥ 0 is a measure ν(·).(c)

Then E(Y |D)− E(X |D) is a Radon–Nikodym derivative of ν(·), and so is ≥ 0 a.s.
Statement (17) follows easily from (16), since we have

E(Yn|D) ≤ E(Yn+1|D) ≤ E(Y |D) a.s., for all n.(d)

Thus limn E(Yn|D) exists a.s., and
∫
D lim

n
E(Yn|D) dP = lim

n

∫
D E(Yn|D) dP by the MCT(e)

= lim
n

∫
D Yn dP =

∫
D Y dP by the MCT

=
∫
D
E(Y |D) dP ;

and we can appeal to the uniqueness of Radon–Nikodym derivatives, or apply
exercise 3.2.2. Now we use (16) and (17) to prove (18). Thus

E( limYn|D) = E( lim
n

inf
k≥n

Yk|D) by the definition of lim

= lim
n

E( inf
k≥n

Yk|D) a.s., by the MCT of (17)(f)

≤ lim
n

inf
k≥n

E(Yk|D) by the monotonicity of (16)

= limE(Yn|D) by the definition of lim.

To prove (19), apply the Fatou of (18) to Yn +X to get

E(Y |D) + E(X |D) = E(X + Y |D) = E( lim (X + Yn)|D)

≤ limE(X + Yn|D) = limE(Yn|D) + E(X |D).(g)

Canceling the a.e. finite E(X |D) from both ends of (g) gives

E(Y |D) ≤ limE(Yn|D) ≤ limE(Yn|D);

≤ E(Y |D) by applying the Fatou of (18) again, to X − Yn.(h)

To prove (20) we proceed through indicator, simple, nonnegative, and then
general functions, and each time we apply exercise 3.2.2 at the final step.
Case 1: Y = 1D∗ . Then

∫
D
Y E(X |D) dP =

∫
D
1D∗ E(X |D) dP =

∫
D∩D∗ E(X |D) dP

=
∫
D∩D∗ X dP =

∫
D
1D∗ X dP =

∫
D
Y X dP =

∫
D
E(Y X |D) dP.
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Case 2: Y =
∑n

1 ai1Di . Then
∫
D
Y E(X |D) dP =

∑n
1 ai

∫
D
1Di E(X |D) dP

=
∑n

1 ai
∫
D 1DiX dP by case 1

=
∫
D
Y X dP =

∫
D
E(Y X |D) dP.

Case 3: Y ≥ 0. Let simple functions Yn ր Y where Yn ≥ 0. Suppose first that
X ≥ 0. Then we have

∫
D E(Y X |D) dP =

∫
D E(lim

n
YnX |D) dP

=
∫
D lim

n
E(YnX |D) dP by the MCT of (17)

=
∫
D lim

n
Yn E(X |D) dP by case 2

=
∫
D Y E(X |D) dP by the MCT.

For general X , use X = X+ −X− and the linearity of (14).
Case 4: General Y . Just write Y = Y + − Y −.

To prove (21), simply note that for each D ∈ D one has
∫
D
E(Y |D) dP =

∫
D
Y dP =

∫
1D Y dP = E(1D) E(Y )

= P (D) E(Y ) =
∫
D E(Y ) dP ;

and apply exercise 3.2.2. Assertion (22) is proved by noting that
∫
D E[E(Y |E) |D] dP =

∫
D E[Y |E ] dP =

∫
D Y dP since D ∈ D ⊂ E

=
∫
D
E(Y |D) dP.

The integrands of the two extreme terms must be equal a.s. by the exercise 3.2.2.
Consider (23). Now,

F(X1, X2) = σ[D ≡ D1 ∩D2 ≡ X−1
1 (B1) ∩X−1

2 (B2) : B1, B2 ∈ B] .

Let D = D1 ∩D2 be any one of the generators of F(X1, X2). Then

ν1(D) ≡
∫
D
E(Y |X1, X2) dP =

∫
D
Y dP =

∫
1D11D2Y dP

=
∫
1D2

∫
D1
Y dP =

∫
1D2 dP

∫
D1

E(Y |X1) dP =
∫
1D21D1 E(Y |X1) dP

=
∫
D E(Y |X1) dP ≡ ν2(D).

Since ν1 and ν2 are measures on F(X1, X2) that agree on all sets in the π̄-system
consisting of all sets of the formD = D1∩D2, they agree on the σ-field F(X1, X2) by
the Dynkin π−λ theorem. Thus the integrands satisfy E(Y |X1, X2) = E(Y |X1) a.s.
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We next prove (25), leaving most of (24) and (26) to the exercises. We have

E |E(Yn|D)− E(Y |D)|r = E |E(Yn − Y |D)|r

≤ E[E(|Yn − Y |r|D) ] by the conditional Jensen inequality of (24)(i)

= E|Yn − Y |r by (15)

→ 0.

To prove (27), note that for all D ∈ D we have

∫
D
E(Y |D) dP =

∫
D
Y dP =

{
E(Y ) if P (D) = 1
0 if P (D) = 0

}
=
∫
D
E(Y ) dP.(j)

(Durrett) We now turn to the Jensen inequality of (24). The result is trivial for
linear g. Otherwise, we define

C ≡ {(c, d) : c, d are rational, and ℓ(x) ≡ cx+ d ≤ g(x) for all x in I},(k)

and observe that

g(x) = supall c,d∈C (cx+ d) for all x ∈ Io;(l)

this follows from the supporting hyperplane result (below (3.4.3)). For any fixed
cx+ d for which (c, d) ∈ C with cx+ d ≤ g(x) on all (a, b) we have

E(g(X)|D) ≥ E(cX + d |D) = cE(X |D) + d a.s. by (16).(m)

Hence (as the union of a countable number of null sets is null), (l) and (m) give

E(g(X)|D) ≥ supall c,d∈C {cE(X |D) + d} = g(E(X |D)) a.s.(28)

since (inf I) < E(X |D) < (sup I) a.s. (since E(X) ∈ I0 was asumed in (3.4.21)). 2

Exercise 4.4 Prove (26) and the rest of (24), in theorem 4.1.

Exercise 4.5 (Dispersion inequality) Suppose that X and Y are independent
rvs with µY = 0. Let r ≥ 1. Show that |X + Y | is more dispersed than X in that

E|X |r ≤ E|X + Y |r (or, E|X + µY |r ≤ E|X + Y |r more generally).(29)

[Hint. Use Fubini on the induced distribution in (R2,B2) and then apply Jensen’s
inequality to gx(y) = |x+ y|r to the inner integral. Note also exercise 8.2.3 below.]

Exercise 4.6 (a) Let P denote the Uniform(−1, 1) distribution on the Borel
subsets B of Ω = [−1, 1]. Let W (ω) ≡ |ω|, X(ω) ≡ ω2, Y (ω) ≡ ω3, and Z(ω) ≡ ω4.
Fix A ∈ B. Show that versions of various conditional probabilities are given by

P (A|W )(ω) = P (A|X)(ω) = P (A|Z)(ω) = 1
2 {1A(ω) + 1A(−ω)} on Ω,

while P (A|Y )(ω) = 1A(ω) on Ω.
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Exercise 4.7 Determine P (A|W )(ω), P (A|X)(ω), P (A|Y )(ω), and P (A|Z)(ω)
for W , X , Y , and Z as in exercise 4.6 when P has the density 1−|x| on ([−1, 1],B).

Exercise 4.8 Determine P (A|W )(ω), P (A|X)(ω), and P (A|Y )(ω) for W , X ,
and Y as in exercise 4.6 when P has density 1−x on (0, 1] and 3

2 (1−x2) on [−1, 0].
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5 Regular Conditional Probability
For fixed A, the function P (A|D)(·) is a D-measurable function on Ω that is only a.s.
unique. We wish that for each fixed ω the set function P (·|D)(ω) were a probability
measure. But for each disjoint sequence of Ai’s there is a null set where (7.4.10)–
(7.4.12) may fail, and there typically are uncountably many such sets. The union of
all such null sets need not be null. In the most important special cases, though, we
may assume that P (·|D)(ω) behaves as we would like, where the nonuniqueness of
P (A|D)(·) also provides the key, by allowing us to make whatever negligible changes
are required. [For added useful generality, we will work on a sub σ-field Ã of the
basic σ-field A.]

Definition 5.1 We will call P (A|D)(ω) a regular conditional probability on a sub
σ-field Ã of the σ-field A, given the σ-field D, if

for each fixed A ∈ Ã, the function P (A|D)(·) of ω satisfies definition 4.2,(1)

for each fixed ω, Pω(·|D) ≡ P (·|D)(ω) is a probability measure on Ã.(2)

Exercise 5.1 Verify that the discrete conditional probability of exercise 7.4.1 is
a regular conditional probability.

When a regular conditional probability exists, conditional expectation can be
computed by integrating with respect to conditional probability, and we first show
this general theorem 5.1. In theorem 5.2 and beyond we shall show specifically how
to construct such conditional probabilities in some of the most important examples.

Theorem 5.1 Let P (A|D)(ω) be a regular conditional probability on Ã, and let
Y ∈ L1(Ω, Ã, P ). Then a version of the conditional expectation of Y given D is
formed by setting

E{Y |D}(ω) =
∫
Y (ω′) dPω(ω′|D) , for each fixed ω.(3)

Proof. If Y = 1A, then (3) follows from
∫
Y dPω(· |D) =

∫
1A dP

ω(· |D) =
∫
A dP

ω(ω′|D) = Pω(A|D) = P (A|D)(ω)(a)

=a.s. E{Y |D}(ω), no matter which version of the latter is used,(b)

with the various steps true by definition. Thus (3) is trivial for simple functions Y .
If Y ≥ 0 and Yn are simple functions for which Yn ր Y , then for any version of the
conditional expectation function E(Y |D)(·) we have

∫
Y (ω′) dPω(ω′|D) = lim

∫
Yn(ω

′) dPω(ω′|D)

=a.s. limE{Yn|D}(ω) =a.s. E{Y |D}(ω)(c)

using the MCT (ordinary, and of (17)) in the first and last steps. Finally, let
Y = Y + − Y −. 2
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Regular conditional probabilities need not exist; the null sets on which things
fail may have a nonnull union. However, if Y : (Ω,A)→ (R,B) is a rv, then things
necessarily work out on (R,B), and this will be generalized to any “Borel space.”
We will now start from scratch with regular conditional probability, and will choose
to regard it as a measure over the image σ-field.

Definition 5.2 (Borel space) If a 1-to-1 bimeasurable mapping φ from (M,G)
to a measurable subset Bo of (R,B) exists, then (M,G) is called a Borel space.

Exercise 5.2 (a) Show that (Rn,Bn) is a Borel space.
(b) Show that (R∞,B∞) is a Borel space.
(c) The spaces (C, C) and (D,D) to be encountered below are also Borel spaces.
(d) Let (M,d) be a complete and separable metric space having Borel setsM, and
let M0 ∈M. Then (M0,M0 ∩M) is a Borel space.
[This exercise is the only mathematically difficult part of the chapter that we have
encountered so far.]

Definition 5.3 (Regular conditional distribution) Suppose that Z : (Ω,A) →
(M,G). Let Ã ≡ Z−1(G), and let D be a sub σ-field of A. Then PZ(G|D)(ω) will
be called a regular conditional distribution for Z given D if

for each fixed G ∈ G,
the function PZ(G|D)(·) is a version of P (Z ∈ G|D)(·) on Ω,

(4)

for each fixed ω ∈ Ω,

the set function PZ(·|D)(ω) is a probability distribution on (M,G);(5)

and PωZ (·|D) ≡ PZ(·|D)(ω) will be used to denote this probability distribution.

Theorem 5.2 (Existence of a regular conditional distribution) Suppose
Z : (Ω,A) → (M,G) with (M,G) a Borel space. Then the existence of a regular
conditional probability distribution PωZ (G|D) ≡ PZ(G|D)(ω) is guaranteed.

Proof. Case 1: Suppose first that Z : (Ω,A) → (R,B). Let r1, r2, . . . denote
the set of rational numbers. Consider P (Z ≤ ri|D) and note that except on a null
set N , all of the following hold:

ri ≤ rj implies P (Z ≤ ri|D) ≤ P (Z ≤ rj |D).(a)

lim
rjցri

P (Z ≤ rj |D) = P (Z ≤ ri|D).(b)

lim
rjր∞

P (Z ≤ rj |D) = P (Ω|D) = 1.(c)

lim
rjց−∞

P (Z ≤ rj |D) = P (∅|D) = 0.(d)
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Now define, for an arbitrary but fixed df F0,

F (z|D)(ω) =
{

limrjցz P (Z ≤ rj |D)(ω) if ω 6∈ N,
F0(z) if ω ∈ N.(e)

Then for every ω, the function F (·|D)(ω) is a df. Also, (e) and the DCT of
theorem 7.4.1 show that F (z|D)(·) is a version of P (Z ≤ z|D)(·).

Now extend P (Z ≤ ·|D)(ω) to a distribution [labeled PZ(B|D)(ω)] over all
B ∈ B via the correspondence theorem. We now define

M≡ {C ∈ B : PZ(C|D) is a version of P (Z ∈ C|D)}.(f)

Now, M contains all (a, b] and all
∑m

1 (ai, bi], and M is closed under monotone
limits. Thus M = B, by the minimal monotone class result of proposition 1.1.6,
completing the proof in this case.

Case 2: Let Y ≡ φ(Z), so Y is a rv. Thus a regular conditional distribution

PY (B|D) exists by case 1. Then for G ∈ G, define PZ(G|D) ≡ PY (φ−1(G)|D). 2

Example 5.1 (Elementary conditional densities) Suppose that

P ((X,Y ) ∈ B2) =

∫

B2

∫
f(x, y) dx dy for all B2 ∈ B2,

where f ≥ 0 is measurable; and then f(x, y) is called the joint density of X,Y (or,

the Radon-Nikodym derivative dP/dλ2). Let B2 ≡ B × R, for all B ∈ B. We can
conclude that PX ≪ λ ≡ (Lebesgue measure), with

dPX(x)

dλ
= fX(x) ≡

∫

R

f(x, y) dy ;(6)

we call fX(x) the marginal density of X . We first define

g(y|x) ≡
{
f(x, y)/fX(x) for all x with fX(x) 6= 0,
an arbitrary density f0(y) for all x with fX(x) = 0,

(7)

and then define

P (Y ∈ A|X = x) =

∫

A

g(y|x) dy for A ∈ B.(8)

Call g(y|x) the conditional density of Y given X = x, and this P (Y ∈ A|X = x) will
now be shown to be a regular conditional distribution (if modified appropriately on
the set where fX(x) = 0). Moreover, if E|h(Y )| <∞, then

E{h(Y )|X = x} =
∫ ∞

−∞
h(y) g(y|x) dy a.s. PX .(9)

Thus (8) (also written as (10)) fulfills theorem 5.2, and (9) will be seen to fulfill
theorem 5.3. (Note that this example also holds for vectors x ∈ Rm and y ∈ Rn.) 2
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Proof. By Fubini’s theorem,

P (X ∈ B) =
∫ ∫

B×R f(x, y) dx × dy =
∫
B
[
∫
R
f(x, y) dy] dx =

∫
B
fX(x) dx.(a)

Moreover, Fubini’s theorem tells us that fX(x) is B-measurable.

Let S ≡ {x : fX(x) 6= 0}. We may assume that (Ω,A) = (R2,B2). Let Ã =

Y −1(B). We will verify that (7.4.6) holds. For A ∈ B and for [Y ∈ A] ∈ Ã ≡ R×B,
we note that for all B ∈ B we have (writing f(x) for fX(x))

∫
B [
∫
A g(y|x) dy] dPX(x)

=
∫
B
[
∫
A
g(y|x) dy]f(x) dx =

∫
B∩S

[ ∫
A

f(x, y)

f(x)
dy
]
f(x) dx

=
∫
B∩S [

∫
A
f(x, y) dy] dx =

∫ ∫
B×A f(x, y) (dx × dy)

= P ((X,Y ) ∈ B ×A) = P ([Y ∈ A] ∩X−1(B))

=
∫
B
P (Y ∈ A|X = x) dPX(x).(b)

Thus

P (Y ∈ A|X = x) =
∫
A g(y |x) dy a.s. PX ,(c)

and so g(y|x) works as a version. Now, for any fixed set A ∈ B we note that
∫
A g(y|x) dy = 1S(x)× [

∫
A f(x, y) dy / f(x)] + 1Sc(x)×

∫
A f0(y) dy(10)

is a measurable function on (R,B). It is clear that for each fixed x the function
of (10) acts like a probability distribution. Thus (10) defines completely a regular
conditional probability distribution.

Suppose that E|h(Y )| <∞. Then (9) holds since
∫
B
[
∫
R
h(y)g(y|x) dy] dPX(x) =

∫
B∩S [

∫
R
h(y)g(y|x) dy]f(x) dx

=
∫
B∩S [

∫
R
h(y)f(x, y) dy] dx =

∫
B
[
∫
R
h(y)f(x, y) dy] dx

=
∫ ∫

B×R h(y)f(x, y) (dx × dy)

=
∫ ∫

X−1(B)
h(y) dPX,Y (x, y) =

∫
B
E(h(Y )|X = x) dPX (x), 2(d)

Theorem 5.3 (Conditional expectation exists as an expectation) Given a
measurable mapping Z : (Ω,A) → (M,S), where (M,S) is a Borel space, consider
a transformation φ : (M,S) → (R,B) with E|φ(Z)| < ∞. Then a version of the
conditional expectation of φ(Z) given D is formed by setting

E{φ(Z)|D}(ω) =
∫

M

φ(z) dPωZ (z|D) for all ω.(11)

Proof. Apply theorem 5.1 to the regular conditional distribution of theorem 5.2. 2
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Theorem 5.4 (A most useful format for conditional expectation) Suppose
that X : (Ω,A, P ) → (M1,G1) and Y : (Ω,A, P ) → (M2,G2) (with Borel space
images). Then (X,Y ) : (Ω,A, P )→ (M1 ×M2,G1 × G2). Also (as above)

a regular conditional probability P (A|X = x) exists,(12)

for sets A ∈ Ã ≡ Y −1(G2) ⊂ A and for x ∈M1. Let E |h(X,Y )| <∞. (a) Then

E(h(X,Y )|X = x) =
∫
M2

h(x, y)dP (y|X = x) a.s.(13)

(b) If X and Y are independent, then

E(h(X,Y )|X = x) = E(h(x, Y )) a.s.(14)

Exercise 5.3 Prove theorem 5.4 above. (Give a separate trivial proof of (14).)
Hint. Begin with indicator functions h = 1G1 1G2 .

Example 5.2 (Sufficiency of the order statistics) LetX1, . . . , Xn be iid with
df F in the class Fc of all continuous dfs. Let T (x) ≡ (xn:1, . . . , xn:n) denote the
vector of ordered values of x, and let T ≡ {x : xn:1 < · · · < xn:n}. Exercise 5.5
below asks the reader to verify that PF (T (X) ∈ T ) = 1 for all F ∈ Fc. Let X
denote those x ∈ Rn having distinct coordinates. Let A and B denote all Borel
subsets of X and T , respectively. Then D ≡ T−1(B) denotes all symmetric subsets
of A (in that x ∈ D ⊂ D implies π(x ) ∈ D for all n! permutations π(x ) of x ). Let

dP
(n)
F (·) denote the n-fold product measure dF (·) × · · · × dF (·). Suppose φ(·) is

P
(n)
F -integrable. Then define

φ0(x) ≡ 1
n!

∑
all n! permutations φ(π(x )),(15)

which is a D-measurable function. Since P
(n)
F is symmetric, for any symmetric set

D ∈ D we have
∫
D
φ(x ) dP

(n)
F (x ) =

∫
D
φ(π(x )) dP

(n)
F (x ) for all n! permutations π(·)

=
∫
D
φ0(x ) dP

(n)
F (x ) for every D ∈ D.(16)

But this means that

EF {φ(x )|T }(x ) = φ0(x ) a.s. P
(n)
F (·) .(17)

Now, for any A ∈ A, the function 1A(·) is P
(n)
F -integrable for all F ∈ Fc. (Thus

conclusion (14) can be applied.) Fix F ∈ Fc. For any fixed A ∈ A we have

P
(n)
F (A|T )(x ) = EF {1A(x )|T }(x ) =

1

n!

∑
all π 1A(π(x ))

=
(the # of times π(x ) is in A)

n!
.(18)

Note that the right-hand side of (15) does not depend on the particular F ∈ Fc,
and so T is said to be a sufficient statistic for the family of distributions Fc. (Note
discussion 4.2 once again.) 2
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Example 5.3 (Ranks) Consider the ranks Rn = (Rn1, . . . , Rnn)
′ and the

antiranks Dn = (Dn1, . . . , Dnn)
′ in a sample from some F ∈ Fc (see the previous

example, and (6.5.17)). Let
∏
n denote the set of all n! permutations of (1, . . . , n).

Now, Rn takes on values in
∏
n when F ∈ Fc (since ties occur with probability 0).

By symmetry, for every F ∈ Fc we have

P
(n)
F (Rn = r ) = 1/n! for each r ∈ ∏n .(19)

Note that X is equivalent to (T,Rn), in the sense that each determines the other.
Note also that

T and Rn are independent rvs (for each fixed F ∈ Fc),(20)

in that for all B ∈ B ≡ (the Borel subsets of T ) and for all π ∈ ∏n we have

P
(n)
F ([T ∈ B] and [Rn = r ] )

= { 1
n!} ×

∫
T−1(B)

n! dP
(n)
F (x ) = {P (n)

F (Rn = r )} × P (n)
F (T ∈ B)

= P (Rn = r )× P (n)
F (T ∈ B),(21)

since P (Rn = r ) does not depend on the particular F ∈ Fc. Since the ranks are
independent of the sufficient statistic, they are called ancillary rvs. (Note that Dn
is also equally likely distributed over

∏
n, and that it is distributed independent of

the order statistics T .) 2

Exercise 5.4 Suppose that the n observations are sampled from a continuous
distribution F . Verify that with probability one all observations are distinct. [Hint.
Use corollary 2 to theorem 5.1.3.]

Exercise 5.5 Suppose X1, . . . , Xn are iid Bernoulli(p) rvs, for some p ∈ (0, 1).
Let T ≡ ∑n

1 Xk denote the total number of successes. Show that this rv T is
sufficient for this family of probability distributions (that is, T is “sufficient for p”).

Exercise 5.6 Let ξ1 and ξ2 be independent Uniform(0, 1) rvs. Let Θ ≡ 2πξ1
and Y ≡ − log ξ2. Let R ≡ (2Y )1/2. Now let Z1 ≡ R cosΘ and Z2 ≡ R sinΘ.
Determine the joint distribution of (Y,Θ) and of (Z1, Z2).



Chapter 8

WLLN, SLLN, LIL, and
Series

0 Introduction
This is one of the classically important chapters of this text. The first three sections
of it are devoted to developing the specific tools we will need. In the second section
we also present Khinchin’s weak law of large numbers (WLLN), which can be viewed
as anticipating both of the classical laws of large numbers (LLNs). Both the classical
weak law of large numbers (Feller’s WLLN) and classical strong law of large numbers
(Kolmogorov’s SLLN) are presented in section 8.4, where appropriate negligibility
of the summands is also emphasized. This section is the main focus of the chapter.
Some applications of these LLNs are given in the following section 8.5. Then we
branch out. The law of the iterated logarithm (LIL), the strong Markov property,
and convergence of infinite series are treated in sections 8.6 – 8.8. The choice was
made to be rather specific in section 8.4, with easy generalizations in section 8.8.
The usual choice is to begin more generally, and then specialize. Martingales (mgs)
are introduced briefly in section 8.9, both for limited use in chapter 12 and so
that the inequalities in the following section 8.10 can be presented in appropriate
generality.

147
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1 Borel–Cantelli and Kronecker lemmas
The first three sections will develop the required tools, while applications will begin
with the LLNs (the first of which appears in section 8.2). We use the notation

[An i.o.] = [ω : ω ∈ An infinitely often] =
⋂∞
n=1

⋃∞
m=nAm = limnAn.(1)

This concept is important in dealing with convergence of various random elements.
The following lemmas exhibit a nice dichotomy relative to sequences of independent
events.

Lemma 1.1 (Borel–Cantelli lemma) For any events An,

∞∑

n=1

P (An) <∞ implies P (An i.o.) = 0.(2)

Lemma 1.2 (Second Borel–Cantelli lemma) For a sequence of independent
events A1, A2, . . . , we have the converse that

∞∑

n=1

P (An) =∞ implies P (An i.o.) = 1.(3)

Thus independent events A1, A2, . . . have P (An i.o.) equal to 0 or 1 according as∑∞
1 P (An) is finite or infinite.

Proof. We use proposition 1.1.2 freely. Now,

P (An i.o.) = P ( limn

⋃∞
n Am) = limn P (

⋃∞
n Am) ≤ limn

∑∞
n P (Am) = 0(a)

whenever
∑∞

1 P (Am) <∞. Also,

P ([ limAn]
c) = P (

⋃∞
n=1

⋂∞
m=nA

c
m) = limn P (

⋂∞
m=nA

c
m)

= limn limN P (
⋂N
m=nA

c
m)

= limn limN

∏N
m=n[1− P (Am)] by independence(b)

≤ limn limN exp(−∑N
m=nP (Am)) since 1− x ≤ exp(−x)(c)

= limn exp(−
∑∞

m=nP (Am)) = limn exp(−∞) = limn 0 = 0,(d)

using
∑∞

1 P (An) =∞. 2

Remark 1.1 (Kolmogorov’s 0-1 law) In theorem 7.2.1 we considered the tail
σ-field T ≡ ∩∞n=1 F(Xn, Xn+1, . . .) of an arbitrary sequence of independent rvs
X1, X2, . . . . We learned that P (D) = 0 or 1 for all D ∈ T . (Here, let Xn ≡ 1An and
obtain the characterization via the finiteness of

∑∞
1 P (An) at the end of lemma 1.2.

The tail event in question is [Xn = 1 i.o.] .) 2
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Lemmas About Real Numbers

An important bridge going from the convergence of series to the convergence of
averages is provided by Kronecker’s lemma. (An alternative bridge is provided by
the monotone inequality 8.10.1 (see exercise 8.4.10).)

Lemma 1.3 (Kronecker’s lemma) (a) Let bn ≥ 0 andր∞. For x1, x2, . . . real,

n∑

k=1

xk → (some real r) implies
1

bn

n∑

k=1

bk xk → 0.(4)

(b) So,
∑n
k=1 xk/k → (some real r) implies 1

n

∑n
k=1 xk → 0.

Proof. Let sk ≡
∑k

1 xj with s0 ≡ 0 and b0 ≡ 0. Summing by parts gives

1
bn

∑n
1 bkxk = 1

bn

∑n
1 bk(sk − sk−1) =

1
bn

∑n−1
0 (bk − bk+1) sk +

1
bn
bnsn(a)

= −∑n
1 ak sk−1 + sn where ak ≡

bk − bk−1

bn
≥ 0 with

∑n
1ak = 1(b)

= −∑n
1 ak (sk−1 − r) + (sn − r).(c)

Since |sk − r| ≤ ǫ for all k ≥ (some Nǫ), we have
∣∣∣ 1
bn

∑n
1 bk xk

∣∣∣ ≤
∑Nǫ

1 |ak(sk−1 − r)| +
∑n

Nǫ+1 |ak(sk−1 − r)| + |sn − r|(d)

≤
∑Nǫ

1 (bk − bk−1)|sk−1 − r|
bn

+ ǫ (
∑n

Nǫ+1 ak) + ǫ for n ≥ Nǫ(e)

≤ 3 ǫ for n sufficiently larger than Nǫ.

[Since
∑n

1 xk → r, we must have xk → 0. Note that
∑n

1 bkxk/bn puts large weight
only on the later terms.] 2

Lemma 1.4 (Convergence of sums and products) Suppose a ∈ [0,∞], all
constants cnk ≥ 0, and mn ≡ [max1≤k≤n cnk]→ 0. Then

n∏

k=1

(1− cnk)→ e−a if and only if

n∑

k=1

cnk → a.(5)

Proof. We will write a = b⊕ c to mean that |a− b| ≤ c. For mn ≤ 1/2,

log
∏n

1 (1−cnk) =
∑n

1 log(1−cnk) = −
∑n

1 cnk⊕
∑n

1 c
2
nk = −(1⊕mn)

∑n
1 cnk(6)

via an expansion of log(1 + x). This yields the result, as mn → 0. 2

Exercise 1.1 (Cesàro summability) If sn ≡
∑n
k=1 xk → r, then 1

n

∑n
k=1 sk → r.
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Exercise 1.2 Let all an ≥ 0. Suppose
∑∞

1 anbn <∞ holds whenever
∑∞

1 b2n <∞
with all bn ≥ 0. Show that

∑∞
1 a2n <∞.

Exercise 1.3 (Toeplitz) Let ank (for 1 ≤ k ≤ kn, with kn → ∞) be such that:

(i) For every fixed k, we have ank → 0. (ii)
∑kn

k=1 |ank| ≤ c <∞, for every n.

Let x′n ≡
∑kn

k=1 ankxk. Then

xn → 0 implies x′n → 0.(a)

If
∑kn
k=1 ank → 1, then

xn → x implies x′n → x.(b)

In particular, if bn ≡
∑n
k=1 ak ր∞, then

xn → x finite entails
∑n
k=1 akxk/bn → x.(c)

[This exercise will not be employed anywhere in this text.]

Exercise 1.4 Show that

1− x ≤ e−x ≤ 1− x/(1 + x) for all x ≥ 0.(7)

Exercise 1.5 Let X1, . . . , Xn be independent rvs. (i) Show that
∑n

1 P (|Xk| > x)/ [1 +
∑n

1 P (|Xk| > x)]

≤ pmax(x) ≡ P (max1≤k≤n |Xn| > x) ≤∑P (|Xk| > x) for all x ≥ 0.
(8)

(ii) So whenever pmax(x) ≡ P (max1≤k≤n |Xn| > x) ≤ 1
2 , then

1
2

∑n
1P (|Xk| > x) ≤ pmax ≤

∑n
1P (|Xk| > x).(9)
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2 Truncation, WLLN, and Review of Inequalities
Truncated rvs necessarily have moments, and this makes them easier to work with.
But it is crucial not to lose anything in the truncation.

Definition 2.1 (Khinchin equivalence) Two sequences of rvs X1, X2, . . . and
Y1, Y2, . . . for which

∑∞
n=1 P (Xn 6= Yn) <∞ are called Khinchin equivalent.

Proposition 2.1 (i) Let X1, X2, . . . and Y1, Y2, . . . be Khinchin equivalent rvs.
(a) If Xn →a.s. (some rv X), then Yn →a.s. (the same rv X).

(b) If Sn ≡
∑n

1 Xk →a.s. (some rv S), then Tn ≡
∑n

1 Yk →a.s. (some rv T ).

(c) If Sn/bn →a.s. (some rv U) and bn →∞, then Tn/bn →a.s. (the same rv U).

(ii) Of less interest, →p may replace →a.s. in (a), (b), and (c).

Proof. The Borel–Cantelli lemma gives P (Xn 6= Yn i.o.) = 0; or

Xn(ω) = Yn(ω) for all n ≥ (some n(ω)) holds true for a.e. ω.(p)

Thus the a.s. statements for Xn and Sn are trivial. Moreover, since Xn(ω) = Yn(ω)
for all n ≥ (some fixed n(ω)), we have

Sn
bn

=
Sn(ω) + Sn − Sn(ω)

bn
=
Sn(ω) + Tn − Tn(ω)

bn
=
Sn(ω) − Tn(ω)

bn
+
Tn
bn

(q)

= o(1) + Tn/bn(r)

using bn →∞.
Since a sequence (such as Xn, Sn or Sn/bn) converges in probability if and only

if each subsequence n′ contains a further subsequence n′′ on which the convergence
is a.s., the in probability statements follow directly from the a.s. statements. 2

Inequality 2.1 (Sandwiching E|X |) For any rv X we have
∞∑

n=1

P (|X | ≥ n) ≤ E|X | =
∫ ∞

0

P (|X | > x) dx ≤
∞∑

n=0

P (|X | ≥ n).(1)

If X is a rv with values 0, 1, 2, . . . , then

E(X) =

∞∑

n=1

P (X ≥ n).(2)

Proof. If X ≥ 0, then EX =
∫∞
0

[1 − F (x)] dx by (6.4.11); consult figure 2.1.
If X ≥ 0 is integer valued, then

E(X) =
∑∞

k=0 k P (X = k) =
∑∞

k=1

∑k
n=1 P (X = k)

=
∑∞

n=1

∑∞
k=n P (X = k)

=
∑∞

n=1 P (X ≥ n).(a)

For the greatest integer function [·], an arbitrary rv satisfies

[|X |] ≤ |X | ≤ [|X |] + 1.(b)
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Moreover, (a) shows that

E[|X |] =∑∞
n=1 P ([|X |] ≥ n) =

∑∞
n=1 P (|X | ≥ n),(c)

while (consult figure 2.1 again)

E{ [|X |] + 1 } =∑∞
n=1 P (|X | ≥ n) + 1 =

∑∞
n=1 P (|X | ≥ n) + P (|X | ≥ 0).2(d)

1

1
0

F|X|(·)

Figure 2.1 The moment E|X| = ∫    [1 – F |X|(x)]dx is sandwiched.
0

∞

Example 2.1 (Ťruncating and W̃insorizing) Let X1, X2, . . . be iid as X . Let us
truncate and Winsorize the rv Xn by defining

X̌n = Xn×1[|Xn|<n] and X̃n = −n×1[Xn≤−n]+Xn×1[|Xn|<n]+n×1[Xn≥n].(3)

From (2) we see that

E|X | <∞ if and only if
∫∞
0 P (|X | > t) dt <∞ iff

∑∞
1 P (Xn 6= X̌n) <∞ if and only if

∑∞
1 P (Xn 6= X̃n) <∞ ,

(4)

so that these X̌n’s and X̃n’s are Khinchin equivalent to the Xn’s if and only if the
absolute moment E|X | <∞. (Do not lose sight of this during the SLLN.) 2

Proof. Using inequality 2.1, then iid, and then the Borel–Cantelli lemmas,
we obtain that E|X | < ∞ if and only if

∑∞
1 P (|X | ≥ n) < ∞ if and only if∑∞

1 P (|Xn| ≥ n) < ∞ if and only if P (|Xn| ≥ n i.o.) = 0. This gives (4), as well
as the additional fact that

E|X | <∞ if and only if P (|Xn| ≥ n i.o.) = 0 for Xn’s iid as X.(5)

This final fact (5) is a useful supplementary result. Recall (6.4.11). 2

Exercise 2.1 (a) Show EX2 = 2
∫∞
0 xP (|X | > x) dx =

∑∞
k=1(2k − 1)P (|X | ≥ k)

for an integer valued rv X ≥ 0. (Let τ(x) ≡ xP (|X | > x).) Thus, for any rv X ,

EX2 <∞ iff
∫∞
0 xP (|X | > x) dx <∞ iff

∑∞
n=1 nP (|X | ≥ n) <∞.(6)

(b) Now let X1, X2, . . . be iid as X . Let X̌n or X̃n result when Xn is truncated or

Winsorized outside either [−√n,√n ] (or, (−√n,√n ) ). Show
EX2 <∞ if and only if

these new X̌n’s and X̃n’s are Khinchin equivalent to the Xn’s.
(7)
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Khinchin’s WLLN

We begin with an easy result that illustrates our path rather clearly. As we improve
our technique, we will be able to improve this result.

Theorem 2.1 (WLLN; Khinchin) Let X1, . . . , Xnbe iid with mean µ. Then

X̄n →p µ .(8)

Proof. Truncate via Ynk ≡ Xk × 1[−n≤Xk≤n], with µn ≡ EYnk. Note that

µn → µ by the DCT. Now, for any ǫ > 0, Chebyshev’s inequality gives

P ( |Ȳn − µn| ≥ ǫ ) ≤ 1
ǫ2 n2

∑n
k=1 Var[Ynk] ≤ 1

ǫ2 n2

∑n
k=1 E(Y

2
nk)(a)

= 1
ǫ2 n2

∑n
k=1 E

{
Y 2
nk

(
1[|Xk|≤ǫ3/2

√
n ] + 1[ǫ3/2

√
n<Xnk≤n ]

)}
(b)

≤ 1
ǫ2 n2

∑n
k=1 ǫ

3 n + 1
ǫ2 n2

∑n
k=1

∫
[ ǫ3/2

√
n<|x|≤n ] n |x| dFX(x)(c)

≤ ǫ + 1
ǫ2

∫
[|x|>ǫ3/2 √

n ]
|x| dFX(x)(d)

≤ 2 ǫ for all ǫ ≥ (some nǫ),(e)

since E|X1| <∞ implies that the integral in (d) goes to 0 as n→∞ (for any ǫ > 0).
Thus Ȳn − µn →p 0. Since µn → µ, this gives Ȳn →p µ. Thus, by the Khinchin
equivalence of example 2.1 and then proposition 2.1(c) we have X̄n →p µ. 2

Exercise 2.2 (More general WLLN) Suppose that Xn1, . . . , Xnn are independent.
Truncate as before via Ynk ≡ Xnk × 1[−n≤Xnk≤n], and let µnk ≡ E(Ynk).

(i) Set µ̄n ≡
∑n

1 µnk/n. Show that the same proof as above gives

Ȳn − µ̄n →p 0, even in this non iid case,(a)

provided that

1

n

n∑

1

E{|Xnk| 1[ǫ√n<|Xnk|≤n]} → 0 for all ǫ > 0.(b)

(ii) Show that X̄n −EX̄n →p 0 holds if all 1
n

∑n
k=1 E{|Xnk| 1[ǫ√n<|Xnk|} → 0, or if

the collection of rvs {Xnk : n ≥ 1 and 1 ≤ k ≤ n} is uniformly integrable.

Remark 2.1 There are two natural ways to proceed to improve Khinchin’s WLLN
in the iid case. One way is to obtain the conclusion X̄n →a.s. µ ; and this is
done in Kolmogorov’s SLLN (theorem 8.4.2 below). Another way is to relax the
assumption of a finite mean and center differently; and this is done in Feller’s WLLN
(theorem 8.4.1 below). [Other possibilities and other approaches will be outlined
in the exercises of section 8.4.]

In section 8.3 we will develop a number of inequalities (so called “maximal
inequalities”) to help us to the stated goal. (At the end of this section the reader
could go directly to section 8.4, and then go to section 8.3 for the inequalities as
they are needed.) 2
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Review of General Inequalities from Measure Theory

As we have completed the transition from measure theory to probability theory,
we take this opportunity to restate without comment a few of the most important
inequalities presented earlier. (See theorem 2.1 for the Khinchin inequality below.)

Inequality 2.2 (Review) Let X and Y be rvs on a probability space (Ω,A, P ).
Then:

Cr-inequality: E|X + Y |r ≤ Cr{E|X |r +E|Y |r} for r > 0, Cr ≡ 2(r∨1)−1.(9)

Hölder: E|XY | ≤ (E|X |r)1/r(E|Y |s)1/s for r > 1, and 1
r+

1
s = 1.(10)

Liapunov: (E|X |r)1/r is ր in r, for r ≥ 0.(11)

Markov: P (|X | ≥ λ) ≤ E|X |r/λr for all λ > 0, when r > 0.(12)

Dispersion : E|X |r ≤ E|X+Y |r if independence, µY = 0, and r ≥ 1.(13)

Jensen: g(EX) ≤ E g(X) if g is convex on some (a, b) ⊂ R

having P (X ∈ (a, b)) = 1, and if EX is finite.
(14)

Littlewood: mt−r
s ≤ mt−s

r ms−r
t for 0 ≤ r ≤ s ≤ t, with mr ≡ E|X |r.(15)

Khinchin: P ( |X̄n − µ̄n| ≥ ǫ) ≤ ǫ2+ 1
ǫ2 n

∑n
1

∫
[ǫ2

√
n<|Xnk| ] |Xnk| dP

for independent rvs Xnk having finite means µnk.
(16)

Minkowski: E1/r|X + Y |r ≤ E1/r|X |r + E1/r|Y |r for all r ≥ 1.(17)

Definition 2.2 (“Big ohp,” and “little ohp,” =a , ∼ , and “at most” ⊕)
(a) We say that Zn is bounded in probability [and write Zn = Op(1)] if for all ǫ > 0
there exists a constantMǫ for which P (|Zn| ≥Mǫ) < ǫ. For a sequence an, we write
Zn = Op(an) if Zn/an = Op(1); and we say that Zn is of order an, in probability.

(b) If Zn →p 0, we write Zn = op(1). We write Zn = op(an) if Zn/an →p 0.

(c) This notation (without subscript p) was also used for sequences of real numbers
zn and an. For example, zn = o(an) if zn/an → 0. (Note that o(an) = op(an).)

(d) Write Un =a Vn if Un−Vn →p 0; and call Un and Vn asymptotically equal. (This
is effectively a passage to the limit that still allows n to appear on the right-side.)

(e) We write an ∼ bn if an/bn → 1.

(f) We write a = b⊕ c if |a− b| ≤ c. (This can be used in the same fashion as op(·),
but it allows one to keep track of an absolute bound on the difference. Especially,
it allows inequalities to be strung together more effectively.)
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Exercise 2.3 Let X and Y be independent rvs, and let r > 0. Then

E|X + Y |r is finite if and only if E|X |r and E|Y |r are finite.(18)

That is, (X + Y ) ∈ Lr if and only if both X ∈ Lr and Y ∈ Lr, for any r > 0.

Hint. Condition on Y = y. Or, note the symmetrization inequality 8.3.2 below.

Exercise 2.4 If Vn = Op(1) and γn = op(1) are rvs on the same (Ω,A, P ), then
γnVn →p 0.

Exercise 2.5 Let an ≥ 0 be ր. Show that for any rv X we have

∑∞
1 nP (an−1 ≤ |X | < an) =

∑∞
1 P ( |X | ≥ an−1).(19)



156 CHAPTER 8. WLLN, SLLN, LIL, AND SERIES

3 Maximal Inequalities and Symmetrization
Sums of independent random variables play an important role in probability and
statistics. Our goal initially in this section is to develop probability bounds for
the maximum of the first n partial sums. Such inequalities are called maximal
inequalities. The most famous of these is Kolmogorov’s inequality. For symmetric
rvs, Lévy’s inequality is an extremely clean and powerful version of such a maximal
inequality; it does not require the underlying rvs to have any moments. Neither
does the Ottavani–Skorokhod inequality, which is true for arbitrary rvs, though it
is not nearly as clean. (Recall (2.3.7) which shows that Sn →a.s. (some rv S) if
and only if P (maxn≤m≤N |Sm − Sn| ≥ ǫ) ≤ ǫ for all N ≥ n ≥ (some nǫ).)

Inequality 3.1 (Kolmogorov) LetX1, X2, . . . be independent, withXk
∼= (0, σ2

k).
Let Sk ≡ X1 + · · ·+Xk. Then

P

(
max

1≤k≤n
|Sk| ≥ λ

)
≤ Var[Sn]/λ

2 =

n∑

k=1

σ2
k/λ

2 for all λ > 0.(1)

[This contains Chebyshev’s inequality that P (|Sn| ≥ λ) ≤ Var[Sn]/λ
2 for all λ > 0.]

Proof. Let Ak ≡ [max1≤j<k |Sj | < λ ≤ |Sk|], so that A ≡ ∑n
1 Ak =

[max1≤k≤n] |Sk| ≥ λ]. Thus k is the first index for which |Sk| exceeds λ; call k the
first passage time. Then

Var[Sn] =
∫
S2
n dP ≥

∫
AS

2
n dP =

∑n
1

∫
Ak

[(Sn − Sk) + Sk]
2 dP

=
∑n

1

∫
[(Sn − Sk)21Ak

+ (Sn − Sk)2Sk1Ak
+ S2

k1Ak
] dP

≥∑n
1 [
∫
0 dP +E(Sn−Sk) E(2Sk1Ak

)+
∫
Ak
S2
k dP ] by independence(a)

≥∑n
1 [0 + 0 · (a number) +

∫
Ak
λ2 dP ] =

∑n
1 λ

2P (Ak) = λ2P (A). 2(b)

Definition 3.1 (Symmetric rvs) A rv X is called symmetric if X ∼= −X . Note
that this is equivalent to its df satisfying F (−x) = 1−F−(x) for all x ≥ 0. Suppose
X ∼= X ′ are independent rvs; then Xs ≡ X−X ′ is called the symmetrization of the
initial rv X .

Definition 3.2 (Medians) Let X be an arbitrary rv. Then m ≡ median(X) is
any number for which P (X ≥ m) ≥ 1

2 and P (X ≤ m) ≥ 1
2 . [One median of the

symmetrization Xs of any rv X is always 0. And (2) below shows that the tails of
Xs behave roughly the same as do those of X .]

Inequality 3.2 (Symmetrization inequality) Let Xs ≡ X−X ′ where X ∼= X ′

with X and X ′ independent. Let r > 0 and let a be any real number. Then both

2−1P (|X −median(X)| ≥ λ) ≤ P (|Xs| ≥ λ) ≤ 2P (|X − a| ≥ λ/2) and

2−1E|X −median(X)|r ≤ E|Xs|r ≤ 21+r E|X − a|r.(2)

We may replace ≥ by > in the three events in the upper half of (2).
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Proof. Let m ≡ median(X). Now, the first inequality comes from

P (Xs ≥ λ) = P [(X −m)− (X ′ −m) ≥ λ]
≥ P (X −m ≥ λ)P (X ′ −m ≤ 0) ≥ P (X −m ≥ λ)/2.(a)

The second inequality holds, since for any real a,

P (|Xs| ≥ λ) = P (|(X − a)− (X ′ − a)| ≥ λ)
≤ P (|X − a| ≥ λ/2) + P (|X ′ − a| ≥ λ/2) = 2P (|X − a| ≥ λ/2).(b)

Plug (2) into (6.4.13) for the moment inequalities. 2

Inequality 3.3 (Lévy) Let X1, . . . , Xn be independent and symmetric rvs. Let
Sn ≡ X1 + · · ·+Xn. Then both

P

(
max

1≤k≤n
|Sk| ≥ λ

)
≤ 2P (|Sn| ≥ λ) for all λ > 0 and(3)

P

(
max

1≤k≤n
|Xk| ≥ λ

)
≤ 2P (|Sn| ≥ λ) for all λ > 0.(4)

Thus, 2 E|Sn|r ≥ {E(max1≤k≤n |Sk|r) ∨ E(max1≤k≤n |Xk|r)}, for each r > 0.

Proof. Let Ak ≡ [max1≤j<k Sj < λ ≤ Sk] for 1 ≤ k ≤ n, so that k is the
smallest index for which Sk exceeds λ. Then

P (Sn ≥ λ) =
∑n
k=1P (Ak ∩ [Sn ≥ λ]) ≥

∑n
1P (Ak ∩ [Sn ≥ Sk])(a)

=
∑n

1P (Ak)P (Sn − Sk ≥ 0)(5)

by independence of X1, . . . , Xk from Xk+1, . . . , Xn

≥∑n
1P (Ak)/2 by symmetry(b)

= P (max1≤k≤n Sk ≥ λ)/2.(c)

Combine this with the symmetric result, and achieve the first claim.

Now let Ak ≡ [ max1≤j<k |Xj | < λ ≤ |Xk| ] for 1 ≤ k ≤ n. Fix k. Let
Son ≡ 2Xk − Sn ∼= Sn, and note that 2λ ≤ 2|Xk| ≤ |Sn|+ |Son| on Ak. Moreover,

P (Ak) ≤ P (Ak ∩ [|Sn| ≥ λ]) + P (Ak ∩ [|Son| ≥ λ]) = 2P (Ak ∩ [|Sn| ≥ λ]).(d)

So summing on k gives P (A) ≤ 2P (A ∩ [|Sn| ≥ λ]) ≤ 2P (|Sn| ≥ λ).
See Feller(1966) proof: LetM ≡ XK , whereK ≡ min{k : |Xk| = max1≤j≤n |Xj |}.

Let T ≡ Sn − XK . Then, for all four choices of + or − signs, the rvs (±M,±T )
have the same distribution. Then we require both

P (M ≥ λ) ≤ P (M ≥ λ and T ≥ 0) + P (M ≥ λ and T ≤ 0)

= 2P (M ≥ λ and T ≥ 0)(e)

≤ 2P (M + T ≥ λ) = 2P (Sn ≥ λ)(f)

and the symmetric result. [See exercise 3.2 below for more on (4).] 2
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Remark 3.1 Kolmogorov’s inequality is a moment inequality. Since the rv
Sn/StDev[Sn] ∼= (0, 1) is often approximately normal (2π)−1/2 exp(−x2/2) on the
line, and since

P (|N(0, 1)| ≥ λ) =
∫

[|x|≥λ]

1√
2π

exp(−x2/2) dx ≤
√

2

π

∫ ∞

λ

x

λ
exp(−x2/2) dx

≤
√

2
π

1
λ exp(−λ2/2) for all λ > 0,(6)

both Lévy’s inequality and the Ottaviani–Skorokhod inequality to follow offer the
hope of a much better bound. 2

Inequality 3.4 Let Sk ≡ X1 + · · ·+Xk for independent rvs Xk.

(Ottaviani–Skorokhod) For all 0 < c < 1 we have

P

(
max

1≤k≤n
|Sk| ≥ λ

)
≤ P (|Sn| ≥ cλ)

[1−max1≤k≤n P (|Sn − Sk| > (1− c)λ)] for λ > 0(7)

≤ 2P (|Sn| ≥ cλ) for all λ ≥
√
2 StDev[Sn]/(1− c).

(Etemadi) Alternatively,

P (max1≤k≤n |Sk| ≥ 4λ) ≤ 4max1≤k≤n P (|Sk| ≥ λ) for all λ > 0.(8)

Hence, E(max1≤k≤n |Sk|r) ≤ 41+rmax1≤k≤n E|Sk|r for each r > 0. (See (8.2.13).)

Proof. Let Ak ≡ [S1 < λ, . . . , Sk−1 < λ, Sk ≥ λ], so that
∑n
k=1 Ak =

[max1≤k≤n Sk ≥ λ]. Thus k is the smallest index for which Sk exceeds λ. (This is

now the third time we have used this same trick.) Note that

a ≡ min1≤k≤nP (|Sn − Sk| ≤ (1− c)λ)(a)

= 1−max1≤k≤nP (|Sn − Sk| > (1 − c)λ)(b)

≥ 1−max1≤k≤n Var[Sn − Sk]/[(1− c)λ]2 by Chebyshev’s inequality

≥ 1−Var[Sn]/[(1− c)λ]2

≥ 1
2 if λ ≥

√
2 StDev[Sn]/(1− c)(c)

allows us to “improve” (7) to (8). Meanwhile, (7) comes from

a× P (max1≤k≤n Sk ≥ λ) ≤
∑n
k=1 P (|Sn − Sk| ≤ (1 − c)λ)P (Ak)(d)

=
∑n

k=1 P (Ak ∩ [|Sn − Sk| ≤ (1− c)λ]) by independence(e)

≤ P (Sn ≥ cλ).(f)

Combining (f) and (b) with the analogous result for −Sn completes the proof. 2

Exercise 3.1 Prove Etemadi’s inequality.
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Exercise 3.2 Consider independent rvs Xs
k ≡ Xk −X ′

k, for 1 ≤ k ≤ n, with all
Xk and X ′

k independent, and with each X ′
k
∼= Xk. Let mk denote a median of Xk,

and let a denote any real number. Let λ > 0 and r > 0. Show that both:

2−1P (max |Xk −mk| ≥ λ) ≤ P (max |Xs
k| ≥ λ) ≤ 2P (max |Xk − a|≥λ/2).

2−1E(max |Xk −mk|r) ≤ E(max |Xs
k|r) ≤ 21+r E(max |Xk − a|r).

(9)

[Also, 2−1P (max |Xs
k| ≥ λ) ≤ P (|Ssn| ≥ λ) ≤ 2P (|Sn − a| ≥ λ/2) (for any real a),

by inequality 3.3 and inequality 3.2.]

Inequalities for Rademacher RVs

Inequality 3.5 (Symmetrization; Giné–Zinn) LetX1, . . . , Xn be iid rvs, and
let ǫ1, . . . , ǫn denote an independent sample of iid Radamacher rvs (that satisfy
P (ǫk = ±1) = 1

2 ). Then

P

(
1√
n

∣∣∣∣∣
n∑

k=1

ǫkXk

∣∣∣∣∣ > 2λ

)
≤ sup

1≤m≤n
2P

(∣∣∣∣∣
1√
m

m∑

k=1

Xk

∣∣∣∣∣ > λ

)
for all λ > 0 .(10)

Proof. By conditioning on the Rademacher rvs we obtain

P (n−1/2 |∑n
1 ǫkXk| > 2λ)(a)

≤ P (n−1/2 |∑k:ǫk=1 ǫkXk| > λ) + P (n−1/2 |∑k:ǫk=−1 ǫkXk| > λ)

≤ Eǫ P (n
−1/2 |∑k:ǫk=1Xk| > λ) + Eǫ P (n

−1/2 |∑k:ǫk=−1Xk| > λ)

≤ 2 supm≤n P (n
−1/2 |∑m

1 Xk| > λ)(b)

≤ 2 supm≤n P (m
−1/2 |∑m

1 Xk| > λ)

≤ 2 supm≥1 P (m
−1/2 |∑m

1 Xk| > λ), as required. 2(c)

Exercise 3.3 (a) (Khinchin inequality) Suppose ǫ1, . . . , ǫn are iid Rademacher rvs.
Let a1, . . . , an be real constants. Then

Ar
(∑n

1 a
2
k

)1/2 ≤
(
E |∑n

1 akǫk|
r )1/r ≤ Br

(∑n
1 a

2
k

)1/2
, for each r ≥ 1,(11)

for some constants Ar and Br. Establish this for r = 1, with A1 = 1/
√
3 and

B1 = 1. [Hint. Use Littlewood’s inequality with r, s, t equal to 1, 2, 4.]

(b) (Marcinkiewicz–Zygmund inequality) For X1, . . . , Xn independent 0 mean rvs,

( 1
2Ar)

r E(
∑n

1 X
2
k)
r/2 ≤ E|∑n

1 Xk|r ≤ (2Br)
r E(

∑n
1 X

2
k)
r/2, for each r ≥ 1.(12)

Exercise 3.4 Let X1, . . . , Xn be independent with 0 means, and independent of
the iid Rademacher rvs ǫ1, . . . , ǫn. Let φ be ր and convex on R. Then

Eφ(|∑n
1 ǫkXk|/2) ≤ Eφ(|∑n

1 Xk|) ≤ Eφ(2|∑n
1 ǫkXk|) .

[Hint. The left side is an average of terms like Eφ(|∑n
1 ek(Xk − EX ′

k)|/2), for
independent X ′

k
∼= Xk and with each ek equal to ±1.]
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Weak Negligibility, or Maximal Inequalities of Another Ilk

Discussion 3.1 (Weak negligibility) Let Yn1, . . . , Ynn be independent with
dfs Fn1, . . . , Fnn. Let θ > 0 be given. For any ǫ > 0, let pǫnk ≡ P (|Ynk| > ǫ).
Now, the maximum Maxn ≡ [max1≤k≤n |Ynk| ] satisfies

1− exp(−∑n
1 p

ǫ
nk) ≤ 1− ∏n

1 (1− pǫnk) = P (Maxn > ǫ) ≤∑n
1 p

ǫ
nk .(13)

[The equality uses ∩n1Ack = [∪n1Ak]c, and the first bound follows from the inequality
1− x ≤ exp(−x).] This gives (so does exercise 8.1.5) the standard result that

Maxn →p 0 if and only if nP̄n(ǫ) ≡
∑n

1 p
ǫ
nk → 0 for all ǫ > 0.(14)

Define xθn by requiring [−xθn, xθn] to be the smallest interval that is both closed

and symmetric to which F̄n ≡
∑n

1 Fnk/n assigns probability at least 1 − θ/n. Let
P̄n(x) ≡ 1

n

∑n
1 P (|Ynk| > x) denote the average tail probability, and then let Kn

denote the qf of the df 1− P̄n(·). Note the quantile relationship xθn = Kn(1−θ/n).
Since Kn(1− θ/n) = inf{x : 1− P̄n(x) ≥ 1− θ/n} = inf{x : P̄n(x) ≤ θ/n}, we have

nP̄n(ǫ) ≤ θ if and only if Kn(1− θ/n) ≤ ǫ .(15)

Fix 0 < ǫ ≤ 1 and 0 < θ ≤ 1, and suppose that we are considering all n exceeding
some nǫ,θ. Conclusions (14) and (15) give (the seemingly new emphasis)

Maxn →p 0 if and only if xθn = Kn(1− θ/n)→ 0 for all 0 < θ ≤ 1.2(16)

Discussion 3.2 (Weak negligibility in the LLN context) Let νn > 0 be
constants. Applying the previous paragraph to the rvs |Ynk|/n νn (whose average
df has the (1− θ/n)th quantile xθn/n νn) gives the equivalencies

Mn/νn ≡ [ maxk
1
n |Ynk| ]/ νn →p 0 ,(17)

xθn/n νn → 0 for all 0 < θ ≤ 1 ,(18)
∑n

1 P (|Ynk|/n νn > ǫ)→ 0 for all 0 < ǫ ≤ 1 .(19)

Useful choices for νn are the truncated absolute moment u1n ≡
∫
[ |y|≤x1n]

|y| dF̄n(y)
and the Winsorized absolute moment ũ1n ≡ u1n + x1nP̄n(x1n). (Here x1n means
the quantile xθn with θ = 1.) 2

Inequality 3.6 (Daniels’ equality) With high probability there is an upper linear
bound on the uniform empirical df Gn. That is, for each 0 < λ < 1,

P (Gn(t) ≤ t/λ for all 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n) = 1− λ .(20)

Proof. (Robbins) The vector of Uniform(0, 1) order statistics (ξn:1, . . . ξn:n) has
joint density n! on its domain 0 < t1 < · · · < tn < 1. Thus

P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n)(a)

=
∫ 1

λ

∫ tn
λ(n−1)/n · · ·

∫ t3
λ2/n

∫ t2
λ/n n! dt1 · · · dtn = · · · =(b)

= n!
[
tn

n! − λtn−1

n!

]∣∣∣∣
1

λ

= 1− λ . 2(c)
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Inequality 3.7 (Chang’s inequality) With high probability there is a lower linear
bound on the uniform empirical df Gn. That is,

P (‖I/G−1
n ‖1ξn:1

≤ λ) = P (Gn(t) ≥ t/λ on all of [ξn:1, 1] )

≥ 1− 2λ2 e−λ for all λ ≥ 1.
(21)

(This provides a nice symmetrty with the previous inequality, though it will not be
proven until chapter 12. It is stated now in the spirit of symmetry, completeness,
and fun.)
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4 The Classical Laws of Large Numbers, LLNs
It is now time to present versions of the laws of large numbers under minimal
hypotheses. The weak law of large numbers (WLLN) will establish →p, while the
strong law of large numbers (SLLN) will establish →a.e. of a sample average X̄n.

Theorem 4.1 (WLLN; Feller) Let Xn1, . . . , Xnn be iid with df F and qf K,
for each n. Let X̄n ≡ (Xn1 + · · ·+Xnn)/n. The following are equivalent:

X̄n − µn →p 0 for some choice of constants µn .(1)

τ(x) ≡ xP (|X | > x)→ 0 (true, iff τ±(x) ≡ xP (X± > x)→ 0).(2)

t {|F−1
+ (t)|+ |F−1(1− t)|} → 0 (true, iff t F−1

|X|(1− t)→ 0).(3)

Mn ≡ [ 1
n max

1≤k≤n
|Xnk| ]→p 0.(4)

When (1) holds, possible choices include µn ≡
∫
[−n,n] x dF (x), νn ≡

∫ 1−1/n

1/n K(t) dt,

and mn ≡ median(X̄n). If E|X | <∞, then (1) holds with µn = µ ≡ EX .

Theorem 4.2 (SLLN; Kolmogorov) Let X,X1, X2, . . . be iid rvs. Then:

E|X | <∞ implies X̄n →a.s. µ ≡ EX.(5)

E|X | =∞ implies lim |X̄n| =∞ a.s.(6)

E|X | <∞ iff lim |X̄n| <∞ a.s. iff X̄n →L1 (some rv).(7)

E|X | <∞ iff Mn ≡ [ 1
n max

1≤k≤n
|Xk| ]→a.s. 0 iff Xn

n →a.s. 0 iff Mn →L1 0.(8)

Conditions (4) and (8) show the sense in which these LLNs are tied to the size
of the maximal summand. This is an important theme, do not lose sight of it. We
now give a symmetric version of condition (4). (See also exercises 4.18 – 4.21.)

Theorem 4.3 (The maximal summand) Let Xn1, . . . , Xnn, n ≥ 1, be iid row
independent rvs with df F . We then let Xs

nk ≡ Xnk−X ′
nk denote their symmetrized

versions. Fix r > 0. [Most important is r = 1.] Then

τ(x) ≡ xrP (|X | > x)→ 0 iff τs(x) ≡ xrP (|Xs| > x)→ 0 iff(9)

[ max
1≤k≤n

1
n |Xnk − a|r ]→p 0 for all/some a iff [ max

1≤k≤n
1
n |Xs

nk|r ]→p 0.(10)

Proof. We first consider the SLLN. Let Yn ≡ Xn × 1[ |Xn|<n], for the iid Xn’s.
Suppose E|X | < ∞. Using inequality 8.2.1 in the second step and iid in the

third, we obtain

µ = EX is finite iff E|X | <∞ iff
∑∞

n=1P (|X | ≥ n) <∞(a)

iff
∑∞
n=1P (|Xn| ≥ n) <∞ iff

∑∞
n=1P (Yn 6= Xn) <∞

iff the Xn’s and Yn’s are Khinchin equivalent rvs.(b)
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Let X ≥ 0 have df F(·).

WLLN   iff   x[1 – F(x)] → 0    iff   (1 – t)F –1(t) → 0.

SLLN  iff   ∫    [1 – F(y)]dy → 0    iff   ∫  F –1(s)ds → 0.
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Figure 4.1  Conditions for the WLLN and for the SLLN. (Use (a∨b) ≤ a+b ≤ 2(a∨b) for general X.)
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Thus X̄n →a.s. µ wherever Ȳn →a.s. µ, by proposition 8.2.1(c). So we now make
the definitions µn ≡ EYn and σ2

n ≡ Var[Yn]. Then we can write

Ȳn = [
∑n

1 (Yi − µi)/n] + µ̄n, where µ̄n ≡ (µ1 + · · ·+ µn)/n→ µ(c)

by the Cesàro summability exercise 8.1.1 (since µn = EYn =
∫
(−n,n) x dF (x) → µ

by the DCT with dominating function given by |x|). It thus suffices to show that∑n
1 (Yi − µi)/n→a.s. 0. By Kronecker’s lemma it thus suffices to show that

Zn ≡
∑n
i=1(Yi − µi)/i→a.s. (some rv Z).(d)

But Zn →a.s. (some Z), by proposition 2.3.3, if for all ǫ > 0 we have

pǫnN ≡ P (maxn≤m≤N |Zm − Zn| ≥ ǫ)
= P (maxn≤m≤N |

∑m
i=n+1 [(Yi − µi)/i] | ≥ ǫ)→ 0.(e)

Kolmogorov’s inequality yields (e) via

pǫnN ≤ ǫ−2 ∑N
n+1Var[(Yi − µi)/i] = ǫ−2 ∑N

n+1 σ
2
i /i

2

≤ ǫ−2 ∑∞
n+1 σ

2
i /i

2 for all N(f)

→ 0 as n→∞,
provided that

∑∞
n=1 σ

2
n/n

2 =
∑∞

n=1 Var[Yn − µn]/n2 <∞.(g)

Now, this last is seen to be true via the following Kolmogorov argument that
∑∞

1 Var[Yn − µn]/n2 ≤∑∞
1 EY 2

n /n
2 =

∑∞
1

∫
[|x|<n] x

2 dF (x)/n2

=
∑∞

1

∑n
k=1

∫
[k−1≤|x|<k] x

2 dF (x)/n2

=
∑∞

k=1

∑∞
n=k

1
n2

∫
[k−1≤|x|<k] x

2 dF (x)(h)

≤∑∞
k=1 2

∫
[k−1≤|x|<k] x

2 dF (x)/k(i)

since
∑∞
n=k 1/n

2 ≤
∫∞
k
(2/x2) dx = 2/k

≤ 2
∑∞
k=1

∫
[k−1≤|x|<k] |x| dF (x)(j)

= 2E|X | <∞.(k)

Thus we do have Zn →a.s. (some rv Z), and so X̄n →a.s. µ.

Suppose E|X | =∞. Then the “sandwich” inequality 8.2.1 gives
∑∞

n=0 P (|Xn| ≥ nC) =
∑∞

n=0 P (|X |/C ≥ n) ≥ E|X/C| =∞ for all C > 0,(l)

so that applying the second Borel–Cantelli lemma to (l) gives

P (|Xn| ≥ nC i.o.) = 1 for all C > 0 (and hence for all large C > 0).(m)

Since Sn = Sn−1+Xn, (m) implies (using the fact that |Sn| < nC/2 and |Xn| ≥ nC
yields |Sn−1| > nC/2 > (n− 1)C/2) that

P (|Sn| ≥ nC/2 i.o.) = 1 for all C > 0.(n)

That is, lim |Sn|/n ≥ C/2 a.s. for all C. That is, lim |Sn|/n =∞ a.s.
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Thus (5)–(7) hold. [Apply Vitali with exercise 4.16 below for X̄n →L1 µ in (7).
If X̄n →L1 (some rv W ), then X̄n →p W and the averages X̄n are u.i. by Vitali.
Exercise 4.16 below then shows that EX is finite.]

Consider (8). Suppose Mn →a.s. 0. Then a.s. for all n ≥ (some nω) we have

[max1≤k≤n |Xk| ] /n < ǫ, and hence |Xn|/n < ǫ.(o)

We merely repeat this last statement, writing

An ≡ [ |Xn|/n ≥ ǫ] satisfies P (An i.o.) = P (|Xn|/n ≥ ǫ i.o.) = 0.(p)

Thus inequality 8.2.1 (by applying iid, and then the second Borel–Cantelli) gives

E|X |/ǫ = E|X/ǫ| ≤∑∞
n=0 P (|X/ǫ| ≥ n) =

∑∞
n=0 P (|Xn|/n ≥ ǫ) <∞.(q)

Conversely, suppose E|X | <∞. Then Sn/n→a.s. µ by the SLLN. Since

Xn

n
=
Sn − nµ

n
− n− 1

n

[
Sn−1 − (n− 1)µ

n− 1

]
+
µ

n
→a.s. 0− 1 · 0 + 0 = 0,(r)

we have a.s. that

|Xn|/n ≤ ǫ for all n ≥ (some nω).(s)

Thus for all n exceeding some even larger n′
ω we have

[
max

1≤k≤n
|Xk|
n

]
=

[
max

1≤k≤n
k

n
· |Xk|
k

]
≤
[

max
1≤k≤nω

|Xk|
n

]
∨
[
max
k≥nω

∣∣∣∣
|Xk|
k

∣∣∣∣
]

(11)

≤ n−1[a fixed number depending on ω] + ǫ ≤ 2ǫ using (s),(t)

where we will have to increase the specification on n′
ω for (t). Thus Mn →a.s. 0.

Finally, note exercise 4.17 for Mn →L1 0 if and only if E|X | <∞.

From (6.4.11) we see (note figure 4.1) that

E|X | <∞ iff
∫∞
0
P (|X | > x) dx <∞ iff

∫ 1

0
|F−1(t)| dt <∞ . 2(12)

Remark 4.1 Suppose X1, . . . , Xn are independent, with Xi
∼= (0, σ2

i ). Then

Sn ≡ X1 + · · ·+Xn
∼= (0,

∑n
1σ

2
i ), while X̄n ≡ Sn/n ∼= (0,

∑n
1 σ

2
i /n

2).

Chebyshev’s inequality and Kolmogorov’s inequality give, respectively,

(a) P (|Sn| ≥ λ) ≤ Var[Sn]/λ
2 =

∑n
i=1 σ

2
i /λ

2 for all λ > 0,

(b) P (max1≤k≤n |Sk| ≥ λ) ≤ Var[Sn]/λ
2 for all λ > 0.

(13)

For X1, X2, . . . iid (µ, σ2), the inequality (13)(a) gives X̄n →p µ, by Chebyshev’s
inequality. But the WLLN conclusion X̄n →p µ should not require the variance
σ2 to be finite, as this cheap proof based on (13)(a) requires. Indeed, Khintchine’s
WLLN of theorem 8.2.1 didn’t. Exercise 4.8 below outlines one very cheap proof
of the SLLN using “only” the Borel–Cantelli lemma, and exercise 4.9 outlines a
slightly improved version that also uses Kolmogorov’s inequality. Kolmogorov’s
proof of the full SLLN made the key step of incorporating truncation. Exercise 4.10
describes an elementary way to avoid use of Kronecker’s lemma. 2
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Proof. Consider the WLLN. Suppose (2) holds. Define Ynk ≡ Xnk × 1[|Xnk|≤n]
and µn ≡ EYnk =

∫
[−n,n] x dF (x). Now (using integration by parts for (b)),

P (|X̄n − µn| ≥ ǫ ) = P (|X̄n − EȲn| ≥ ǫ )

≤ P (|Ȳn − EȲn| ≥ ǫ ) +
∑n

1P (Ynk 6= Xk)(14)

≤ 1
ǫ2Var[Ȳn]+nP (|X | > n)≤ 1

nǫ2EY
2
n1+ τ(n) (Truncation inequality)(15)

= − 1
nǫ2

∫
[0,n] x

2 dP (|X | > x) + τ(n)(a)

= 1
ǫ2

[
− 1
n x

2P (|X | > x)
∣∣n+
0− + 1

n

∫
[0,n]P (|X | > x) 2x dx

]
+ τ(n)(b)

= 1
ǫ2 [−τ(n) + 0 + 2n−1

∫
[0,n]

τ(x) dx] + τ(n)

≤ 2

nǫ2

∫

[0,n]

τ(x) dx =
2

nǫ2

∫

[0,n]

xP (|X | > x) dx (compare (6.4.18))(16)

for 0 < ǫ ≤ 1. Note that τ(x) ≤ x, and choose M > 0 so large that τ(x) < ǫ3/4 for
x > M . Applying these to (16) gives

2
nǫ2

∫ n
0 τ(x) dx ≤ 2

nǫ2 {
∫M
0 x dx+

∫ n
M

ǫ3

4 dx} ≤ M2

nǫ2 + ǫ
2 ≤ ǫ(c)

for all n ≥ 2M2/ǫ3. Combining (16) and (c), it follows that

P (|X̄n − µn| ≥ ǫ ) ≤ ǫ for n ≥ (some Nǫ) .(d)

Thus X̄n−µn →p 0. We also have X̄n−median(X̄n)→p 0, since the symmetrization
inequality 8.3.2 gives

P (|X̄n −median(X̄n)| ≥ ǫ) ≤ 4P (|X̄n − µn| ≥ ǫ/2)→ 0.(e)

[The acceptability of the third exhibited choice for the centering constant is left to
exercise 4.1 below.] In any case, we have shown that (2) implies (1).

The equivalence of (2) and (3) follows. Note figure 4.1, bearing in mind that
(a ∨ b) ≤ a + b ≤ 2(a ∨ b) for the definitions a ≡ τ+(x) ≡ xP (X+ > x) and
b ≡ τ−(x) ≡ xP (X− > x). Figure 4.1 thus shows that τ−(x)→ 0 holds if and only
if t |F−1(t)| → 0, that τ+(x) → 0 holds if and only if t |F−1(1 − t)| → 0, and that
τ(x)→ 0 holds if and only if t F−1

|X|(1− t)→ 0.

Consider the equivalence of (4) and (2). We know from (8.3.14) that Mn →p 0
if and only if nP (|X | > ǫn) → 0 for all ǫ > 0, that is, if and only if τ(ǫn) =
ǫnP (|X | > ǫn)→ 0 for all ǫ > 0. Thus Mn →p 0 if and only if τ(x)→ 0 as x→∞.

We still neeed to show that (1) implies (2), but we’ll wait a paragraph for this.
Consider next theorem 4.3. We will only provide a proof with r = 1 (we may

just replace |X | by |Y | ≡ |X |r, after raising |X | to the power r). Now, τX(x) → 0
implies τs(x) → 0 by the right-hand side of inequality 8.3.2 with a = 0, while the
left-hand side then gives τX−med(x) → 0. The equivalence of (4) and (2) then
gives max |Xnk − med|/n →p 0, which trivially gives max |Xnk|/n →p 0, which
gives τX(x)→ 0 by the equivalence of (4) and (2). This completes theorem 4.3.
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Finally, we prove that (1) implies (2). Suppose that there exist some constants
µn such that Sn/n − µn = X̄n − µn →p 0. Let Ssn = Sn − S′

n, where S′
n ≡

X ′
n1 + · · · + X ′

nn with X ′
nk
∼= Xnk and with Xnk’s and X ′

nk’s independent. Thus

Ssn/n →p 0. Then M s
n ≡ max1≤k≤n |Xs

nk|/n →p 0 by the (8.3.4) Lévy inequality.

Thus τs(x)→ 0 by theorem 4.3, and hence τ(x)→ 0 by theorem 4.3. 2

Exercise 4.1 Verify that the choice νθ,n ≡
∫ 1−θ/n
θ/n K(t) dt (for any 0 < θ ≤ 1)

also works in the WLLN as a centering constant in (1).

We have just seen that good inequalities lead to good theorems! In sections 8.8
and 12.11 we will add to our growing collection of good inequalities. Some will be
used in this text, and some will not. But the author thinks it important to illustrate
these possibilities.

Exercise 4.2∗ When E|X | =∞, the SLLN above showed that limn |X̄n| =∞ a.s.
Show the following stronger result. If X1, X2, . . . are iid with E|X | =∞, then

limn→∞|X̄n − cn| =a.s. ∞
for every sequence of constants cn. (Note exercise 4.23 below.)

Exercise 4.3 (Erickson) (a) If EX−<∞ but EX+=∞, then limSn/n =a.s. +∞.
(b) (Kesten)∗ If both EX+ = ∞ and EX− = ∞, then either Sn/n →as ∞,
Sn/n→as −∞, or both limSn/n =∞ and limSn/n = −∞.

Exercise 4.4 (Marcinkiewicz–Zygmund) Let X1, X2, . . . be iid. Let 0 < r < 2.
Establish the equivalence

E|X |r <∞ if and only if
1

n1/r

n∑

k=1

(Xk − c)→a.s. 0 for some c.(17)

If so, then c = EX when 1 ≤ r < 2, while c is arbitrary (so c = 0 works) when

0 < r < 1. [Hint. Truncate via Yn ≡ Xn × 1[|Xn|<n1/r] in a SLLN type proof.]

Exercise 4.5∗(Feller) Let X1, X2, . . . be iid with E|X | =∞. If an/n ↑, then

lim |Sn|/an =

{
= 0 a.s.,
=∞ a.s.,

according as
∑∞
n=1P (|Xn| ≥ an) =

{
<∞,
=∞.(18)

[Note that P (|Xn| ≥ an i.o.) equals 0 or 1 as
∑∞

1 P (|Xn| ≥ an) is finite or infinite.]

Exercise 4.6 Clarify the overlap between (17) and (18).

Exercise 4.7 (Random sample size) (a) Let X1, X2, . . .be iid with τ(x) → 0 as

x→∞. Let Nn ≥ 0 be any integer-valued rv satisfying Nn/n→p c ∈ (0,∞). Then

SNn/Nn − µn →p 0, for µn ≡
∫
[−n,n] x dF (x).(19)

(b) Suppose X1, X2, . . . are iid and µ ≡ EX is finite. Let Nn ≥ 0 be any positive
integer-valued rv satisfying Nn/n→a.s. c ∈ (0,∞). Then

SNn/Nn →a.s. µ.(20)
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Exercise 4.8 (A weak SLLN) (a) For Xn1, . . . , Xnn independent (or, uncorrelated)
with Xnk

∼= (0, σ2
nk) and all σ2

nk ≤ (some M) <∞, we have X̄n →a.s. 0.

Hint. Show that P (|Sn| ≥ nǫ) ≤M/(nǫ2), so that P (|X̄n2 | = |Sn2/n2| > 0 i.o.) = 0.
Then show that the “block maximum”

∆n ≡ maxn2<k<(n+1)2 |Sk − Sn2 |
has E∆2

n ≤ 2nE{|S(n+1)2−1 − Sn2 |2} ≤ 4n2M , so that P (∆n/n
2 > ǫ i.o.) = 0.

(b) Use Kolmogorov’s inequality to obtain E∆2
n ≤ 2nM , under independence.

Exercise 4.9 Let Xn1, . . . , Xnn be row independent rvs (here, merely uncorrelated
is much harder to consider) with means 0 and having all EX4

nk ≤ (some M) <∞.

(a) (Cantelli’s inequality) Verify that X̄n ≡ Sn/n ≡ (Xn1 + · · ·+Xnn)/n satisfies

P ( |Sn| ≥ λ) ≤ 3Mn2/λ4 for all λ > 0.

(b) (A very weak SLLN) Show that under these circumstances X̄n →a.s. 0.

Exercise 4.10 (Alternative proof of the SLLN) Apply either the Hájek–Rényi
inequality (inequality 8.10.3) or the monotone inequality (inequality 8.10.1) as a
replacement for the use of the Kronecker lemma in the SLLN proof.

Exercise 4.11 (St. Petersburg paradox) Let X1, X2, . . . be iid rvs for which
P (X = 2m) = 1/2m for m ≥ 1. Show that Sn/an − 1 = (Sn − bn)/an →p 0 for
bn ≡ n logBase 2 n and an ≡ n logBase 2 n also. Hint. Let Ynk ≡ Xk1[Xk≤n logBase 2 n]

.

(While Sn/an →p 1 was just shown, it can also be shown that Sn/an →a.s. ∞.)

Exercise 4.12∗ (Spitzer) Let X,X1, X2, . . . be iid. Establish the following claim.

E(X) = 0 for X∈L1 iff
∑∞

n=1
1
n P (|Sn| ≥ n ǫ) <∞ for all ǫ > 0.(21)

Exercise 4.13 If X1, X2, . . . are iid Exponential(1), then limXn/ logn = 1 a.s.
and Xn:n/ logn→ 1 a.s.

Exercise 4.14 If X1, X2, . . . are iid N(0, 1), then Xn:n/
√
2 logn→p 1.

Exercise 4.15 (a) Does the WLLN hold for the Cauchy distribution?
(b) Does the WLLN hold if P (|X | > x) = e/[2x logx] for x ≥ e, X symmetric?
(c) Make up one more example of each of these two types.

Exercise 4.16 (Uniform integrability of sample averages) Let X1, X2, . . . be iid,
and let X̄n ≡ (X1+· · ·+Xn)/n. Then the rvs {Xn : n ≥ 1} are uniformly integrable
if and only if the rvs {X̄n : n ≥ 1} are uniformly integrable. (Relate this to the
SLLN result in (7).) (We only need independence for u.i. Xk’s to yield u.i. X̄n’s.)

Exercise 4.17 (a) Let row independent rvsXn1, . . . , Xnn be iid with the df F (·).
Let F have finite mean µ ≡ EX . We know Mn ≡ [max1≤k≤n |Xnk|/n]→p 0 by the
WLLN. Trivially, EMn ≤ E|X |. Show that

EMn = E[max1≤k≤n
1
n |Xnk|]→ 0 (that is, Mn →L1 0).(22)

(b) Let X1, X2, . . . be iid. Show that E|X | <∞ if and only if Mn →L1 0.
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Exercise 4.18 (Negligibility for r = 1, a.s.) (i) Let X,X1, X2, . . . be iid rvs. Let
r > 0 (with r = 1 the most important case). Prove that the following are equivalent:

E|X |r <∞.(23)

Mrn ≡ [ 1
n max1≤k≤n |Xk|r ]→a.s. 0.(24)

EMrn → 0.(25)

(ii) Since E|X |r <∞ if and only if the symmetrized rv X−X ′ has E|X−X ′|r <∞
(by exercise 8.2.3), we can add three analogous equivalences for iid symmetric rvs
distributed as X −X ′.

Exercise 4.19∗ (Maller–Resnick; Kesten) For a sequence of iid rvs X,X1, X2, . . .
let X̄n ≡ (X1 + · · ·+Xn)/n and let M1n ≡ [ 1

n max1≤k≤n |Xk| ]. Then (difficult)

M1n/|X̄n| →a.s. 0 if and only if 0 < |EX | <∞.(26)

Exercise 4.20 (Negligibility for r = 2, a.s.) (i) Let X,X1, X2, . . . be iid rvs (that
are not identically equal to 0). Let r > 0 (with r = 2 the most important case).
Prove that the following are equivalent (you should use the difficult (26) for(30)):

E|X |r <∞.(27)

Mrn ≡ [ 1
n max1≤k≤n |Xk|r ]→a.s. 0.(28)

EMrn → 0.(29)

Mrn/[ 1n
∑n

1 |Xk|r ]→a.s. 0.(30)

(ii) When r = 2, we may add the equivalent condition (by (6.6.6))

D2
n ≡ [ 1

n max1≤k≤n (Xk − X̄n)
2]/[ 1

n

∑n
k=1 (Xk − X̄n)

2]→a.s. 0.(31)

(iii) Again (by (8.2.18)), E|X |r <∞ if and only if E|X −X ′|r <∞.

Exercise 4.21 (Neglibility, in probability) Let Xn1, . . . , Xnn be iid F , for n ≥ 1.
Let X ∼= F . Let r > 0. Prove that the following are equivalent:

y P (|X |r > y)→ 0 as y →∞.(32)

xr P (|X | > x)→ 0 as x→∞.(33)

xr P (|X −X ′| > x)→ 0 as x→∞, here X and X ′ are iid F .(34)

xr P (|X − (some ‘a’)| > x)→ 0. Then any ‘a’ works; so med(X) works.(35)

Mrn ≡ [ 1
n max1≤k≤n |Xnk|r ]→p 0. (Any |Xnk − a|r may replace |Xnk|r.)(36)

EMα
rn = E[ 1

nα max1≤k≤n |Xnk|rα ]→ 0 for all 0 < α < 1.(37)

In case r > 1 (and especially for r = 2) add to this list the equivalent condition

EM1/r
rn = E[ 1

n1/r
max1≤k≤n |Xnk| ]→ 0.(38)

Because (34) is on the list, the iid Xnk’s may be replaced by iid symmetrized Xs
nk’s

in (32), (33), and (36)–(38). Moreover

E|X |p <∞ for all 0 < p < r whenever (33) holds.(39)
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The remaining problems in this subsectiion are mainly quite substantial. They are
here for “flavor.” Some also make good exercises for section 8.8. (Some of the
martingale inequalities found in section 8.10 should prove useful (here and below).)

Exercise 4.22∗ (Kesten) Let X1, X2, . . . be iid as X ≥ 0, with E|X | =∞. Then

lim Xn

Sn−1
=∞ a.s.(40)

Exercise 4.23∗ (Chow–Robbins) Let X1, X2, . . . be iid as X , with E|X | =∞. Let
bn > 0 denote any sequence. Then

either lim |Sn|
bn

= 0 a.s. or lim |Sn|
bn

=∞ a.s.(41)

Exercise 4.24∗ Suppose
∑∞

1 E|Xn|r <∞ for some r > 0. Show that Xn →a.s. 0.

Exercise 4.25∗ (Hsu–Robbins; Edr
..
os) Let X,X1, X2, . . . be iid rvs. Then

EX = 0 and Var[X ] <∞ if and only if
∑∞

n=1 P (|Sn| > ǫn) <∞ for all ǫ > 0.
(42)

Exercise 4.26∗ Let X1, X2, . . . be independent with 0 means. Let r ≥ 1. Then

Sn/n→a.s. and L2r 0 whenever
∑∞
n=1 E|Xn|2r/nr+1 <∞.(43)

Exercise 4.27∗ Let X,X1, X2, . . . be iid. Let Log x ≡ 1 ∨ log x. (a) Show that

E(|X | Log+(|X |) <∞ if and only if

E{supn≥1 (|Xn|/n)} <∞ if and only if E{supn≥1 (|Sn|/n)} <∞.
(44)

(b) Show that for each r > 1,

E|X |r <∞ if and only if E{supn≥1 (|Sn|r/nr)} <∞.(45)

Exercise 4.28∗ (Stone) Let X,X1, X2, . . . be iid nondegenerate rvs with 0 means.
Let Sn ≡ X1 + · · ·+Xn. Then

limn Sn/
√
n =a.s. +∞ and limn Sn/

√
n =a.s. −∞.(46)

Generalizations of the LLNs

Our results allow simple generalizations of both the WLLN and SLLN.

Theorem 4.4 (General WLLN and SLLN) LetX1, X2, . . . be independent. Then∑n
1σ

2
k/b

2
n → 0 implies

∑n
1 (Xk − µk)/bn →p 0,(47)

∑∞
1 σ

2
k/b

2
k <∞ with bn ր∞ implies

∑n
1 (Xk − µk)/bn →a.s. 0.(48)

Proof. The first claim is immediate from Chebyshev’s inequality. Also, (f) in
the SLLN proof shows that

∑∞
1 σ

2
k/b

2
k <∞ implies

∑n
1 (Xk − µk)/bk →a.s. (some rv S).(49)

Then Kronecker’s lemma gives
∑n

1 (Xk − µk)/bn →a.s. 0. (This result is often the
starting point for a development of the SLLN.) 2
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Exercise 4.29∗ (More general WLLN) Let Xn1, . . . , Xnn be independent, and set
Sn ≡ Xn1 + · · · + Xnn. Truncate via Ynk ≡ Xnk × 1[ |Xnk|≤bn], for some bn > 0

having bn ր∞. Let µnk and σ2
nk denote the mean and variance of Ynk. Then

Sn/bn →p 0(50)

if and only if we have all three of

∑n
1 P (|Xnk| > bn)→ 0,

∑n
1 µnk/bn → 0, and

∑n
1 σ

2
nk/b

2
n → 0.(51)

[The converse is a substantial problem.]
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5 Applications of the Laws of Large Numbers
Let X1, X2, . . . be iid F . Let Fn denote the empirical df of X1, . . . , Xn, given by

Fn(x) ≡ Fn(x, ω) ≡
1

n

n∑

k=1

1(−∞,x](Xk(ω)) =
1

n

n∑

k=1

1[Xk≤x] for all real x.(1)

Theorem 5.1 (Glivenko–Cantelli) We have

‖Fn − F‖ ≡ sup
−∞<x<∞

|Fn(x)− F (x)| →a.s. 0 as n→∞.(2)

[This is a uniform SLLN for the random function Fn(·).]

Proof. Let Xk = F−1(ξ̇k) for k ≥ 1 be iid F , with the ξ̇k’s iid Uniform(0, 1).
Let Gn denote the empirical df of the first n of these ξ̇k’s, and let Fn denote the
empirical df of the first n of these Xk’s. Let I denote the identity function. Then

(Fn − F ) = [Gn(F )− I(F )] on (−∞,∞) for every ω(3)

by (6.3.4). Thus by theorem 5.3.3, it will suffice to prove the result in the special
case of uniform empirical df’s Gn’s. (Recall the remark in bold above (6.4.3) that
the representation of X as F−1(ξ) allows alternative ways to approach problems.
Moreover, using the ξ̇k’s of (6.3.8) gives us back the original Xk’s.)

Now, Gn(k/M)− k/M →a.s. 0 as n→ ∞ for 0 < k ≤ M by the SLLN applied

to the iid Bernoulli(k/M) rv’s 1[0,k/M ](ξ̇i). We now assume that M is so large that

1/M < ǫ. Then for (k − 1)/M ≤ t ≤ k/M , with 1 ≤ k ≤M , we have both

Gn(t)− t ≤ Gn
(
k
M

)
− k−1

M ≤ Gn
(
k
M

)
− k

M + 1
M and(a)

Gn(t)− t ≥ Gn
(
k−1
M

)
− k

M ≥ Gn
(
k−1
M

)
− k−1

M − 1
M .(b)

These combine to give

sup0≤t≤1 |Gn(t)− t| ≤
[
max0≤k≤M

∣∣Gn
(
k
M

)
− k

M

∣∣]+ 1
M(c)

→a.s. 0 + 1/M < ǫ.(d)

Since ǫ > 0 is arbitrary, we have shown that sup0≤t≤1 |Gn(t)− t| →a.s. 0. That is,

‖Fn − F‖ = ‖Gn(F )− F‖ ≤ ‖Gn − I‖ →a.s. 0 ,(4)

as claimed. 2

Exercise 5.1 Let ξn1, . . . , ξnn denote any row independent Uniform(0,1) rvs, and
let all Xnk = F−1(ξnk) for a fixed df F . Let Fn and Gn denote the empirical dfs of
the nth rows of these two arrays. Show that (2) still holds.

Example 5.1 (Weierstrass approximation theorem) If f is continuous on [0, 1],
then there exist polynomials Bn such that ‖Bn−f‖ = sup0≤t≤1 |Bn(t)−f(t)| → 0
as n→∞.
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Proof. (Bernstein) Define the Bernoulli polynomials

Bn(t) =

n∑

k=0

f

(
k

n

)(
n

k

)
tk(1 − t)n−k for 0 ≤ t ≤ 1(5)

= Ef(T/n) where T ∼= Binomial(n, t).(a)

Since f is continuous, f is bounded by some M , and f is uniformly continuous on
[0, 1] having |f(x)− f(y)| < ǫ whenever |x− y| < δǫ. Then

|f(t)−Bn(t)| =
∣∣∑n

k=0 [f(t)− f(k/n)]
(
n
k

)
tk(1− t)n−k

∣∣

≤ |∑{k:|k/n−t|<δǫ} same |+ |∑{k:|k/n−t|≥δǫ} same |

< ǫ+ 2M P (|T/n− t| ≥ δǫ) by uniform continuity of f(b)

≤ ǫ+ 2M t(1− t)/nδ2ǫ for all t (by Chebyshev)

≤ ǫ+ 2M/4nδ2ǫ ≤ 2ǫ for n ≥ some Nǫ, for all 0 ≤ t ≤ 1.(c)

As the choice of Nǫ does not depend on t, the convergence is uniform. Note that
this is just an application of a weak form of the WLLN (that is, of the Chebyshev
inequality). 2

Example 5.2 (Borel’s normal numbers) A number x in [0, 1] is called normal to
base d if when expanded to base d, the fraction of each of the digits 0, . . . , d − 1
converges to 1/d. The number is normal if it is normal to base d for each d > 1.
We are able to conclude that

a.e. number in [0, 1] is normal with respect to Lebesgue measure λ.

[Comment: 1
3 = 0.010101 . . . in base 2 is normal in base 2, but 1

3 = 0.1000 . . . in
base 3 is not normal in base 3.] [This was a historically important example, which
spurred some of the original development.]

Proof. Let (Ω,A, P ) = ([0, 1],B ∩ [0, 1], λ). Let

ω =
∑∞
n=1 βn(ω)/d

n define rvs β1, β2, . . . .(a)

Note that the βn’s are iid discrete uniform on 0, 1, . . . , d− 1. Thus, letting ηnk = 0
or 1 according as βn = k or βn 6= k, we have

λ(Ad,k) ≡ λ({ω : n−1∑n
j=1 ηjk → 1/d}) = 1(b)

by the SLLN. Thus Ad ≡ ∩d−1
k=0 Ad,k has λ(Ad) = 1; that is, a.e. ω in [0, 1] is normal

to base d. Then trivially, A ≡ ∩∞d=1Ad has λ(A) = 1. And so, a.e. ω in [0, 1] is
normal. 2
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Example 5.3 (SLLN for random sample size) Let Nn be positive-integer valued
rvs for which Nn/n→a.s. c ∈ (0,∞), and let X1, X2, . . . be iid with mean µ.
(a) Then

SNn/n→a.s. µ · c as n→∞.(6)

(b) If X1, X2, . . . are iid Bernoulli(p) and Nn(ω) ≡ min{k : Sk(ω) = n}, then the
waiting times Nn satisfy Nn/n→a.s. 1/p.

Proof. (a) Now, Sn/n →a.s µ by the SLLN, and thus Nn →a.s. ∞ implies
SNn/Nn →a.s. µ. Thus

SNn/n = (SNn/Nn) (Nn/n)→a.s. µ · c,

using Nn →a.s. ∞ by c > 0.

(b) We also have (since µ = p)

1 = SNn/n = (SNn/Nn) (Nn/n), so Nn/n = 1/(SNn/Nn)→a.s. 1/p,

completing the proof. Note that we could also view Nn as the sum of n iid
Geometric(p) rvs, and then apply the SLLN. 2

Exercise 5.2 (Monte Carlo estimation) Let h : [0, 1]→ [0, 1] be continuous.
(i) Let Xk ≡ 1[h(ξk)≥Θk], where ξ1, ξ2, . . . Θ1,Θ2, . . . are iid Uniform(0, 1) rvs. Show

that this sample average is a strongly consistent estimator of the integral; that is,

show that X̄n →a.s.

∫ 1

0 h(t) dt.

(ii) Let Yk ≡ h(ξk). Show that Ȳn →a.s.

∫ 1

0 h(t) dt.

(iii) Evaluate Var[X̄n] and Var[Ȳn], and compare them.
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6 Law of the Iterated Logarithm

Theorem 6.1 (LIL; Hartman–Wintner; Strassen) Let X1, X2, . . . be iid rvs.
Consider the partial sums Sn ≡ X1 + · · ·+Xn.

(a) If EX = 0 and σ2 ≡ Var[X ] <∞, then

lim sup
n→∞

Sn√
2n log logn

= σ a.s., while lim inf
n→∞

Sn√
2n log logn

= −σ a.s.(1)

(b) In fact,

Sn√
2n log logn

 a.s. [−σ, σ].(2)

[That is, for a.e. ω the limit set of Sn/
√
2n log logn is exactly [−σ, σ] ].

(c) Conversely, if

lim sup
n→∞

|Sn|√
2n log logn

<∞ a.s., then EX = 0 and σ2 <∞.(3)

Theorem 6.2 (The other LIL; Chung) If X1, X2, . . . are iid (0, σ2), then

lim inf
n→∞

max
1≤k≤n

√
2 log logn

|Sk|√
nσ

= π/2 a.s.(4)

[We state this for fun only, as it has seen little application.]

Versions of both theorems are also known for cases other than iid. The classical
proof of theorem 6.1 in full generality begins with truncation, and then carefully uses
exponential bounds for bounded rvs. A more modern proof relies upon Skorokhod
embedding of the partial sum process in Brownian motion. This general proof is
outlined in the straightforward exercise 12.8.2, after embedding is introduced. But
the proof below for the special case of normal rvs contains several of the techniques
used in the classical proof of the general case (and in other related problems). And
it is also a crucial component of the general case in exercise 12.8.2.

Proposition 6.1 Let Z1, Z2, . . . be iid N(0, 1) rvs. Let Sn ≡ Z1 + · · ·+ Zn and

bn ≡
√
2 log logn. Then lim supn→∞ Sn/

√
n bn = 1 a.s.

Proof. Let ǫ > 0. We will use the exponential bound

exp[−(1 + ǫ)λ2/2] ≤ P (Sn/
√
n ≥ λ) ≤ exp[−(1− ǫ)λ2/2] for all λ > λǫ(5)

(for some λǫ) [see Mills’ ratio exercise 6.1 below], and the Lévy maximal inequality

P ( max
1≤k≤n

Sk ≥ λ) ≤ 2P (Sn ≥ λ) for all λ > 0.(a)

Let nk ≡ [ak] for a > 1; a sufficiently small a will be specified below. Now,
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Ak ≡
⋃
nk−1≤m≤nk

[Sm ≥
√
m(1 + 2ǫ)bm]

⊂
[

max
nk−1≤m≤nk

Sm ≥ (1 + 2ǫ)

√
nk−1

nk
bnk−1

√
nk

]
,(b)

since
√
n is ր and bn is ր; so that for k sufficiently large,

P (Ak) ≤ 2P

(
Snk

/
√
nk ≥ (1 + 2ǫ)

√
nk−1

nk
bnk−1

)
by (a)(c)

≤ 2 exp

(
− 1

2 (1− ǫ)(1 + 2ǫ)2
1− ǫ
a

2 log k

)
by (5)

≤ 2 exp(−(1 + ǫ) log k) = 2/k1+ǫ for a sufficiently close to 1

= (kth term of a convergent series).(d)

Thus P (Ak i.o.) = 0 by Borel–Cantelli. Since ǫ > 0 is arbitrary, we thus have

lim sup
n→∞

Sn√
n bn

≤ 1 a.s.(e)

Since (e) is true, on any subsequence nk →∞ we can claim that

P (Ak i.o.) = 0, including when nk ≡ [ak] for a huge.(f)

We must now show that the lim in (e) is also ≥ 1 a.s. We will still use nk ≡ [ak],
but a will be specified sufficiently large below. We write Snk

= Snk−1
+(Snk

−Snk−1
),

so that

Snk√
nk bnk

=

√
nk−1

nk

(
bnk−1

bnk

)
Snk−1√

nk−1 bnk−1

+
Snk
− Snk−1√
nk bnk

(g)

∼ 1√
a
· 1 · Snk−1√

nk−1 bnk−1

+
Snk
− Snk−1√
nk bnk

.(h)

Now, the independent events

Bk ≡ [Snk
−Snk−1

≥ (1−2ǫ)√nk bnk
] =

[
Snk
− Snk−1√

nk − nk−1
≥ (1 − 2ǫ)

√
nk bnk√

nk − nk−1

]
(i)

have

P (Bk) ≥ exp

(
− 1

2 (1 + ǫ)(1− 2ǫ)2
nk

nk − nk−1
b2nk

)
by (5)(j)

≥ exp

(
− 1

2 (1 + ǫ)(1− 2ǫ)2
(1 + ǫ)a

a− 1
2 log k

)

≥ exp (−(1− ǫ) log k) for a sufficiently large

= 1/k1−ǫ = (kth term of a series with an infinite sum),(k)
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so that P (Bk i.o.) = 1 by the second Borel–Cantelli lemma. But P (Ak i.o.) = 0
and P (Bk i.o.) = 1 means that

P (Ack ∩Bk i.o.) = 1.(l)

Moreover, on Ack ∩Bk we have, using (h), (i), and the symmetric version of (f),

Snk√
nk bnk

≥ − (1 + 2ǫ)(1 + ǫ)√
a

+ (1− 2ǫ) ≥ (1− 3ǫ)(m)

for the constant a specified sufficiently large. Thus, even focusing only on the
subsequence nk in (f) with this large a ≡ aǫ, since ǫ > 0 was arbitrary,

lim sup
k→∞

Snk√
nk bnk

≥ 1 a.s.(n)

Combining (e) and (n) gives the proposition. 2

Exercise 6.1 (Mills’ ratio) Show that for all λ > 0

λ

λ2 + 1

1√
2π

exp(−λ2/2) < P (N(0, 1) > λ) <
1

λ

1√
2π

exp(−λ2/2),(6)

which can be rewritten as

λ

λ2 + 1
φ(λ) < 1− Φ(λ) < 1

λ φ(λ)(7)

where φ and Φ denote the standard normal N(0, 1) density and df, respectively.
Show that (5) follows from this. This is the end of this exercise.
(∗) For a standardized rv Zn, one might then hope that as λn →∞

exp(−(1 + ǫn)λ
2
n/2) ≤ P (Zn ≥ λn) ≤ exp(−(1− ǫn)λ2n/2),(8)

as was applied in (5). [This clean exponential bound for normal rvs was the key to
the simple LIL proof in proposition 6.1. The classic Hartman–Wintner proof uses
truncation to achieve a reasonable facsimile of this in other cases.]

(∗) (Ito–McKean) It is even true that for all λ > 0 there are the tighter bounds

2√
λ2+4+λ

φ(λ) < 1− Φ(λ) < 2√
λ2+2+λ

φ(λ).(9)

Exercise 6.2 In place of (c) in the LIL proof of proposition 6.1, use Mills’ ratio

to bound P (An) ≡ P (Sn/
√
n ≥ (1+2ǫ)

√
2 logn ). Use that bound directly to show

that lim sup |Sn|/(
√
n
√
2 logn ) ≤ 1 a.s. [This “poor” result will show the value of

using the “block of indices” in the definition of Ak in the proof we gave.]

Exercise 6.3 Suppose arbitrary events An and Bn satisfy P (An i.o.) = 0 and
P (Bn i.o.) = 1. Show that P (Acn ∩Bn i.o.) = 1 (as in (l) above).
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Summary Suppose X,X1, X2, . . . are iid (µ, 1). Then:
∑n

k=1(Xk − µ)
n

→a.s. 0 by the SLLN.(10)

∑n
k=1(Xk − µ)
n1/r

→a.s. 0 for all 1 ≤ r < 2, by Marcinkiewicz–Zygmund.(11)

∑n
k=1(Xk − µ)√
2n log logn

 a.s. [−1, 1] by the LIL.(12)

Suppose we go all the way to
√
n in the denominator. Then the classical CLT gives

∑n
k=1(Xk − µ)√

n
→d N(0, 1) by the CLT,(13)

even though we have divergence to ±∞ for a.e. ω (by the LIL). 2

Exercise 6.4 (rth mean convergence theorem) Let X,X1, X2, . . . be iid, and
consider the partial sums Sn ≡ X1+ · · ·+Xn. Let 0 < r < 2 (and suppose EX = 0
in case 1 ≤ r < 2). The following are equivalent:

E|X |r <∞.(a)

Sn/n
1/r →a.s. 0.(b)

E|Sn|r = o(n).(c)

E(max1≤k≤n |Sk|r) = o(n).(d)

Hint. For (a) and (b) imply (c), use the Hoffmann–Jorgensen (8.10.14) below.
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7 Strong Markov Property for Sums of IID RVs
Let X1, X2, . . . be iid and let Sn ≡ X1 + · · ·+Xn. Let S ≡ (S1, S2, . . .).

Definition 7.1 The integer valued rv N is a stopping time for the sequence of
rvs S1, S2, . . . if [N = k] ∈ F(S1, . . . , Sk) for all k ≥ 1. It is elementary that

FN ≡ F(Sk : k ≤ N)(1)

≡ {A ∈ F(S) : A ∩ [N = k] ∈ F(S1, . . . , Sk) for all k ≥ 1} = (a σ-field),(2)

since it is clearly closed under complements and countable intersections. (Clearly,
[N = k] can be replaced by [N ≤ k] in the definition of FN in (2).)

Proposition 7.1 Both N and SN are FN -measurable.

Proof. Now, to show that [N ≤ m] ∈ FN we consider [N ≤ m]∩ [N = k] equals
[N = k] or ∅, both of which are in F(S); this implies [N ≤ m] ∈ FN . Likewise,

[SN ≤ x] ∩ [N = k] = [Sk ≤ x] ∩ [N = k] ∈ F(S1, . . . , Sk),(a)

implying that [SN ≤ x] ∈ FN . 2

Theorem 7.1 (The strong Markov property) If N is a stopping time, then
the increments continuing from the random time

S̃k ≡ SN+k − SN , k ≥ 1,(3)

have the same distribution on (R∞,B∞) as does Sk, k ≥ 1. Moreover, defining
S̃ ≡ (S̃1, S̃2, . . .) ,

F(S̃) ≡ F(S̃1, S̃2, . . .) is independent of FN (hence of N and SN ).(4)

Proof. Let B ∈ B∞ and A ∈ FN . Now,

P ([S̃ ∈ B] ∩ A) =∑∞
n=1P ([S̃ ∈ B] ∩ A ∩ [N = n])(a)

=
∑∞

n=1 P ([(Sn+1 − Sn, Sn+2 − Sn, . . .) ∈ B] ∩ (A ∩ [N = n]))

with A ∩ [N = n] ∈ F(S1, . . . , Sn)

=
∑∞

n=1 P ([(Sn+1 − Sn, Sn+2 − Sn, . . .) ∈ B])P (A ∩ [N = n])

= P (S ∈ B)
∑∞

n=1P (A ∩ [N = n])

= P (S ∈ B)P (A).(b)

Set A = Ω in (b) to conclude that S̃ ∼= S. Then use P (S̃ ∈ B) = P (S ∈ B) to
rewrite (b) as

P ([S̃ ∈ B] ∩ A) = P (S̃ ∈ B)P (A),(c)

which is the statement of independence. 2
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Exercise 7.1 (Manipulating stopping times) Let N1 and N2 denote stopping times
relative to an ր sequence of σ-fields A1 ⊂ A2 ⊂ · · ·. Show that N1 ∧N2, N1 ∨N2,
N1 +N2, and No ≡ i are all stopping times.

Definition 7.2 Define waiting times for return to the origin by

W1 ≡ min{n : Sn = 0} with W1 = +∞ if the set is empty,
· ·
· ·
· ·
Wk ≡ min{n > Wk−1 : Sn = 0} with Wk = +∞ if the set is empty.

(5)

Then define Tk ≡Wk −Wk−1, with W0 ≡ 0, to be the interarrival times for return
to the origin.

Proposition 7.2 If P (Sn = 0 i.o.) = 1, then T1, T2, . . . are well-defined rvs and
are, in fact, iid.

Proof. Clearly, each Wk is always an extended-valued rv, and the condition
P (Sn = 0 i.o.) = 1 guarantees that Wk(ω) is well-defined for all k ≥ 1 for a.e. ω.

Now, T1 =W1 is clearly a stopping time. Thus, by the strong Markov property,

T1 is independent of the rv S̃(1) ≡ S̃ with kth coordinate S̃
(1)
k ≡ S̃k ≡ ST1+k − ST1

and S̃(1) ≡ S̃ ∼= ~S. Thus T2 is independent of the rv S̃(2) with kth coordinate

S̃
(2)
k ≡ S̃(1)

T2+k
− S̃(1)

T2
= ST1+T2+k−ST1+T2 and S̃(2) ∼= S̃(1) ∼= ~S. Continue with S̃(3),

etc. [Note the relationship to interarrival times of a Bernoulli process.] 2

Exercise 7.2 (Wald’s identity) (a) Suppose X1, X2, . . . are iid with mean µ, and
N is a stopping time with finite mean. Show that Sn ≡ X1 + · · ·+Xn satisfies

ESN = µEN.(6)

(b) Suppose each Xk equals 1 or −1 with probability p or 1− p for some 0 < p < 1.
Then define the rv N ≡ min{n : Sn equals −a or b}, where a and b are strictly
positive integers. Show that N is a stopping time that is a.s. finite. Then evaluate
the mean EN . [Hint. [N ≥ k] ∈ F(S1, . . . , Sk−1), and is thus independent of Xk,

while SN =
∑∞

k=1 Xk1[N≥k].]
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8 Convergence of Series of Independent RVs
In section 8.4 we proved the SLLN after recasting it (via Kronecker’s lemma) as a
theorem about a.s. convergence of infinite series. In this section we consider the
convergence of infinite series directly. Since the convergence set of a series is a tail
event (recall remark 7.2.1), convergence can happen only with probability 0 or 1.
Moreover, the first theorem below seems to both limit the possibilities and broaden
the possible approaches to them. All proofs are given at the end of this section.

Theorem 8.1 Let X1, X2, . . . be independent. Then, for some rv S, we have

Sn ≡
n∑

k=1

Xk →a.s. S iff

n∑

k=1

Xk →p S iff

n∑

k=1

Xk →d S.(1)

[We will show the first equivalence now, and leave the second until section 10.2.]

Theorem 8.2 (The 2-series theorem) Let X1, X2, . . . be independent rvs for

which Xk
∼= (µk, σ

2
k). Let Sn ≡

∑n
k=1Xk and S0,n ≡

∑n
k=1(Xk − µk). (a) Then

n∑

k=1

µk → µ and
∞∑

k=1

σ2
k <∞ imply Sn ≡

n∑

k=1

Xk →a.s. (some rv S).(2)

Of course, in this situation S0,n →a.s. S0 ≡ S − µ. Moreover,

ES = µ ≡∑∞
k=1 µk Var[S] = σ2 ≡∑∞

k=1 σ
2
k, and Sn →L2 S.(3)

(b) Further, if all |Xk| ≤ (some c), then (including converses) both:

S0,n ≡
n∑

k=1

(Xk − µk)→a.s. (some rv S0) if and only if
∞∑

k=1

σ2
k <∞.(4)

Sn ≡
n∑

k=1

Xk →a.s. (some rv S) iff
n∑

k=1

µk → µ and
∞∑

k=1

σ2
k <∞.(5)

If a series is to converge, the size of its individual terms must be approaching zero.
Thus the rvs must be effectively bounded. Thus truncation should be particularly
effective for demonstrating the convergence of series.

Theorem 8.3 (The 3-series theorem) Let X1, X2, . . . be independent rvs.

(a) Define X
(c)
k to be the trimmed Xk that equalsXk or 0 as |Xk| ≤ c or as |Xk| > c.

Then the series

Sn ≡
n∑

k=1

Xk →a.s. (some rv S)(6)

if and only if for some c > 0 the following three series all converge:

Ic ≡
∞∑

k=1

P (|Xk| > c), IIc ≡
∞∑

k=1

Var[X
(c)
k ], IIIc ≡

∞∑

k=1

EX
(c)
k .(7)

(b) The condition (7) holds for some c > 0 if and only if it holds for all c > 0.

(c) If either Ic, IIc, or IIIc diverges for any c > 0, then
∑n
k=1Xk diverges a.s.
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Example 8.1 Suppose X1, X2, . . . are independent and are uniformly bounded.
They are assumed to be independent of the iid Rademacher rvs ǫ1, . . . , ǫn. Then

∑n
k=1 ǫkXk →a.s. (some rv S) if and only if

∑∞
k=1 σ

2
k <∞.(8)

Moreover, S ∼= (0,
∑∞

k=1 σ
2
k). [This is immediate from the 2-series theorem.] 2

Exercise 8.1 Suppose X1, X2, . . . are iid with P (Xk = 0) = P (Xk = 2) = 1
2 .

Show that
∑n
k=1Xk/3

k →a.s. (some S), and determine the mean, variance, and the

name of the df FS of S. Also determine the characteristic function of S (at some
point after chapter 9).

Exercise 8.2 (a) Show that
∑n
k=1 a

kXk →a.s. (some S) when X1, X2, . . . are

independent with Xk
∼= Uniform(−k, k) for k ≥ 1, and where 0 < a < 1.

(b) Evaluate the mean and the variance (give a simple expression) of S.

Exercise 8.3 Let X1, X2, . . . be arbitrary rvs with all Xk ≥ 0 a.s. Let c > 0
be arbitrary. Then

∑∞
k=1 E(Xk ∧ c) <∞ implies that

∑n
k=1Xk →a.s. (some rv S).

The converse holds for independent rvs.

Exercise 8.4 (a) Let Z1, Z2, . . . be iid N(0, 1) rvs. Show that
∑∞

k=1[Z
2
2k−1 + Z2

2k]/2
k →a.s. (some rv),

∑∞
n=1

[∑n
k=1Zk/2

n+k
]
→a.s. (some rv),

and determine (if possible) the mean, variance, and distribution of the limiting rvs.
(b) Let Y1, Y2, . . . be iid Cauchy(0, 1) rvs. Does

∑∞
k=1Yk/2

k →a.s.(some rv)? If so,
what is the distribution of the limit?

Proofs

Proof. Consider theorem 8.1. Now,→a.s. always implies→p. So we turn to the
converse. Suppose Sn →p S (which is equivalent to Sm − Sn →p 0). To establish
Sn →a.s., it is enough to verify (2.3.7) that for all ǫ > 0 and θ > 0 we have

P ( max
n≤m≤N

|Sm − Sn| ≥ ǫ) < θ for all n ≥ (some nǫ,θ).(9)

But Ottaviani–Skorokhod’s inequality 8.3.4 gives

P (maxn≤m≤N |Sm − Sn| ≥ ǫ) = P (maxn<m≤N |
∑m
n+1Xk| ≥ ǫ)(a)

≤ P (|∑N
n+1Xk| ≥ ǫ/2)/[1−maxn<m≤N P (|

∑m
n+1Xk| > ǫ/2)](b)

≤ P (|SN − Sn| ≥ ǫ/2)/[1−maxn≤m≤N P (|Sm − Sn| > ǫ/2)](c)

= o(1)/[1− o(1)] < θ for all n,N ≥ (some nǫ,θ),(d)

using SN − Sn →p 0 for (d). Thus (9) holds, and Sn →a.s. (some rv S′). The a.s.
limit S′ equals S a.s. by proposition 2.3.4. 2
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Proof. Consider theorem 8.2, part (a): We first verify (2). By theorem 8.1, to
establish that S0,n →a.s. (some S) we need only show that S0,m − S0,n →p 0. But
this follows immediately from Chebyshev’s inequality, since

P (|S0,m − S0,n| ≥ ǫ) ≤ Var[S0,m − S0,n]/ǫ
2 ≤∑∞

n+1 σ
2
k/ǫ

2 < ǫ

for all sufficiently large n. Thus (2) holds, since Sn = S0,n + µn.

We next verify (3) that Var[S] = Var[S0] = σ2 and ES = µ. Fatou gives

E(S2
0) = E( limS2

0,n) = E( limS2
0,n ) ≤ limE(S2

0,n) = lim
∑n

1 σ
2
k = σ2,(e)

and E(S2
0) ≥ σ2 since

E(S2
0) = E{(∑n

1 (Xk − µk) )2}+ E{(∑∞
n+1 (Xk − µk) )2} ≥ E(S2

0,n)→ σ2(f)

(as the two rvs are independent, the first has mean 0, and both have finite variance
(as follows from (e)). Thus E(S2

0) = σ2. Inasmuch as both S0,n →a.s. S0 and

E(S2
0,n) → E(S2

0), the Vitali theorem gives S0,n →L2 S0. Then exercise 3.5.1b

and Vitali show that E(S0) = limE(S0,n) = lim 0 = 0. As S = S0 + µ, we have

ES = E(S0 + µ) = µ and Var[S] = Var[S0] = E(S2
0) = σ2 =

∑∞
1 σ2

k. 2

The proof of part (b) of the 2-series theorem above will require a converse of
Kolmogorov’s inequality that is valid for bounded rvs.

Inequality 8.1 (Kolmogorov’s other inequality) Consider independent zero-mean
rvs Xk, and set Sk ≡ X1 + · · ·+Xk for 1 ≤ k ≤ n. Suppose |Xk| ≤ (some M) <∞
for all k. Then

P ( max
1≤k≤n

|Sk| ≤ λ) ≤ (λ+M)2/
∑n
k=1 σ

2
k for all λ > 0.(10)

Proof. Let Ak ≡ [max1≤j<k |Sj | ≤ λ < |Sk|]. Let Mn ≡ [max1≤k≤n |Sk|]. We
give another first passage argument. Thus

E
{
S2
n 1
∑

n

1
Ak

}
=
∑n

1 E{S2
n 1Ak

} =∑n
1 E{[Sk + (Sn − Sk)]2 1Ak

}(a)

=
∑n

1{E(S2
k 1Ak

) + 2 · 0 + P (Ak) E(Sn − Sk)2} by independence

≤ (λ+M)2
∑n

1P (Ak) +
∑n

1P (Ak)
∑n

j=k+1 σ
2
j(b)

≤ {(λ+M)2 +Var[Sn]}(1− P (Mn ≤ λ)),(c)

where in step (b) we take advantage of |Sk| ≤ |Sk−1| + |Xk| ≤ λ +M on Ak. We
also note that

E
{
S2
n 1
∑n

1
Ak

}
= ES2

n − E{S2
n 1[Mn≤λ] } ≥ Var[Sn]− λ2 P (Mn ≤ λ).(d)

using |Sn| ≤ λ on the event [Mn ≤ λ] to obtain (d). Combining (c) and (d) and
doing algebra gives

P (Mn ≤ λ) =
(λ+M)2

(λ+M)2 +Var[Sn]− λ2
≤ (λ +M)2

Var[Sn]
. 2(e)
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Proof. Consider Theorem 8.2, part(b): Consider first the forward half of (4).
Since S0,n →a.s. (some rv S0), for some sufficiently large λ we have

0 < P (supn|S0,n| ≤ λ)(a)

= limN P (max1≤n≤N |S0,n| ≤ λ) since measures are monotone

≤ limN (λ+ c)2/
∑N

1 σ
2
k by Kolmogorov’s other inequality 8.1(b)

= (λ+ c)2/
∑∞

1 σ2
k .(c)

Then (c) implies that
∑∞

1 σ2
k < ∞. Conversely,

∑∞
1 σ2

k < ∞ implies by (2) that

S0,n →a.s. (some rv S0). So, both halves of (4) hold.

Consider (5). Again, (2) gives the converse half. Consider the forward half.
Suppose that Sn →a.s. S. The plan is first to symmetrize, so that we can use (4) to
prove (5). Let X ′

n’s be independent, and independent of the Xn’s with X
′
n
∼= Xn;

then Xs
n ≡ Xn −X ′

n denotes the symmetrized rv. Since →a.s. depends only on the
finite-dimensional distributions, the given fact that Sn →a.s. S implies that the rv
S′
n ≡

∑n
1 X

′
k →a.s. (some rv S′) ∼= S. We can thus claim that

Ssn ≡
∑n

1X
s
k →a.s. S

s ≡ S − S′.(d)

Now, |Xs
n| ≤ 2c; thus (d) and (4) imply that

∑∞
1 Var[Xs

n] <∞. Thus

∑∞
1 σ2

n =
∑∞

1 Var[Xs
n]/2 <∞.(e)

Now, (e) and (2) imply that
∑n

1 (Xk − µk)→a.s. (some rv S0) with mean 0. Thus

∑n
1 µk = [

∑n
1Xk ]− [

∑n
1 (Xk − µk) ]→a.s. S − S0.(f)

Thus S = S0+µ with µ ≡∑∞
1 µk convergent, and the forward half of (5) holds. 2

Proof. Consider the 3-series theorem. Consider (a) and (b) in its statement:
Suppose that the 3 series converge for at least one value of c. Then II and III imply

that
∑n

1 X
(c)
k →a.s. by (2). Thus

∑n
1 Xk →a.s. by proposition 8.2.1, since I < ∞

implies that X1, X2, . . . and X
(c)
1 , X

(c)
2 , . . . are Khinchin equivalent sequences.

Suppose that
∑n

1 Xk →a.s.. Then for all c > 0 we have P (|Xn| > c i.o.) = 0,
so that I < ∞ holds for all c > 0 by the second Borel–Cantelli lemma. Thus∑n

1 X
(c)
k →a.s. for all c, since I <∞ implies that X

(c)
1 , X

(c)
2 , . . . and X1, X2, . . . are

Khinchine equivalent sequences. Thus II <∞ and III <∞ for all c by the 2-series
theorem result (4).

Consider (c). Kolmogorov’s 0-1 law shows that Sn either converges a.s. or else
diverges a.s.; and it is not convergent if one of the three series fails to converge. 2
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L2-Convergence of Infinite Series, and A.S. Convergence

Exercise 8.5 (L2-convergence of series) Let X1, X2, . . . be independent rvs in L2,
where Xk has mean µk and variance σ2

k. Then the sum Sn ≡ X1 + · · · + Xn has

mean mn ≡
∑n

k=1 µk and variance v2n ≡
∑n

k=1 σ
2
k. Show that

Sn →L2 (some rv S) if and only if mn → (some µ) and v2n → (some σ2).(11)

If Sn →L2 S, then ES = µ and Var[S] = σ2.

Exercise 8.6 (Chow–Teicher) Let X1, X2, . . . be iid with finite mean. Suppose
the series of real numbers

∑n
1 ak converges, where the |ak| are uniformly bounded.

Show that
∑n

1 akXk →a.s. (some rv S).

Other Generalizations of the LLNs

Exercise 8.7 The following (with r = 1) can be compared to theorem 8.4.4. If
X1, X2, . . . are independent with 0 means, then

∑∞
1 E|Xn|2r/nr+1 <∞ for some r ≥ 1 implies Sn/n→a.s. 0.(12)

Exercise 8.8 (Chung) Here is an even more general variation on theorem 8.4.4.
Suppose that φ > 0 is even and continuous, and either φ(x)/x ր but φ(x)/x2 ց
or else φ(x)ր but φ(x)/xց. Let bn ր∞. Let X1, X2, . . . be independent with 0
means. Then

∑∞
n=1Eφ(Xn)/φ(bn) <∞ implies both

∑∞
n=1Xn/bn →a.s. (some rv) and

∑n
1Xk/bn →a.s. 0.

(13)

The WLLN is taken up again in sections 10.1 and 10.2, after the characteristic
function tool has been introduced in chapter 9.
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9 Martingales
Definition 9.1 (Martingales) (a) Consider the sequence of rvs S1, S2, . . .
defined on a probability space (Ω,A, P ) and adapted to an ր sequence of σ-fields
A1 ⊂ A2 ⊂ · · ·. Call it a martingale (abbreviated mg) if E|Sk| <∞ for all k, and

E(Sk|Ai) =a.s. Si for all i ≤ k in the index set.(1)

If (Sk,Ak), k ≥ 1 is a mg, then the increments Xk ≡ Sk − Sk−1 are called the
martingale differences.
(b) Let I denote a subinterval of the extended real line R̄. A collection {St : t ∈ I}
of rvs on some (Ω,A, P ) that is adapted to an ր family of σ-fields {At : t ∈ I} is
called a martingale if E|St| <∞ for all t ∈ I, and

E(St|Ar) =a.s. Sr for all r ≤ t in I.(2)

(c) If “=” is replaced by “ ≥” in either of (1) or (2), then either of {Sk : k ≥ 1} or
{St : t ∈ I} is called a submartingale (or submg).

Example 9.1 (The prototypical example) LetX1, . . . , Xn denote independent
rvs with 0 means, and set Sk ≡ X1+· · ·+Xk and Ak ≡ σ[X1, . . . , Xk] for 1 ≤ k ≤ n.
Then the sequence of partial sums satisfies

(Sk,Ak), 1 ≤ k ≤ n, is a mg,(3)

while (provided Xk also has finite variance σ2
k)

(S2
k ,Ak), 1 ≤ k ≤ n, is a submg.(4)

The first claim is trivial, and the second holds, since

E(S2
k|Ai) = E{S2

i + 2Si(Sk − Si) + (Sk − Si)2|Ai}
≥ S2

i + 2SiE{Sk − Si|Ai}+ 0 = S2
i + 0 + 0 = S2

i ,(a)

using (7.4.20) and (7.4.16). 2

Exercise 9.1 (Equivalence) (a) Show that (St,At), t ∈ I, is a martingale if and
only if all E|St| <∞ and

∫

Ar

St dP =

∫

Ar

Sr dP for all Ar ∈ Ar and all r ≤ t with r, t ∈ I.(5)

(b) For a submartingale, just replace “=” by “≥” in (5).

Notation 9.1 We will use the following notational system:



mg and = for a martingale.
submg and ≥ for a submartingale.

s-mg and
>
= for a s-mg (mg or submg, as the case may be).

(6)

Thus (St,At), t ∈ I, is a s-mg if and only if all E |St| <∞ and
∫

Ar

St dP
>
=

∫

Ar

Sr dP for all Ar∈Ar, and for all r ≤ t with r, t ∈ I. 2(7)

Exercise 9.2 Turn (S2
k ,Ak), 1 ≤ k ≤ n in (4) by centering it appropriately.
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10 Maximal Inequalities, Some withր Boundaries

Inequality 10.1 (Monotone inequality) For arbitrary rvsX1, . . . , Xn and for
constants 0 < b1 ≤ · · · ≤ bn we let Sk ≡ X1 + · · ·+Xk and obtain

(
max

1≤k≤n
|Sk|
bk

)
≤ 2 max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

bi

∣∣∣∣∣ .(1)

If all Xi ≥ 0, then we may replace 2 by 1. [This also holds in higher dimensions,
when properly formulated. See Shorack and Smythe(1976).]

Proof. Define b0 = 0, X0 = 0, Yj = Xj/bj, and Tk =
∑k

j=1 Yj . Then

Sk =
∑k
j=1 bj∆Tj =

∑k
j=1 ∆Tj

∑j
i=1 ∆bi =

∑k
i=1 Tik∆bi ,(a)

where ∆bj ≡ bj−bj−1, ∆Tj ≡ Tj−Tj−1, and Tik ≡
∑k

j=i Yj . As
∑k

i=1(∆bi/bk) = 1
with each ∆bi/bk ≥ 0, we have

(
max

1≤k≤n
|Sk|/bk

)
≤
(

max
1≤k≤n

{∑k
i=1|Tik| (∆bi/bk)}

)
(b)

≤ max
1≤k≤n

(
max
1≤i≤k

|Tik|
)

since an average does not exceed the maximum(c)

≤ 2

(
max

1≤k≤n
|Tk|

)
.(d)

Note that 1 can replace 2 in step (d) if all Xi ≥ 0. 2

Martingale Maximal Inequalities

Inequality 10.2 (Doob) Let (Sk,Ak), 1 ≤ k ≤ n, be a submg and define the
maximum Mn ≡ max1≤k≤n Sk . Then

λP (Mn ≥ λ) ≤
∫

[Mn≥λ]
Sn dP ≤ ES+

n ≤ E|Sn| for all λ > 0,(2)

P (Mn ≥ λ) ≤ inf
r>0

E(erSn)/erλ for all λ > 0.(3)

If (Sk,Ak), 1 ≤ k ≤ n is a zero-mean mg with all of the variances ES2
k < ∞, then

(S2
k,Ak), 1 ≤ k ≤ n is a submg. This allows the maximum to be bounded by

P (Mn ≥ λ) ≤ Var[Sn]/λ
2 for all λ > 0.(4)

[This last is Kolmogorov’s inequality, valid for zero-mean mgs.]
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Proof. Since E(Sn|Ak) ≥ Sk a.s. by the definition of a submg, we have
∫
Ak
Sn dP =

∫
Ak

E(Sn|Ak) dP ≥
∫
Ak
Sk dP for all Ak ∈ Ak(a)

by (7.4.1) in the definition of conditional expectation. Now let

Ak ≡ [max1≤j<k Sj < λ ≤ Sk],(b)

so that k is the first index for which Sk is ≥ λ. Then
λP (Mn ≥ λ) = λ

∑n
1P (Ak) ≤

∑n
1

∫
Ak
Sk dP

≤∑n
1

∫
Ak
Sn dP using (a)(c)

=
∫
[Mn≥λ] Sn dP ≤

∫
[Mn≥λ] S

+
n dP ≤

∫
S+
n dP ≤

∫
|Sn| dP,(d)

as claimed. In a s-mg context, these are called “first passage time” proofs. To this
end, set τ equal to k on Ak for 1 ≤ k ≤ n, and set τ equal to n+ 1 on (

∑n
1 Ak)

c.
Then τ is the first passage time to the level λ.

That {(exp(rSk),Ak), 1 ≤ k ≤ n} is also a submg for any r > 0 follows from
Jensen’s inequality for conditional expectation with an ր g(·) via

E (erSk | Aj) ≡ E (gr(Sk) | Aj) ≥a.s. gr( E (Sk | Aj)) ≥ gr(Sj) = erSj .(e)

Applying Doob’s first inequality (2) to (e) gives (3). [This is often sharper than (2),
though it requires the existence of the moment generating function E exp(rSn).]
When (Sk,Ak) is a mg, then (S2

k,Ak) is also a submg (by another application of
the same Jensen’s inequality), so applying (2) to the latter submg gives (4). 2

Inequality 10.3 (Hájek–Rényi) Let (Sk,Ak), 1 ≤ k ≤ N , be a mg with all
ESk = 0. Let Xk ≡ Sk − Sk−1 have variance σ2

k. Let 0 < b1 ≤ · · · ≤ bN . Then

P

(
max
n≤k≤N

|Sk|/bk ≥ λ
)
≤ 4

λ2

{
n∑

k=1

σ2
k/b

2
n +

N∑

k=n+1

σ2
k/b

2
k

}
for all λ > 0.(5)

Proof. (We give the proof for independent rvs.) The monotone inequality
bounds the maximum partial sum via

(
max
n≤k≤N

|Sk|/bk
)
≤ 2

(
max
n≤k≤N

∣∣∣∣∣
Sn
bn

+

k∑

i=n+1

Xi

bi

∣∣∣∣∣

)
.(6)

Applying Kolmogorov’s inequality (4) to (6) gives

P

(
max
n≤k≤N

|Sk|/bk ≥ λ
)
≤ (λ/2)−2

{
Var[Sn/bn] +

∑N
k=n+1 Var[Xk]/b

2
k

}
(a)

= (4/λ2)
{∑n

1 σ
2
k/b

2
n +

∑N
n+1 σ

2
k/b

2
k

}
.(b)

(A more complicated proof can eliminate the factor 4.) 2
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Exercise 10.1 To complete the proof of the Hájek–Rényi inequality for mgs, one
can show that Tk ≡ Sn/bn +

∑k
n+1 Xi/bi is such that (Tk,Ak), n ≤ k ≤ N , is also

a mg, and that Var[TN ] is equal to the right-hand side of (b). Do it.

Inequality 10.4 (Birnbaum–Marshall) Let (S(t),A(t)), 0 ≤ t ≤ θ, be a mg
having S(0) = 0, ES(t) = 0, and ν(t) = ES2(t) finite and continuous on [0, θ].
Suppose that paths of S are right (or left) continuous. Let q(·) > 0 on (0, θ] be ր
and right (or left) continuous. Then

P (‖S/q‖θ0 > λ) ≤ 4λ−2

∫ θ

0

[q(t)]−2 dν(t) for all λ > 0.(7)

Proof. Because of right (or left) continuity and S(0) = 0, we have

P (‖S/q‖θ0 ≤ λ) = P

(
max

0≤i≤2n
|S(θi/2n)|/q(θi/2n) ≤ λ for all n ≥ 1

)
(a)

= limP

(
max

0≤i≤2n
|S(θi/2n)|/q(θi/2n) ≤ λ

)
by proposition 1.2.2

≥ lim{1− 4λ−2∑2n

1 E[S2(θi/2n)− S2(θ(i − 1)/2n)]/q2(θi/2n)} by (5)

= 1− 4λ−2 lim
∑2n

1 q−2(θi/2n) [ν(θi/2n)− ν(θ(i − 1)/2n)]

→ 1− 4λ−2
∫ θ
0 [q(t)]

−2 dν(t) using the MCT. 2(b)

Inequality 10.5 (Doob’s Lr-inequality) (i) Let (Sk,Ak), for 1 ≤ k ≤ n, be a
submg. Consider Mn ≡ max1≤k≤n S

+
k . Let r > 1. Then

EM r
n ≤ ( r

r−1)
r E{(S+

n )
r} .(8)

(ii) Let (Sk,Ak), 1 ≤ k ≤ n, be a mg. Let Mn ≡ max1≤k≤n |Sk|. Let r > 1. Then

EM r
n ≤ ( r

r−1)
r E{|Sn|r} .(9)

Proof. Now, (S+
k ,Ak), for 1 ≤ k ≤ n, is also a submg, by the conditional version

of Jensen’s inequality. (Or, refer to (13.1.7).) [Refer to (13.1.6) for case (ii).]
Thus in case (i) we have

EM r
n =

∫∞
0 rλr−1P (Mn > λ) dλ by (6.4.13)(a)

≤
∫∞
0 rλr−1 λ−1 E{S+

n 1[Mn≥λ]} dλ by Doob’s inequality 10.2(b)

= E{S+
n

∫Mn

0 rλr−2 dλ} by Fubini(c)

= E{S+
n ( r

r−1)M
r−1
n }

≤ ( r
r−1 ) (E{(S+

n )
r})1/r (E{M r

n})(r−1)/r by Hölder’s inequality,(d)

where r−1 + s−1 = 1 implies that s = r/(r − 1). So

(EM r
n)

1−(r−1)/r ≤ ( r
r−1) (E(S

+
n )

r)1/r ,(e)

which gives the results. (Just change S+
n to |Sn| for case (ii).) 2
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Hoffman–Jorgensen Inequalities

The following inequalities show that “in probability” control of the overall sum and
of the maximal summand actually gives control of moments of sums of independent
rvs.

Inequality 10.6 (Hoffmann–Jorgensen, probability form). Let X1, . . . , Xn be
independent rvs, and let Sk ≡ X1 + · · ·+Xk for 1 ≤ k ≤ n. Let λ, η > 0. Then

P ( max
1≤k≤n

|Sk| > 3λ+ η) ≤ {P ( max
1≤k≤n

|Sk| > λ)}2 + P ( max
1≤i≤n

|Xi| > η) .(10)

If the Xi’s are also symmetric, then both

P ( max
1≤k≤n

|Sk| > 3λ+ η) ≤ {2P (|Sn| > λ)}2 + P ( max
1≤i≤n

|Xi| > η) and(11)

P (|Sn| > 2λ+ η) ≤ {2P (|Sn| > λ)}2 + P ( max
1≤i≤n

|Xi| > η) .(12)

Inequality 10.7 (Hoffmann–Jorgensen, moment form). Let the rvs X1, . . . , Xn

be independent, and let Sk ≡ X1 + · · · + Xk for 1 ≤ k ≤ n. Suppose that each
Xi ∈ Lr(P ) for some r > 0. Then

E

(
max

1≤k≤n
|Sk|r

)
≤ 2 (4t0)

r + 2 · 44 E
(

max
1≤i≤n

|Xi|r
)
,(13)

where t0 ≡ inf{t > 0 : P (max1≤k≤n |Sk| > t) ≤ 1/(2 · 4r)}.
If the Xi’s are also symmetric, then

E|Sn|r ≤ 2 (3t0)
r + 2 · 3r E

(
max
1≤i≤n

|Xi|r
)
,(14)

where t0 ≡ inf{t > 0 : P (|Sn| > t) ≤ 1/(8 · 3r)}.

Proof. Consider inequality 10.6. Let τ ≡ inf{k ≤ n : |Sk| > λ}. Then [τ = k]
depends only on X1, . . . , Xk, and [maxk≤n |Sk| > λ] =

∑n
k=1[τ = k]. On [τ = k],

|Sj | ≤ λ] if j < k, and for j ≥ k,
|Sj | = |Sj − Sk +Xk + Sk−1| ≤ λ+ |Xk|+ |Sj − Sk| ;(a)

hence

max1≤j≤n|Sj | ≤ λ+max1≤i≤n|Xi|+maxk<j≤n|Sj − Sk| .(b)

Therefore, by independence,

P (τ = k,max1≤k≤n|Sk| > 3λ+ η)

≤ P (τ = k,max1≤i≤n|Xi| > η) + P (τ = k)P (maxk<j≤n|Sj − Sk| > 2λ) .(c)

But maxk<j≤n |Sj − Sk| ≤ 2max1≤k≤n |Sk|, and hence summing over k on both
sides yields

P (max
k≤n
|Sk| > 3λ+ η) ≤ P (max

i≤n
|Xi| > η) + {P (max

k≤n
|Sk| > λ)2} .(d)

The second inequality follows from the first by Lévy’s inequality 8.3.3.



10. MAXIMAL INEQUALITIES, SOME WITH ր BOUNDARIES 191

For the symmetric case, first note that

|Sn| ≤ |Sk−1|+ |Xk|+ |Sn − Sk| ,(e)

so that

P (τ = k, |Sn| > 2λ+ η)

≤ P (τ = k, max1≤i≤n |Xi| > η) + P (τ = k)P (|Sn − Sk| > λ) ;(f)

and hence summing over k then yields

P (|Sn| > 2λ+ η)

≤ P (max
i≤n
|Xi| > η) + P (max

k≤n
|Sk| > λ)P (max

k≤n
|Sn − Sk| > λ) .(g)

The third inequality again follows from Lévy’s inequality. 2

Proof. Consider inequality 10.7. Here is the proof of (14); the proof of (13) is
similar. Let u > t0. Then, using (12) for (i),

E|Sn|r = 3r(
∫ u
0 +

∫∞
u )P ( |Sn| > 3t) d(tr) by (6.4.13).(h)

≤ (3u)r + 4 · 3r
∫∞
u
P ( |Sn| > t)2 d(tr) + 3r

∫∞
u
P (max1≤i≤n |Xi| > t)d(tr)(i)

≤ (3u)r+4·3rP ( |Sn| > u)
∫∞
u P ( |Sn| > t) d(tr)+ 3r E(max1≤i≤n |Xi|r) .(j)

Since 4 ·3rP (|Sn| > u) ≤ 1
2 by our choice of u, applying (6.4.13) again (to (j)) gives

E|Sn|r ≤ (3u)r + 1
2 E|Sn|r + 3r E(max1≤i≤n |Xi|r) .(k)

Simple algebra now gives (14). 2

Exercise 10.2 Provide the details in the case of (13)
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Chapter 9

Characteristic Functions and
Determining Classes

1 Classical Convergence in Distribution

Definition 1.1 (Sub-dfs) (a) Suppose we have rvsXn
∼= Fn andX . We now wish

to allow the possibility that X is an extended rv. In this case, we assume that H is
a sub-df (we will not use the notation F in this context), and we will write X ∼= H .
The interpretation in the case of an extended rv X is that H(−∞) = P (X = −∞),

H(x) = P (−∞ ≤ X ≤ x) for all −∞ < x < ∞, and 1 −H(+∞) = P (X = +∞).

The set CH of all points at which H is continuous is called the continuity set of H .

(b) If Fn(x)→ H(x) as n→∞ at each x ∈ CH of a sub-df H , then we say that Xn

(or Fn) converges in sub-df to X (or H), and we write Xn →sd X (or Fn →sd H)
as n→∞. [What has happened in the case of sub-df convergence is that amounts
H(−∞) and 1−H(+∞) of mass have escaped to −∞ and +∞, respectively.]

(c) We have agreed that Fn, F , etc. denote a bona fide df, while Hn, H , etc. may
denote a sub-df. Thus Fn →d F (with letter F rather than letter H) will still imply
that the limit is necessarily a bona fide df. [The next definition provides a condition
that guarantees (in a totally obvious way, on R at least) that any possible limit is
a bona fide df.]

Definition 1.2 (Tightness) A family P of distributions P on R is called tight if
for each ǫ > 0 there is a compact set (which for one-dimensional rvs is just a closed
and bounded set) Kǫ with

P (Kǫ) = P (X ∈ Kǫ) ≥ 1− ǫ for all dfs P ∈ P .(1)

Theorem 1.1 (Helly–Bray) If Fn →d F and g is bounded and continuous
a.s. F , then the expectations satisfy

∫
g dFn = Eg(Xn)→ Eg(X) =

∫
g dF.(2)

Conversely, if (2) holds for all bounded continuous g, then Fn →d F .

[Thus Fn →d F if and only if
∫
g dFn →

∫
g dF for all bounded and continuous g.]

193
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Theorem 1.2 (Continuous mapping theorem; Mann–Wald) Suppose that
Xn → X and suppose that g is continuous a.s. F . Then g(Xn)→d g(X).

How do we establish that Fn →d F ? We have the necessary and sufficient
condition of the Helly–Bray theorem 1.1 (presented earlier as theorem 3.5.1). (We
should now recall our definition of the determining class used in the context of
the proof of theorem 3.5.1.) We can also show convergence in distribution of more
complicated functions of rvs via Mann–Wald’s continuous mapping theorem 1.2
(presented earlier as theorem 3.5.2); an example is given by

Zn →d Z implies that Z2
n →d Z

2 ∼= χ2
1

where g(x) = x2. The concept of tightness was introduced above to guarantee that
any possible limit is necessarily a bona fide df. This becomes more important in
light of the next theorem.

Theorem 1.3 (Helly’s selection theorem) Let F1, F2, . . . be any sequence of
dfs. There necessarily exists a subsequence Fn′ and a sub-dfH for which Fn′ →sd H .
If the subsequence of dfs is tight, then the limit is necessarily a bona fide df.

Corollary 1 Let F1, F2, . . . be any sequence of dfs. Let H be a fixed sub-df.
Suppose every sd-convergent subsequence {Fn′} satisfies Fn′ →sd (this same H).
Then the whole sequence satisfies Fn →sd H . (Here is an alternative phrasing.
Suppose every subsequence n′ contains a further subsequence n′′ for which Fn′′

converges in distribution to this one fixed sub-df H . Then the whole sequence
satisfies Fn →sd H .)

Proof. Let r1, r2, . . . denote a sequence which is dense in R. Using Bolzano–
Weierstrass, choose a subsequence n1j such that Fn1j (r1) → (some a1). A further
subsequence n2j also satisfies Fn2j (r2)→ (some a2). Continue in this fashion. The
diagonal subsequence njj converges to ai at ri for all i ≥ 1. [This Cantor diago-
nalization technique is important. Learn it!] Define Ho on the ri’s via Ho(ri) = ai.
Now define H on all real values via

H(x) = inf{Ho(ri) : ri > x};(a)

this H is clearly is ր and takes values in [0, 1]. We must now verify that H is also
right-continuous, and that Fnjj →sd H . That is, the diagonal subsequence, which
we will now refer to as n′, is such that Fn′ = Fn′

j
= Fnjj →sd H .

The monotonicity of Ho trivially gives infyցxH(y) ≥ H(x). Meanwhile,

H(x) > Ho(rκǫ)− ǫ for some x < rκǫ that is sufficiently close to x(b)

≥ H(y)− ǫ for any x < y < rκǫ(c)

yields infyցxH(y) ≤ H(x). Hence infyցxH(y) = H(x), and H is right continuous.

We next show that Fn′
j
(x) = Fnjj (x)→ H(x) for any x ∈ CH . Well,

Fn′
j
(rk) ≤ Fn′

j
(x) ≤ Fn′

j
(rℓ) for all rk < x < rℓ .(d)
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Passing to the limit on j gives

Ho(rk) ≤ limFn′
j
(x) ≤ limFn′

j
(x) ≤ Ho(rℓ) for all rk < x < rℓ.(e)

Now let rk ր x and rℓ ց x in (e) to get

limj Fn′
j
(x) = H(x) for all x ∈ CH (that is, Fn′

j
→sd H).(f)

Consider the corollary. Fact: Any bounded sequence of real numbers contains
a convergent subsequence; and the whole original sequence converges if and only if
all subsequential limit points are the same. Or, if every subsequence an′ contains a
further subsequence an′′ that converges to the one fixed number ao, then we have
an → ao. We effectively showed above that every subsequence Fn′ contains a further
subsequence Fn′′ for which

Fn′′ (x)→ (the same H(x)) for each fixed x ∈ CH .
Thus the whole sequence has Fn(x)→ H(x) for each x ∈ CH . So, Fn →sd H . 2

Exercise 1.1 (Convergence of expectations and moments)

(a) Suppose Fn →sd H and that both Fn−(a)→ H−(a) and Fn(b)→ H(b) for some
constants −∞ < a < b <∞ in CH having H(a) < H(b). Then

∫
[a,b] g dFn →

∫
[a,b] g dH for all g ∈ C[a,b] ≡ {g : g is continuous on [a, b]}.(3)

Moreover, if Fn →s.d. H , then
∫
g dFn →

∫
g dH for all g ∈ C0 ,(4)

where C0 ≡ {g : g is continuous on R and g(x)→ 0 as |x| → ∞}.
(b) Suppose Fn →d F and g is continuous on the line. Suppose |g(x)|/ψ(x)→ 0 as

|x| → ∞, where ψ ≥ 0 has
∫
ψ dFn ≤ K < ∞ for all n. Then

∫
g dFn →

∫
g dF .

(c) If E|Xn|r0 < (some M) <∞ for all large n, then Fn →d F implies that

E|Xn|r → E|X |r and EXk
n → EXk for 0 < r < r0 and 0 < k < r0.(5)

(d) Let g be continuous. If Fn →sd H , then lim inf
∫
|g| dFn ≥

∫
|g| dH .

[Actually, g continuous a.s. H suffices in (a), (b), and (d) above.]

Exercise 1.2 (Pólya’s lemma) If Fn →d F for a continuous df F , then

‖Fn − F‖ → 0.(6)

Thus if Fn →d F with F continuous and xn → x, then Fn(xn)→ F (x).

Exercise 1.3 (Verifying tightness) Suppose Xn
∼= Fn. Show that {Fn : n ≥ 1}

is tight if either

limE|Xn|r <∞ for some r > 0, or(a)

Fn →d F.(b)
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Equivalent Definitions of Convergence in Distribution

The condition Fn(x) → F (x) can be rewritten as Pn((−∞, x])→ P ((−∞, x]), and
as E1(−∞,x](Xn) → E1(−∞,x](X). Thus →d is reduced to computing expectations

of the particularly simple function 1(−∞,x] ; but these simple functions have the
disadvantage of being discontinuous.

Definition 1.3 (Closure, interior, and boundary) The closure of B is defined to
be B̄ ≡ ∩{C : B ⊂ C and C is closed}, while B0 ≡ ∪{U : U ⊂ B and U is open} is
called the interior of B. These have the property that B̄ is the smallest closed set
containing B, while B0 is the largest open set contained within B. The boundary of
B is defined to be ∂B ≡ B̄ \B0. A set B is called a P -continuity set if P (∂B) = 0.
(These definitions are valid on a general metric space, not just on R.)

Theorem 1.4 (→d equivalencies) Let F, F1, F2, . . . be the dfs associated with
the probability distributions P1, P2, . . . . Let Cb denote all bounded, continuous
functions g on R, and then let Cbu denote all bounded and uniformly continuous
functions g on R. The following are equivalent:

Fn →d F.(7)

Fn(x)→ F (x) for all x in a dense set.(8)

Eg(Xn) =
∫
g dFn →

∫
g dF = Eg(X) for all g in Cb.(9)

∫
g dFn →

∫
g dF for all g in Cbu.(10)

limPn(B) ≤ P (B) for all closed sets B.(11)

limPn(B) ≥ P (B) for all open sets B.(12)

limPn(B) = P (B) for all P -continuity sets B.(13)

limPn(I) = P (I) for all (even unbounded) P -continuity intervals I.(14)

L(Fn, F )→ 0 for the Lévy metric L (see below).(15)

Exercise 1.4 That (7)–(10) are equivalent is either trivial, or done previously.
Cite the various reasons. Then show that (11)–(15) are also equivalent to →d .

Exercise 1.5 (Lévy’s metric) For any dfs F and G define (the 45◦ distance
between F and G)

L(F,G) ≡ inf{ǫ > 0 : F (x− ǫ)− ǫ ≤ G(x) ≤ F (x + ǫ) + ǫ for all x}.(16)

Show that L is a metric and that the set of all dfs under L forms a complete and
separable metric space. Also show that Fn →d F is equivalent to L(Fn, F )→ 0.
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Convergence of Types

Definition 1.4 (Type) When Y ∼= (X− b)/a for some a 6= 0, we say that X and
Y are of the same type. [Suppose that Xn →d X where X is not degenerate. Then
if an → a 6= 0 and bn → b, we know from Slutsky’s theorem that (Xn − bn)/an →d

Y ∼= (X − b)/a.]

Theorem 1.5 (Convergence of types) Suppose (Xn − bn)/an →d X ∼= F ,
and (Xn − βn)/αn →d Y ∼= G, where an > 0, αn > 0, and both X and Y are

nondegenerate. Then there exists a > 0 and a real b such that

an/αn → (some positive a) and (βn − bn)/an → (some real b)(17)

and Y ∼= (X − b)/a (or, equivalently, G(x) = F (ax+ b) for all x).

Remark 1.1 The classical CLT implies that if X1, X2, . . . are iid (0, σ2), then
Sn/
√
n →d N(0, 1). The above theorem tells us that no matter how we normalize

Sn, the only possible nondegenerate limits in distribution are normal distributions.
Moreover, if Sn/an →d (some rv), the limiting distribution can be nondegenerate
only if an/

√
n→ (some constant) ∈ (0,∞).

Exercise 1.6 (Proof of the convergence of types theorem) Prove theorem 1.5 on
the convergence of types.
[Hint. Start with continuity points x < x′ of the df G and then continuity points
y, y′ of the df F for which F (y) < G(x) ≤ G(x′) < F (y′). Then for all n large

enough one will have any + bn ≤ αn x+ βn ≤ αn x′ + βn ≤ an y′ + bn.]

Higher Dimensions

If X,X1, X2, . . . are k-dimensional random vectors with dfs F, F1, F2, . . ., then we
say that Xn converges in distribution to X if

Fn(x)→ F (x) for all x ∈ CF ,(18)

just as in one dimension.

The Helly–Bray theorem, the Mann–Wald theorem, Helly’s selection theorem,
and Polya’s lemma all hold in k dimensions; generalizations of the other results also
hold. Moreover, if X ′

n denotes the first j coordinates of Xn, with 1 ≤ j < k, then
Xn →d X implies X ′

n →d X
′.

Exercise 1.7 Prove the k-dimensional Helly–Bray theorem (along the lines of
exercise 3.5.2) using Helly’s selection theorem and Pólya’s lemma. Prove that
Xn →d X implies X ′

n →d X
′. After reading section 9.2, prove the k-dimensional

version of the Mann–Wald theorem.

Exercise 1.8 Prove that theorem 1.4 holds in k dimensions.

See also theorem 9.5.2 and theorem 10.1.3 below.
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2 Determining Classes of Functions

We can approximate the functions 1(−∞,z](·) to an arbitrary degree of accuracy
within various classes of particularly smooth functions. Within these classes of
functions we do not have to worry about the continuity of the limiting measure
at z, and this will make these classes more convenient. Indeed, the specialized class
H0 below is of this type.

Definition 2.1 (Determining class) A collection G of bounded and continuous
functions g is called a determining class if for any choice of dfs F̃ and F , the
requirement that

∫
gdF̃ =

∫
g dF for all g ∈ G implies F̃ = F .

Definition 2.2 (Various classes of smooth functions) (i) Let C (let Cb) [let
Cbu] denote the class of continuous (bounded and continuous) [bounded and also

uniformly continuous] functions on R. Let C
(k)
b (let C

(∞)
b ) denote the subclasses

with k (with all) derivatives bounded and continuous.

(ii) An extra c on these classes will indicate that all functions vanish outside some
compact subset of R.

(iii) Let C0 denote the subclass of C that converge to 0 as |x| → ∞.

(iv) Let H0 denote the class of all hz,ǫ with z real and ǫ > 0; here hz,ǫ(x) equals 1,
is linear, equals 0 according as x is in (−∞, z], is in [z, z + ǫ], is in [z + ǫ,∞) (this
class was introduced in the proof of the Helly–Bray theorem 3.5.1).

(v) Let G0 denote the class of all continuous functions ga,b,ǫ with a < b and ǫ > 0;
here ga,b,ǫ(x) equals 0, is linear, equals 1 according as x is in (−∞, a− ǫ]∪ [b+ ǫ,∞),
is in [a− ǫ, a] ∪ [b, b+ ǫ], is in [a, b].

Theorem 2.1 (Criteria for →d; a kinder and gentler Helly–Bray)
(i) Let F1, F2, . . . be tight. Let G be a determining class.

(a) If
∫
g dFn → (some #g ) for each g ∈ G, then Fn →d F . Further, #g =

∫
g dF .

(b) Conversely: If Fn →d F , then
∫
g dFn →

∫
g dF for each g ∈ G.

(ii) Each of the various classes C0, Cb, Cbu, C
(k)
b with k ≥ 1, C

(∞)
b , H0, and G0 is

a determining class.

(iii) So, too, if we add an extra subscript c to the various C-classes in (ii). (That
is, we require they take on the value 0 outside some compact subset of R.)
[For some proofs in the literature, functions g with sharp corners are unhandy.]

Exercise 2.1 Prove the previous theorem.

Exercise 2.2 (Higher dimensions) Show that the natural extension of each of
the results of this section to Rk is valid.

Exercise 2.3 Exhibit at least one more determining class.
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Moments as a Determining Class for a Moment Unique Limit

Theorem 2.2 (CLT via moments; Fréchet–Shohat) (a) Suppose F is the unique
df having the specific finite moment values µk =

∫
xk dF (x), for all integers k ≥ 1.

Then Fn →d F whenever

µnk ≡
∫
xk dFn(x)→ µk ≡

∫
xk dF (x) for all k ≥ 1.(1)

(b) Any normal df is determined by its moments.

Proof. Let n′ denote an arbitrary subsequence. By the Helly selection theorem
we have Fn′′ →sd H for some further subsequence n′′ and some sub-df H . However,

limE|Xn|2 <∞, so that {Fn : n ≥ 1} is tight by Markov’s inequality. Thus H is a

bona fide df, and Fn′′ →d H . Also, for all k ≥ 1
∫
xk dF (x) = lim

∫
xk dFn′′ (x) by hypotheses

=
∫
xk dH(x) by exercise 9.1.1(c).(a)

Thus
∫
xk dH(x) =

∫
xk dF (x) for all k ≥ 1; and since only F has these moments,

we conclude thatH = F . Thus Fn′′ →d F . Moreover, Fn′′ →d (this same F ) on any
such convergent subsequence n′′. Thus Fn →d F , by the corollary to theorem 9.1.3.
See exercise 9.2.6 below for part (b) of the theorem. 2

In general, moments do not determine a distribution uniquely; thus {xk : k ≥ 1}
is not a determining class. This is shown by the following exercise.

Exercise 2.4∗(Moments need not determine the df; Heyde) Suppose that the rv
logX ∼= N(0, 1); thus

fX(x) = x−1e−(log x)2/2/
√
2π for x > 0.

For each −1 ≤ a ≤ 1, let Ya have the density function

fa(y) = fX(y)[1 + a sin(2π log y)] for y > 0.

Show that X and each Ya have exactly the same moments. [Knowing that these
particular distributions have this property is not worth much; it is knowing that
some dfs have this property that matters.]

Though we have just seen that moments do not necessarily determine a df, it is
often true that a given df F is the unique df having its particular moments (name
them {µk : k ≥ 1}). Here is an “exercise” giving various sufficient conditions.

Exercise 2.5 (When moments do determine a df) Suppose either of the following
conditions hold:

lim |µk|1/k/k <∞.(a)
∑∞

1 µ2kt
2k/(2k)! <∞ in some interval of t values.(b)

Then at most one df F can possess the moment values µk =
∫
xk dF (x). [Wait to

prove this until it appears again as part of exercise 9.6.1
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Comment. A condition for convergence due to Carleman
∑∞

1 µ
−1/2k
2k =∞ has often

been claimed to be necessary and sufficient. It is not. See Stoyanov (1977; p. 113).

Exercise 2.6 Show that the N(0, 1) distribution is uniquely determined by its
moments.

Summary The methods of this section that establish→d by verifying the moment
condition that Eg(Xn)→ Eg(X) for all functions g in a given determining class G
can be extended from the present setting of the real line to more general settings;
note Chapter 15. This chapter now turns to the development of results associated
with the particular determining class G ≡ {gt(·) ≡ eit· : t ∈ R}. The resulting
function is called the characteristic function of the rv X . The rest of Chapter 9
includes a specialized study of the characteristic function. Chapter 10 will apply
this characteristic function tool to the CLT. 2
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3 Characteristic Functions, with Basic Results

Elementary Facts

Definition 3.1 (Characteristic function) Let X be an arbitrary rv, and let
F denote its df. The characteristic function of X (abbreviated chf ) is defined (for
all t ∈ R) by

φ(t) ≡ φX(t) ≡ EeitX =
∫∞
−∞ eitx dµF (x) =

∫∞
−∞ eitx dF (x)

≡
∫∞
−∞ cos(tx) dF (x) + i

∫∞
−∞ sin(tx) dF (x).

(1)

With dF replaced by h dµ, we call this the Fourier transform of the signed measure

h dµ. (We note that the chf φX(t) exists for −∞ < t < ∞ for all rvs X , since

|eitX(ω)| ≤ 1 for all t and all ω.)

Proposition 3.1 (Elementary properties) Let φ denote an arbitrary chf.

φ(0) = 1 and |φ(t)| ≤ 1 for all t ∈ R.(a)

φaX+b(t) = eitbφX(at) for all t ∈ R.(b)

φ∑n
1Xi

(·) =∏n
i=1 φXi (·) when X1, . . . , Xn are independent.(c)

φ̄X(t) = φX(−t) = φ−X(t) = E cos tX − iE sin tX for all t ∈ R.(d)

φ is real-valued if and only if X ∼= −X.(e)

|φ(·)|2 is a chf [of the rv Xs ≡ X−X ′, with X and X ′ iid with chf φ].(f)

φ(·) is uniformly continuous on R.(g)

Proof. Now, (a), (b), (c), and (d) are trivial. (e) If X ∼= −X , then φX = φ̄X ;
so φX is real. If φ is real, then φX = φ̄X = φ−X ; so X ∼= −X by the uniqueness
theorem below. (f) If X and X ′ are independent with characteristic function φ,
then φX−X′ = φXφ−X = φφ̄ = |φ|2. For (g), we note that for all t,

|φ(t + h)− φ(t)| = |
∫
[expi(t+h)x−eitx] dF (x)|

≤
∫
|eitx| |eihx − 1| dF (x) ≤

∫
|eihx − 1| dF (x)→ 0(a)

as h→ 0, by the DCT with dominating function 2.

The converse of (g) is false. LetX1 ≡ X2 andX3 be two iid Cauchy(0, 1) rvs. We

will see below that φCauchy(t) = exp(−|t|), giving φ2X1(t) = φX1+X2(t) = φX1+X3(t)
for all t. 2
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Motivation 3.1 (Proving the CLT via chfs) In this chapter we present an
alternative method for establishing Fn →d F . It is based on the fact (to be demon-
strated below) that the complex exponential functions eit· on R, indexed by t ∈ R,
form a limit determining class. Saying this another way, the chf φ determines the
distribution P , or the df F (or the density f , if there is one). Thus (as is shown
in the continuity theorem below) we can establish that Fn →d F by showing that
φn(·) → φ(·) on R. Indeed, using just the elementary properties listed above, it is
trivial to give an informal “proof” of the classical CLT. Thus, we begin by expanding
the chf of one rv X as

φ(X−µ)/√n(t) = φX−µ(t/
√
n ) = Eeit(X−µ)/√n(a)

= E{1 + it√
n
(X − µ) + (it)2

n
(X − µ)2/2 + o(t2/n)}(b)

= 1 +
it√
n
E(X − µ) + (it)2

n
E(X − µ)2/2 + o(t2/n)

= 1 + 0− t2σ2/2n+ o(t2/n) = 1− t2[σ2 + o(1)]/2n.(c)

(In section 9.6 we will make such expansions rigorous, and in section 9.7 we will
estimate more carefully the size of the errors that were made.)

Then the standardized sum of the iid rvs X1, . . . , Xn is

Zn ≡
√
n(X̄n − µ) =

∑n
1 (Xk − µ)/

√
n ,(d)

and it has chf

φZn(t) =
∏n
k=1 φ(Xk−µ)/

√
n(t) = [φ(X−µ)/√n(t)]

n(e)

=

{
1− t2[σ2 + o(1)]

2n

}n
→ e−t

2σ2/2(f)

= φN(0,σ2)(t) as will be shown below.(g)

Since φZn(·) → φZ(·) on R, where Z ∼= N(0, 1), the uniqueness theorem and the
continuity theorem combine to guarantee that Zn →d Z. In principle, this is a
rather elementary way to prove the CLT.

Think of it this way. To have all the information on the distribution of X , we
must know P (X ∈ B) for all B ∈ B. We have seen that the df F also contains all this
information, but it is presented in a different format; a statistician may well regard
this F format as the “tabular probability calculating format.” When a density f
exists, it also contains all the information about P ; but it is again presented in a
different format, which the statistician may regard as the “distribution visualization
format.” We will see that the chf presents all the information about P too. It is
just one more format, which we may well come to regard as the “theorem proving
format.” 2
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Some Important Characteristic Functions

Distribution Density Chf

Binomial(n, p)
(
n
k

)
pk(1− p)n−k; for 0 ≤ k ≤ n [1 + p(eit − 1)]n

Poisson(λ) e−λλk/k!; for k ≥ 0 exp(λ(eit − 1))

GeometricF(p) pqk; for k ≥ 0 p(1− qeit)−1

Normal(µ, σ2) e−(x−µ)2/2σ2

/
√
2πσ on R exp(itµ− σ2t2/2)

Exponential(θ) e−x/θ/θ on R+ (1− itθ)−1

Chisquare(n) x(n/2)−1e−x/2/[2n/2Γ(n/2)] (1− 2it)−n/2

Gamma(r, θ) xr−1e−x/θ/[θrΓ(r)] on R+ (1− itθ)−r
Uniform(0, 1) 1[0,1](x) [exp(it)− 1]/it

Double Exp(θ) e−|x|/θ/2θ 1/(1 + θ2t2)

Cauchy(0,1) 1/[π(1 + x2)] e−|t|

de la Vallée Poussin (1 − cosx)/(πx2) on R [1− |t|]× 1[−1,1](t)

Triangular(0,1) [1− |x|]× 1[−1,1](x) 2(1− cos t)/(t2) on R

Table 1.1

Review of Some Useful Complex Analysis

A function f is called analytic on a region (a connected open subset of the com-
plex plane) if it has a derivative at each point of the region; if it does, then it
necessarily has derivatives of all orders at each point in the region. If z0 is an
isolated singularity of f and f(z) =

∑∞
n=0 an(z − z0)n +

∑m
n=1 bn(z − z0)−n, then

k ≡ (the residue of f at z0) = b1. Thus if f has a pole of order m at z0 (that
is, bn = 0 for n > m in the expansion above), then g(z) ≡ (z − z0)

mf(z) =

bm+ · · ·+ b1(z− z0)m−1 +
∑∞

0 an(z− z0)m+n has b1 = g(m−1)(z0)/(m− 1)! . Thus

b1=k=(residue of f at z0) {= lim
z→z0

(z−z0)f(z) for a simple pole at z0}.(2)

We also note that a smooth arc is described via equations x = φ(t) and y = ψ(t) for
a ≤ t ≤ b when φ′ and ψ′ are continuous and not simultaneously zero. A contour
is a continuous chain of a finite number of smooth arcs that do not cross the same
point twice. Closed means that the starting and ending points are identical. (See
Ahlfors (1953, pp. 102, 123) for what follows.)

Lemma 3.1 (Residue theorem) If f is analytic on a region containing a closed
contour C, except for a finite number of singularities z1, . . . , zn interior to C at
which f has residues k1, . . . , kn, then (for counterclockwise integration over C)

∫

C

f(z) dz = 2πi
n∑

j=1

kj

{
= 0 if f is analytic,
= 2πi (z − zo)f(z0) for one simple pole at zo.

(3)
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Lemma 3.2 Let f and g be functions analytic in a regions Ω. Suppose that
f(z) = g(z) for all z on a set S that has an accumulation point in Ω. We then have
the equality f(z) = g(z) for all z ∈ Ω. (That is, f is determined on Ω by its values
on S. So if there is a Taylor series representation f(z) =

∑∞
j=o an(z − zo)j valid on

some disk interior to Ω, then the coefficientsd a1, a2, . . . determine f on all of Ω.)

Evaluating Various Characteristic Functions

Example 3.1 (Derivation of the Cauchy(0, 1) chf) Let C denote the upper semi-
circle centered at the origin with radius R parametrized counterclockwise; and let
A (for arc) denote C without its base. Let t > 0. The Cauchy chf is approached via

∫

C

eitz

π(1 + z2)
dz ≡

∫

C

f(z) dz = 2πi · (z − zo)f(zo) (with zo = i)(a)

= 2πi · (z − i) eitz

π(1 + iz)(1− iz)

∣∣∣∣
z=i

= e−t for t > 0.(b)

It further holds that
∫

C

eitz

π(1 + z2)
dz =

∫ R

−R

eitz

π(1 + x2)
dx+

∫

A

eitz

π(1 + z2)
dz(c)

→
∫ ∞

−∞

eitx

π(1 + x2)
dx + 0 = φ(t) as R→∞,(d)

since the second integral in (b) is bounded in absolute value by

1
π

∫
A

1
R2−1 dz = 1

π
1

R2−1 π R→ 0 as R→∞.

Since the Cauchy is symmetric, φ(−t) = φ(t) = exp(−|t|); or, integrate the contour

clockwise when t < 0. The tabular entry has been verified. That is,

φ(t) = exp(−|t| ), for all t, gives the Cauchy(0,1) chf. 2(4)

Example 3.2 (Derivation of the N(0, 1) chf) Let X be N(0, 1). Then

φ(t) =
∫∞
−∞ eitx 1√

2π
e−x

2/2 dx.

Let us instead think of φ as a function of a complex variable z. That is,

φ(z) =
∫∞
−∞ eizx 1√

2π
e−x

2/2 dx.(a)

Let us define a second function ψ on the complex plane by

ψ(z) ≡ e−z2/2 .(b)

Now φ and ψ are analytic on the whole complex plane. Let us now consider the
purely imaginary line z = iy. On this line it is clear that

ψ(iy) = ey
2/2,
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and since elementary calculations show that

φ(iy) =
∫∞
−∞ e−yx 1√

2π
e−x

2/2 = ey
2/2
∫∞
−∞

1√
2π
e−(x+y)2/2 dx = ey

2/2,

we have ψ = φ on the line z = iy. Thus lemma 3.2 implies that ψ(z) = φ(z) for all
z in the plane. Thus φ(t) = ψ(t) for all real z = t. That is,

φ(t) = exp(−t2/2), for all real t, gives the N(0, 1) chf.(5)

(A similar approach works for the gamma distribution in exercise 3.3 below.) 2

Exercise 3.1 Derive the N(0, 1) chf via the residue theorem. Then extend to
N(µ, σ2). [Hint. Let C denote a closed rectangle of height t with base [−R,R] on
the x-axis.]

Exercise 3.2 (a) Derive the Poisson(λ) chf (by summing power series).
(b) Derive the GeometricT(p) chf.
(c) Derive the Bernoulli(p), Binomial(n, p), and NegBiT(m, p) chfs.

Exercise 3.3 (a) Derive the Gamma(r, θ) chf. [Hint. Note example 3.2.]
(b) Derive the Exponential(θ) and Chisquare(n), and Double Exponential(θ) chfs.

Exercise 3.4 Derive the Logistic(0, 1) chf.
Hint. Use lemma 3.2 approach.

Exercise 3.5 Show that the real part of a chf (or Re φ(·) ) is itself a chf.

Exercise 3.6 Let φ be a chf. Show that 1
c

∫ c
0 φ(tu) du is a chf.
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4 Uniqueness and Inversion
For the chf to be a useful tool, there must be a 1-to-1 correspondence between dfs
and chfs. The fact that this is so is called the uniqueness theorem. We give a simple
proof of the uniqueness theorem at the end of this subsection. But the simple proof
does not establish an inversion formula that expresses the df as a function of the
chf. In order to establish an inversion formula, we will need some notation, and an
inversion formula useful for other purposes will require a hypothesis on the chf that
is strong enough to allow some useful simplification.

Let U denote a rv with continuous density fU (·), and let W denote a rv with
a bounded and continuous density fW (·) and with chf φW (·); and suppose we are
lucky enough to determine a complementary pair that (for some constant c) satisfy
the relationship

fU (t) = c φW (−t) for all real t. (Complementary pair)(1)

We give three examples of such pairs. Let Z ∼= N(0, 1), T ∼= Triangular(0, 1), and
let D have the de la Vallée Poussin density. Then examples of (1) are

U = Z and W = Z, with c = 1/
√
2π,(2)

U = T and W = D, with c = 1,(3)

U = D and W = T, with c = 1/2π.(4)

(The Cauchy(0, 1) and the Double Exponential(0, 1) then lead to two additional
complementary pairs.) (The beauty of this is that we can nearly eliminate the use
of complex analysis.) (In all such examples we have 2πcfW (0) = 1.)

An arbitrary rv X , having df FX(·) and chf φX(·), may not have a density. Let
us recall from the convolution formula (A.2.2) that (if U has a density) a slightly
perturbed version Xa of X is smoother than X , in that

Xa ≡ X + aU always has a density fa(·) ; and Xa →d X as a→ 0(5)

by Slutsky’s theorem, since aU →p 0 as a→ 0. Thus F (·) = limFa(·) at each point
in the continuity set CF of F . This is the key to the approach we will follow to
establish an inversion formula.

Theorem 4.1 (Uniqueness theorem) Every df on the line has a unique chf.

Theorem 4.2 (Inversion formula) If an arbitrary rv X has df FX(·) and chf
φX(·), we can always write

FX(r2)− FX(r1) = lim
a→0

∫ r2

r1

fa(y) dy for all r1 < r2 in CFX ,(6)

where the density fa(·) of the rv Xa ≡ X + aU of (5) [with U as in (1)] is given by

fa(y) =

∫ ∞

−∞
e−iyv φX(v)cfW (av) dv for all y ∈ R.(7)
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Theorem 4.3 (Inversion formula for densities) If a rv X has a chf φX(·)
that satisfies the integrability condition

∫ ∞

−∞
|φX(t)| dt <∞,(8)

then X has a uniformly continuous density fX(·) given by

fX(x) =
1

2π

∫ ∞

−∞
e−itx φX(t) dt.(9)

Remark 4.1 The uniqueness theorem can be restated as follows: The set of
complex exponentials G ≡ {eitx for x ∈ R : t ∈ R} is a determining class. This is
so because knowing all values of φX(t) = EeitX allows the df F to be determined,
via the inversion formula. 2

Proof. From the convolution formula (A.2.2) and Xa ≡ X + aU we have

fa(y) =
∫∞
−∞

1
a fU (

y−x
a ) dFX(x)

= c
∫∞
−∞

1
a φW (x−ya ) dFX(x) by (1)(a)

= (c/a)
∫∞
−∞

∫∞
−∞ ei(x−y)w/a fW (w) dw dFX(x)

= (c/a)
∫∞
−∞ e−iyw/a fW (w)

∫∞
−∞ ei(w/a)x dFX(x) dw by Fubini

= (c/a)
∫∞
−∞ e−iyw/a φX(w/a) fW (w) dw = c

∫∞
−∞ e−iyv φX(v) fW (av) dv.(b)

Since Xa →d X , at continuity points r1 < r2 of F we have (with Xa
∼= Fa(·))

FX(r2)− FX(r1) = lim
a→0
{Fa(r2)− Fa(r1)} = lim

a→0

∫ r2
r1
fa(y) dy.(c)

This establishes theorems 4.1 and 4.2.

The particular formula given in (c) might look useless, but the mere fact that
one can recover FX from φX via some formula is enough to establish the important
property of uniqueness. (See exercise 4.3 for some utility for (7).) We now turn to
theorem 4.3, in which we have added a hypothesis that allows the previous formula
to be manipulated into a simple and useful form.

Suppose that (8) holds, so that applying the DCT to (b) (using a constant times
|φX(·)| as a dominating function) gives [recall the hypothesis on the fW (·) of (1)]
as a→ 0 that

fa(y)→ f(y) ≡ [cfW (0)]
∫∞
−∞ e−iyvφX(v) dv,(d)

since fW is bounded and is continuous at 0. Note that uniform continuity of f
follows from the bound

|f(y + h)− f(y)| = [cfW (0)] |
∫∞
−∞ [e−i(y+h)v − e−iyv]φX(v) dv|

≤ [cfW (0)]
∫∞
−∞ |e−ihv − 1| |φX(v)| dv → 0 as h→ 0,(e)
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by applying the DCT (with dominating function 2c ‖fW‖ |φX(·)|. The uniform
convergence of fa to f on any finite interval involves only an |fW (0)−fW (av)| term
under the integral sign. That f really is the density of FX follows from applying
this uniform convergence in (c) to obtain

FX(r2)− FX(r1) =
∫ r2
r1
f(y) dy .(f)

The conclusion (9) holds since specifying U =W = Z gives

[cfW (0)] = 1/(2π) (as it always must). 2(g)

Esseen’s inequality 9.7.1 below provides an important extension of theorem 4.2
by showing that if two chfs are sufficiently close over most of their domain, then
the corresponding dfs will be uniformly close over their entire domain.

Exercise 4.1 Show that setting W = Z in line (c) of the previous proof leads,
for any rv X , to the alternative inversion formula

FX(r2)− FX(r1) = lim
a→0

1

2π

∫ ∞

−∞

e−itr2 − e−itr1
−it φX(t) e−a

2t2/2 dt(10)

at all continuity points r1 < r2 of FX(·). [This is one possible alternative to (6).]

Exercise 4.2 Derive the chf of the Triangular(0, 1) density on the interval [−1, 1]
(perhaps, add two appropriate uniform rvs). Then use theorem 4.3 to derive the
chf of the de la Vallée Poussin density, while simultaneously verifying that the non-
negative and real integrable function (1− cosx)/(πx2) really is a density. Following
section 9.6, determine E|X | when X has the de la Vallée Poussin density.

Exercise 4.3 (Kernel density estimator) Since the rv X having df FX(·)
and chf φX(·) may not have a density, we choose instead to estimate the density
fa(·) of (5) and (7) using

f̂a(x) ≡ c
∫ ∞

−∞
e−itx φ̂X(t)fW (at) dt(11)

[where fU (·) = cφW (−·), and where we now insist that µU = 0 and σ2
U is finite]

with the empirical chf φ̂X(·) defined by

φ̂X(t) ≡
∫ ∞

−∞
eitx dFn(x) =

1

n

n∑

j=1

eitXj for −∞ < t <∞.(12)

(a) Verify that f̂a(·) is actually a kernel density estimator, meaning that it can be
expressed as

f̂a(x) =
1

a

∫ ∞

−∞
fU

(
x− y
a

)
dFn(y) =

1

n

n∑

j=1

1

a
fU

(
x−Xj

a

)
.(13)

[This has statistical meaning, since we are averaging densities centered at each of
the observations.]
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(b) Show that f̂a(x) is always unbiased (in that it has mean fa(x)) and has a finite
variance we can calculate; thus for all x ∈ R we can show that

Ef̂a(x) = fa(x) ,(14)

Var[f̂a(x)] =
1

n

{
1

a2

∫ ∞

−∞
f2
U

(
x− y
a

)
dF (y)− [fa(x)]

2

}
.(15)

(c) Supposing that FX(·) has a density f(·) ∈ C(2)
b , determine the order of the mean

squared error

MSE{f̂a(x)} ≡ Bias2{f̂a(x)}+Var[f̂a(x)] ≡ {E(f̂a(x))−f(x)}2+Var[f̂a(x)](16)

of f̂a(x), viewed as an estimator of f(x). (It is intended that you rewrite (16) by

expanding fa(x) in a Taylor series in “a” (valid for f(·) ∈ C(2)
b ), and then analyze

the magnitude of (16) for values of “a” near 0. It might also be useful to relabel
fU by ψ now so that your work refers to any kernel density estimator, right from
the beginning. This will avoid “starting over” in part (f).) Show that this MSE

expression is of order n−4/5 for f(·) ∈ C(2)
b when a is of order n−1/5, and that this

is the minimal attainable order.

(d) Note that the choice U = Z (or U = T ) leads to an f̂a(·) that is the sum of
n normal (or triangular) densities that are centered at the n data points and that
have a scale parameter directly proportional to a.

(e) Obtain an expression for lima→0 a4/5 MSE {f̂a(x)} in terms of f(x), f ′(x), and
f ′′(x) when a = n−1/5 (and obtain it for both of the choices U = Z and U = T ).

(f) We could also motivate the idea of a kernel density estimator based on (13)
alone. How much of what we have done still carries over for a general kernel? What
properties should a good kernel exhibit? What can you prove in this more general
setting? (Now, for sure, replace fU by a function labeled ψ. A simple sentence that
specifies the requirements on ψ should suffice.)

Exercise 4.4 Use the table of chfs above to show in what sense the sums of
independent Binomial, Poisson, NegBiT, Normal, Cauchy, Chisquare and Gamma
rvs have distributions that again belong to the same family. (Recall section A.2,
noting that chfs have allowed the complicated operation of convolution of dfs or
densities to be replaced by the simple operation of multiplication of chfs.)
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5 The Continuity Theorem
Theorem 5.1 (Continuity theorem for chfs; Cramér–Lévy) (i) If φn → φ
where φ is continuous at 0, then φ is the chf of a bona fide df F and Fn →d F .
(ii) Fn →d F implies φn → φ uniformly on any finite interval |t| ≤ T .

Inequality 5.1 (Chf bound on the tails of a df) For any df F we have

P (|X | ≥ λ) ≤ 7λ
∫ 1/λ

0
[1 − Realφ(t)] dt for all λ > 0.(1)

Proof. Now,

λ
∫ 1/λ

0 [1− Real φ(t)] dt = λ
∫ 1/λ

0

∫∞
−∞ [1− cos(tx)] dF (x) dt(a)

=
∫∞
−∞ λ

∫ 1/λ

0
[1− cos(tx)] dt dF (x)

=
∫∞
−∞ {λt[1−

sin(xt)
xt ]}

∣∣1/λ
0

dF (x)

=
∫∞
−∞ [1− sin(x/λ)

(x/λ) ] dF (x)

≥
∫
[|x|/λ≥1]

[1− sin(x/λ)/(x/λ)] dF (x)

= inf [|y|≥1] [1− sin(y)/y]P (|X | ≥ λ) = [1− sin(1)]P (|X | ≥ λ)(b)

= (.1585 . . . )P (|X | ≥ λ) ≥ P (|X | ≥ λ)/7,(c)

as claimed. (It may be interesting to compare this to the Chebyshev inequality.)
[This idea will be carried further in (10.5.9) and (10.5.10).] 2

Proof. Consider theorem 5.1. (i) The uniqueness theorem for chfs shows
that the collection G of complex exponential functions form a determining class,
and the expectations of these are hypothesized to converge. It thus suffices (by the
kinder and gentler Helly–Bray theorem (theorem 9.2.1(i)(a)) below) to show that
{Fn : n ≥ 1} is tight. Now,

limn→∞ P (|Xn| ≥ λ) ≤ limn→∞ 7λ
∫ 1/λ

0
[1− Real φn(t)] dt(a)

= 7λ
∫ 1/λ

0 [1− Real φ(t)] dt

by the DCT, with dominating function 2

→ 0 as λ→∞ ,(b)

so that {Fn : n ≥ 1} is tight.
(ii) Now replacing Xn →d X by versions Yn →a.s. Y (and using Skorokhod’s

construction) gives for |t| ≤ T that

|φn(t)− φ(t)| ≤
∫
|eitYn − eitY | dP(c)

≤
∫
|eit(Yn−Y ) − 1| dP

≤
∫
sup|t|≤T |eit(Yn−Y ) − 1| dP

→ 0 as sup{|it(Yn − Y )| : |t| ≤ T } ≤ T |Yn − Y | → 0(d)

by the DCT, with dominating function 2. 2
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Higher Dimensions

If X1, . . . , Xk are rvs on (Ω,A, P ), then the Bk-A-mapping X ≡ (X1, . . . , Xk)
′ from

Ω to Rk induces a measure PX on (Rk,Bk). The characteristic function of X is

φX( t ) ≡ E ei t
′X = E ei [t1X1+···+tkXk] for t ≡ (t1, . . . , tk)

′ ∈ Rk.(2)

Without further explanation, we state simply that the uniqueness theorem (that
{gt ≡ exp(it′x) for all x ∈ Rn : t ∈ Rn} is a determining class) and the Cramér–
Lévy continuity theorem still hold, based on minor modifications of the previous
proof. We also remark that all equivalences of →d in theorem 9.1.1 are still valid.
But we now take up an extremely useful approach to showing convergence in dis-
tribution in higher dimensions.

The characteristic function of the one-dimensional linear combination ~λ′X is

φ~λ′X
(t) = E ei [tλ1X1+···+tλkXk] for t ∈ R.(3)

Comparison of this with (2) shows that knowing the joint chf φX( t ) for all t ∈ Rk
is equivalent to knowing the one-dimensional chf φ~λ′X

(t) for all t ∈ R and ~λ ∈ Rk
for which |~λ| = 1. This immediately yields the following useful result.

Theorem 5.2 (Cramér–Wold device) If Xn ≡ (Xn1, . . . , Xnk)
′ satisfy

φ~λ′Xn
(t)→ φ~λ′X

(t) for all t ∈ R and for each ~λ ∈ Rk,(4)

then Xn →d X. (It suffices to show (4) for all unit vectors ~λ in Rk.) [In fact, we

only require that ~λ′ Xn →d
~λ′ X for all such ~λ (no matter what method we use to

show it), as such a result implies (4).]

Theorem 5.3 The rvs X1, . . . , Xk are independent if and only if the joint chfs
satisfy φX(t1, . . . , tk) =

∏k
1 φXi (ti).

Exercise 5.1∗ Prove the claims made below (2) for the n-dimensional chf φX.

Exercise 5.2 Prove theorem 5.3.
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6 Elementary Complex and Fourier Analysis
Lemma 6.1 (Taylor expansions of log(1 + z) and ez) [Note that log z is a
many-valued function of a complex z = reiθ; any of (log r) + i[θ + 2πm] for m =
0,±1,±2, . . . will work for log z. However, when we write log z = log r+ iθ, we will
always suppose that −π < θ ≤ π. Moreover, we denote this unique determination
by Log z; this is the principal branch.] The Taylor series expansion of Log (1 + z)
gives

|Log (1 + z)−∑m−1
k=1 (−1)k−1zk/k| = |∑∞

k=m(−1)k−1zk/k |

≤ |z|m
m (1 + |z|+ |z|2 + · · ·) ≤ |z|m

m(1−|z|)

(1)

for |z| < 1. Thus

|Log (1 + z)− z| ≤ |z|2/(2(1− θ)) for |z| ≤ θ < 1.(2)

From another Taylor series expansion we have for all z that

|ez −∑m−1
k=0 z

k/k! | = |∑∞
k=m z

k/k! | ≤ |z|m∑∞
j=0

|z|j
j!

j!

(j +m)!
≤ |z|

me|z|

m!
.(3)

Lemma 6.2 (Taylor expansion of eit) Let m ≥ 0 and 0 ≤ δ ≤ 1 (and set the
constant K0,0 = 2, below). Then for all real t we have

∣∣∣∣∣e
it −

m∑

k=0

(it)k

k!

∣∣∣∣∣ ≤
δ21−δ

(m+ δ) · · · (2 + δ)(1 + δ)(0 + δ)
|t|m+δ ≡ Km,δ |t|m+δ .(4)

Proof. The proof is by induction. Form = 0 we have both |eit−1| ≤ 2 ≤ 2 |t/2|δ
for |t/2| ≥ 1, and (since

∫ t
0
ieis ds =

∫ t
0
(i cos s− sin s) ds = eit − 1)

|eit − 1| ≤ |
∫ t
0 ie

isds| ≤
∫ |t|
0 ds = |t| ≤ 2 |t/2|δ for |t/2| ≤ 1;(a)

so that (4) holds for m = 0. We now assume that (4) holds for m− 1, and we will

verify that it thus holds for m. We again use eit − 1 = i
∫ t
0
eis ds and further note

that i
∑m−1
k=0

∫ t
0
[(is)k/k!] ds =

∑m−1
k=0 (ik+1/k!)

∫ t
0
sk ds =

∑m
1 (it)k/k! to obtain

∣∣eit −∑m
k=0 (it)k/k!

∣∣ =
∣∣∣i
∫ t
0

[
eis −∑m−1

k=0 (is)k/k!
]
ds
∣∣∣

≤ Km−1,δ

∫ |t|
0
sm−1+δ ds by the induction step(b)

= Km,δ |t|m+δ.(c)

[See Chow and Teicher (1997).] (The next inequality is immediate.) 2

Inequality 6.1 (Moment expansion inequality) Suppose E|X |m+δ <∞ for some
m ≥ 0 and 0 ≤ δ ≤ 1. Then

∣∣∣∣∣φ(t)−
m∑

k=0

(it)k

k!
EXk

∣∣∣∣∣ ≤ Km,δ |t|m+δ E|X |m+δ for all t.(5)



6. ELEMENTARY COMPLEX AND FOURIER ANALYSIS 213

Some Alternative Tools

Lemma 6.3 (The first product lemma) For all n ≥ 1, let complex βn1, . . . , βnn
satisfy the following conditions:

βn ≡
∑n

1 βnk → β as n→∞.(a)

δn ≡ [ max1≤k≤n |βnk| ]→ 0.(b)

Mn ≡
∑n
k=1 |βnk| satisfies δnMn → 0.(c)

Then (compare this with the stronger Lemma 8.1.4, which requires all βnk ≥ 0)

n∏

k=1

(1 + βnk)→ eβ as n→∞.(6)

Proof. When 0 < δn ≤ 1
2 (and we are on the principal branch), (2) gives

|∑n
k=1 Log (1 + βnk)−

∑n
k=1 βnk| ≤

∑n
k=1 |βnk|2 ≤ δnMn → 0.(p)

Thus
∑n

k=1 Log (1 + βnk)→ β as n→∞.(q)

Moreover, (q) shows that
∏n
k=1(1 + βnk) = exp(Log (

∏n
k=1(1 + βnk))) = exp(

∑n
k=1 Log (1 + βnk))

→ exp(β),
(r)

and this gives (6). [See Chung (1974).] (Recall lemma 8.1.4.) 2

Lemma 6.4 (The second product lemma) If z1, . . . , zn and w1, . . . , wn denote
complex numbers with modulus at most 1, then

∣∣∣∣∣
n∏

k=1

zk −
n∏

k=1

wk

∣∣∣∣∣ ≤
n∑

k=1

|zk − wk| .(7)

Proof. This is trivial for n = 1. We will use induction. Now,

|∏n
k=1 zk −

∏n
k=1 wk| ≤ |zn|

∣∣∣
∏n−1
k=1 zk −

∏n−1
k=1 wk

∣∣∣+ |zn − wn|
∣∣∣
∏n−1
k=1 wk

∣∣∣(a)

≤
∣∣∣
∏n−1
k=1 zk −

∏n−1
k=1 wk

∣∣∣+|zn − wn|·
∏n−1
k=1 1 ≤

∑n−1
k=1 |zk − wk|+|zn − wn|(b)

by the induction step. [See most newer texts.] 2

Inequality 6.2 (Moment expansions of chfs) Suppose 0 < E|X |m <∞ for some
m ≥ 0. Then (for some 0 ≤ g(t) ≤ 1) the chf φ of X satisfies

∣∣∣φ(t)−
m∑

k=0

(it)k

k!
EXk

∣∣∣ ≤ 3
m! |t|mE|X |mg(t) where g(t)→ 0 as t→ 0.(8)
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Proof. Use the real expansions for sin and cos to obtain

eitx = cos(tx) + i sin(tx) =
∑m−1
k=0

(itx)k

k! + (itx)m

m! [cos(θ1tx) + i sin(θ2tx)](a)

=
∑m

k=0
(itx)k

k! + (itx)m

m! [cos(θ1tx) + i sin(θ2tx)− 1].(b)

Here, we have some θ1, θ2 with 0 ≤ |θ1| ∨ |θ2| ≤ 1. Then (8) follows from (b) via

limt→0 E|Xm [cos(θ1tX)− 1 + i sin(θ2tX)]| = 0,(9)

by the DCT with dominating function 3|X |m. [See Breiman (1968).] 2

Inequality 6.3 (Summary of useful facts) Let X ∼= (0, σ2). Result (8) then
gives the highly useful

|φ(t) − (1− 1
2 σ

2 t2) | ≤ 3
2 σ

2 t2 g(t) where g(t)→ 0 as t→ 0,

with 0 ≤ g(t) ≤ 1. Applying this and (5) gives (since K2,1 =
1
6 , and since K1,1 =

1
2

allows 1
2 σ

2 t2 to replace 3
2 σ2 t2g(t))

∣∣φ(t)− (1 − 1
2 σ

2t2)
∣∣ ≤ 1

2 σ
2 t2 ∧ 1

6 E|X |3 |t|3 for all t ∈ R.(10)

Exercise 6.1 (Distributions determined by their moments)
(a) Suppose that E|X |n < ∞. Then the nth derivative φ(n)(·) is a continuous

function given by φ(n)(t) = inE(XneitX), so that EXn = i−nφ(n)(0).

(b) The series ψ(t) =
∑∞

0 (it)kE(Xk)/k! has radius of convergence R ≡ 1/(eL),

where L = limk |µk|1/k/k = limk (E|X |k)1/k/k = limµ
1/2k
2k /(2k); use the root test.

(c) The series in (b) has the same R > 0 if
∑∞

k=0 µ2k t
2k/(2k)! <∞ for some t > 0.

(d) The series (b) converges for |t| < r if and only if E exp(t |X |) < ∞ for |t| < r

if and only if E exp(tX) <∞ for |t| < r

(e) If the radius of convergence in (b) is strictly positive, then the distribution
having the stated moments is uniquely determined by its moments µk.

(f) Show that the Normal(0, 1) distribution is uniquely determined by its moments.
(g) Show that any Gamma(r, 1) distribution is uniquely determined by its moments.
(h) Show that it is valid to expand the mgs of Normal(0, 1) and Gamma(r, 1) to
compute their moments. Do it.

Exercise 6.2 (a) If φ′′(0) is finite, then σ2 is finite. Prove this.

(b) In fact, if φ(2k)(0) is finite, then EX2k <∞. Prove this.
(∗) Appeal to Exercise 4.3.2.

Exercise 6.3 (Bounds on (1 − x/n)n) (i) Use (1 + t) ≤ et ≤ 1/(1 − t) for
0 ≤ t < 1 at t = x/n to show that

0 ≤ e−x − (1 − x
n )
n ≤ x2

n e−x for 0 ≤ x < n .

(ii) (Hall and Wellner) Show that

2 e−2 ≤ n supx≥0

∣∣e−x − (1− x/n)n 1[0,n](x)
∣∣ ≤ (2 + n−1)e−2 for all n ≥ 1.
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Results from Fourier Analysis

On some occasions we will need to know the behavior of φ(t) for |t| large.

Lemma 6.5 (Riemann–Lebesgue lemma) If
∫∞
−∞ |g(x)|dx <∞, then

∫ ∞

−∞
eitxg(x)dx→ 0 as t→∞.(11)

Proof. Now, Ψ ≡ {ψ ≡∑m
1 ci1(ai,bi] : ai, bi, ci ∈ R and m ≥ 1} is dense in L1

by theorem 3.5.8; that is, if
∫∞
−∞ |g(x)|dx < ∞, then there exists ψ ∈ Ψ such that∫∞

−∞ |g − ψ| dx < ǫ. Thus γ(t) ≡ |
∫∞
−∞ eitxg(x)dx| satisfies

γ(t) ≤
∫∞
−∞|eitx| |g(x)− ψ(x)| dx + |

∫∞
−∞e

itxψ(x) dx|

≤ ǫ+∑m
1 |ci| |

∫ bi
ai
eitx dx|.(a)

It thus suffices to show that for any a, b in R we have

∫ b

a

eitx dx→ 0 as |t| → ∞.(12)

A quick picture of sines and cosines oscillating very fast (and canceling out over the
interval) shows that (12) is trivial. (Or write eitx = cos(tx)+ i sin(tx) and compute
the integrals.) 2

Lemma 6.6 (Tail behavior of chfs)
(i) If F has density f with respect to Lebesgue measure, then |φ(t)| → 0 as |t| → ∞.

(ii) If F has n+ 1 integrable derivatives f, f ′, . . . , f (n) on R, then

|t|n |φ(t)| → 0 as |t| → ∞.(13)

Proof. The fact that |φ(t)| → 0 as |t| → ∞ follows from the Reimann–Lebesgue
lemma, since f is integrable. Since f is absolutely continuous and a density, it
follows that that f(x)→ 0 as |x| → ∞. Then use

φ(t) =
∫
eitxf(x) dx =

∫
f(x) d(eitx/it)

= (eitx/it) f(x)
∣∣∞
−∞ −

∫
eitx f ′(x) dx/(it)(a)

= −
∫
eitx f ′(x) dx/(it) with f ′(·) ∈ L1,(b)

using f(x) → 0 as |x| → ∞ in going from (a) to (b). (Note exercise 6.4 below.)

Applying the Riemann–Lebesgue lemma to (b) gives |t| |φ(t)| → 0 as |t| → ∞. Keep
on integrating by parts and applying the Riemann–Lebesgue lemma. 2

Exercise 6.4 Verify lemma 6.2(ii) when n = 1.
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Other Alternative Tools

Then chf always exists, so it can always be used. However, if X ≥ 0 or if X is
integer valued, then Laplace transforms or probability generating functions offer
more elementary tools.

Exercise 6.5∗ (Laplace transform) Let F+ denote the class of all dfs F having
F−(0) = 0. For any df F ∈ F+ we define the Laplace transform L of F by

L(λ) = E e−λX =
∫∞
0
e−λx dF (x) for λ ≥ 0.(14)

(a) Establish an analogue of proposition 3.1(a), (b), (c), and (g).

(b) (Uniqueness) Show that each df in F+ has a unique Laplace transform.

(c) (Continuity) Let Xn
∼= Fn ∈ F+. If Ln(λ) → (some L(λ)) for all λ ≥ 0 with

L(·) right continuous at 0, then L is the Laplace transform of a df F ∈ F+ for which
the convergence in distribution Fn →d F holds.
(d) Establish analogues of inequality 6.1 on moment expansions.

Exercise 6.6∗ (Probability generating function) Let FI denote the class of all

dfs F assigning mass 1 to the integers 0, 1, 2, . . . . For any df F ∈ FI we define the
probability generating function g of F by

g(z) = E zX =
∑∞
k=0 pk z

k for all complex z having |z| ≤ 1.(15)

(a) Establish an analogue of proposition 3.1.
(b) (Uniqueness) Show that each df F in FI has a unique generating function.
(c) (Continuity) Let Xn

∼= Fn ∈ FI . If gn(z) → (some g(z)) for all |z| ≤ 1 with

g(·) continuous at 1, then g is the generating function of a df F in FI for which
Fn →d F .

Exercise 6.7 (Cumulant generating function) The cumulant generating function
ψX(·) of a rv X is defined by

ψX(t) ≡ Log φX(t) = Log E(eitX),(16)

and is necessarily finite for t-values in some neighborhood of the origin.

(a) Temporarily suppose that all moments of X are finite. Let µk ≡ E(X − µ)k
denote the k-th central moment, for k ≥ 1. Then when µ = EX = 0 and with
σ2 ≡ µ2, we have the formal expansion

φX(t) = 1− t2σ2/2 + (it)3µ3/3! + (it)4µ4/4! + · · · ≡ 1 + z .

Verify that further formal calculations based on this yield

ψX(t) = Log φX(t) = Log (1 + z) = z − z2/2 + z3/3 + · · ·

= (it)2µ2/2! + (it)3µ3/3! + (it)4(µ4 − 3µ2
2)/4! + · · ·

= (it)2σ2/2! + (it)3µ3/3! + t4(µ4 − 3σ4)/4! + · · ·(17)

≡∑∞
j=2 (it)jκj/j! ,(18)
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where κj is called the jth cumulant ofX . Note that for independent rvsX1, . . . , Xn,

(the jth cumulant of
∑n

k=1Xk) =
∑n
k=1(the jth cumulant of Xk),(19)

which is nice. Then verify that in the iid case, the third and fourth cumulants of
the standardized rv Zn ≡

√
n(X̄n − µ)/σ are

γ1/
√
n ≡ (µ3/σ

3)/
√
n and γ2/n ≡ (µ4/σ

4 − 3)/n,(20)

where γ1 measures skewness and γ2 measures tail heaviness. [This is particularly
nice; it shows that the effect (on the distribution of X̄n) of skewness disappears at
rate 1/

√
n, while the effect of tail heaviness disappears at rate 1/n.]

(b) Finally, if only E|X |m <∞ for some m ≥ 1 is known, show that in a sufficiently
small neighborhood of the origin

|ψ(t)−∑m
j=2 κj(it)

j/j! | ≤ cm |t|m E|X |m δm(t),(21)

where δm(t)ց 0 as tց 0, and

|ψ(t)−∑m−1
j=2 κj(it)

j/j! | ≤ c̄m |t|m E|X |m(22)

for some universal constant c̄m. The exercise is to establish carefully that all of this
is true.
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7 Esseen’s Lemma
Let G denote a fixed function having G(−∞) = 0, G(+∞) = 1, having deriva-

tive g on the real line for which |g(·)| is bounded by some constant M , having∫∞
−∞ xg(x) dx = 0, and then let ψ(t) ≡

∫∞
−∞ eitxg(x) dx. Let F denote a general df

having mean 0, and let φ denote its characteristic function. We wish to estimate
‖F − G‖ = sup−∞<x<∞ |F (x) − G(x)| in terms of the distance between φ and ψ.

Roughly speaking, the next inequality says that if φ and ψ are sufficiently close over
most of their domain, then ‖F −G‖ will be small. [In the initial application of this

Esseen’s lemma, we will take G, g, ψ to be the N(0, 1) df, density, and chf. In this

context, the constant of (1) is 24‖g‖/π = 24M/π = 24/(
√
2ππ) = 3.047695 . . . .]

Inequality 7.1 (Esseen’s lemma) Let F and G be as above. For any a > 0
we have the uniform bound

‖F −G‖ ≤ 1

π

∫ a

−a

∣∣∣∣
φ(t) − ψ(t)

t

∣∣∣∣ dt+
24 ‖g‖
πa

.(1)

Proof. The key to the technique is to smooth by convolving F and G with the
df Ha whose density ha and characteristic function γa are given by

ha(x) =
1− cos(ax)

πax2
on R and γa(t) =

{
1− |t|/a if |t| ≤ a,
0 if |t| > a.

(2)

This ha is the density of V/a, when V has the de la Vallée density. Let Fa and Ga
denote the convolutions of F and G with Ha, for “a” large. We will now show that

‖F −G‖ ≤ 2‖Fa −Ga‖+ 24 ‖g‖/(πa).(3)

Let ∆ ≡ F − G. Now, ∆(x) = ∆+(x) and ∆−(x) exist for all x; thus there

exists xo such that either D ≡ ‖F −G‖ = |∆(xo)| or D = |∆−(xo)|. Without loss

of generality, we suppose that D = |∆(xo)| (just replace X,Y by −X,−Y if not).

Note figure 5.1. Without loss of generality, we act below as though ∆(xo) > 0, and

we let zo > xo. (If ∆(xo) < 0, then let zo < xo). Now, since F is ր and g is
bounded by M , we have

∆(zo − x) ≥ D/2 +Mx for |x| ≤ ǫ = D
2M ,(a)

where ǫ ≡ D/2M and zo ≡ xo + ǫ. Trivially (since D was the supremum),

∆(zo − x) ≥ −D for |x| > ǫ.(b)

Thus, with ∆a ≡ Fa −Ga, using (a) and (b) gives

‖Fa−Ga‖ ≥ ∆a(zo) =
∫∞
−∞ ∆(zo−x)ha(x) dx by the convolution formula(c)

≥
∫ ǫ
−ǫ [D/2 +Mx]ha(x) dx −D

∫
[|x|>ǫ] ha(x) dx(d)

= (D/2)[1−
∫
[|x|>ǫ] ha(x) dx] +M · 0−D

∫
[|x|>ǫ] ha(x) dx

since xha(x) is odd
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= (D/2)− (3D/2)
∫
[|x|>ǫ] ha(x) dx ≥ (D/2)− (12M/πa)

= ‖F −G‖/2− (12M/πa),(e)

(which is (3)), since
∫
[|x|>ǫ] ha(x) dx ≤ 2

∫∞
ǫ (2/πax2) dx = 4/(πaǫ) = 8M/(πaD).(f)

F

G

x

D

x0 z

D/2

ε ε

y = D – Mx

Figure 5.1  Bounds for Esseen’s lemma.

We now bound ‖Fa − Ga‖. By the Fourier inversion formula, Fa and Ga have
bounded continuous “densities” that satisfy

fa(x) − ga(x) =
∫ a
−a e

−itx [φ(t) − ψ(t)] γa(t) dt/(2π).(4)

From this we suspect that

∆a(x) =
1

2π

∫ a

−a
e−itx

φ(t)− ψ(t)
−it γa(t) dt .(5)

That the integrand is a continuous function that equals 0 at t = 0 (since F and G
have 0 “means,” inequality 9.6.1 gives this) makes the right-hand side well-defined,
and we may differentiate under the integral sign by the DCT [with dominating
function γa(·)] to get the previous equation (4). Thus ∆a(x) can differ from the
right-hand side of (5) by at most a constant; but this constant is 0, since obviously

∆a(x) → 0 as |x| → ∞, while the right-hand side does the same by the Riemann–
Lebesgue lemma. Equation (5) gives

|∆a(x)| ≤
1

2π

∫ a

−a

∣∣∣∣
φ(t)− ψ(t)

t

∣∣∣∣ dt for all x.(6)

Combining (3) and (6) gives (1). 2
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Corollary 1 (Stein) Suppose that instead of convolving F and G with the Ha

of (2), we convolve with an arbitrary df H instead. In this situation we obtain

‖F −G‖ ≤ 2 ‖F ∗H −G ∗H‖+ 8 ‖g‖ E|H−1(ξ)| .(7)

Proof. Picking up at line (d) of the previous proof (with Y ∼= H), we obtain

‖F ∗H −G ∗H‖ ≥
∫
[−ǫ,ǫ] [D/2 +My] dH(y)−DP (|Y | > ǫ)(d)

≥ (D/2) [1− P (|Y | > ǫ)]−M E|Y | −DP (|Y | > ǫ)

≥ (D/2)− (3D/2)P (|Y | > ǫ)−M E|Y |

≥ (D/2)− 4M E|Y |(e)

using Markov’s inequality and ǫ ≡ D/2M in the last step. 2
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8 Distributions on Grids

Definition 8.1 We say that a rv X is distributed on a grid if there exist real

numbers a, d such that the probabilities pn ≡ P (X = a+ nd) satisfy
∑∞

−∞ pn = 1.

We call d the span of the grid. The maximal span is sup{|d| : |d| is a span}.

Proposition 8.1 If t0 6= 0, the following are equivalent:

(a) |φ(t0)| = 1.

(b) |φ| has period t0; that is, |φ(t+ nt0)| = |φ(t)| for all n and t.

(c) The rv X is distributed on a grid of span d = 2π/t0.

Proof. Suppose that (a) holds. Then φ(t0) = eiα for some real α. That is,∫
eit0xdF (x) = eiα, or

∫
ei(t0x−α)dF (x) = 1. Taking real parts gives

∫∞
−∞[1− cos(t0x− α)] dF (x) = 0.(p)

Since the integrand is nonnegative for all X , this means that

1− cos(t0x− α) = 0 a.s. F ;(q)

that is,

t0X − α ∈ {2πm : m = 0,±1,±2, . . .} a.s.(r)

That is, X ∈ {α/t0 + (2π/t0)m : m = 0,±1,±2, . . .} a.s.; so (c) holds.

Suppose (c) holds. Then (b) holds, since

|φ(t + nt0)| = |
∑∞
m=−∞ pm e

i(t+nt0)(a+dm)|

= |ei(t+nt0)a| |∑∞
m=−∞ pm e

i(t+nt0)dm|

= |∑∞
m=−∞ pm e

i(t+2πn/d) dm|

= |∑∞
m=−∞ pm e

itdm| |ei2πnm| = |∑∞
m=−∞ pm e

itdm eita| = |φ(t)|.(s)

Suppose that (b) holds. Then

1 = |φ(0)| = |φ(0 + t0n)| = |φ(0 + t0 1)| = |φ(t0)|,(t)

so that (a) holds. 2

Corollary 2 If a = 0 in (c), then we may replace |φ| by φ in (a) and (b), and
proposition 8.1 will still hold.

Proposition 8.2 One of the following possibilities must hold:

(d) |φ(t)| < 1 for all t 6= 0.

(e) |φ(t)| < 1 for 0 < t < 2π/d and |φ(2π/d)| = 1. Thus, X has maximal span d.

(f) |φ(t)| = 1 for all t. And so φ(t) = eiat for all t and P (X = a) = 1, for some a.
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Proof. Clearly, either (d), (e), or (f) holds, or else |φ(tn)| = 1 for some sequence
tn → 0. In this latter case, |φ(mtn)| = 1 for all m, for each n by proposition 8.1.
Since {mtn : n ≥ 1,m = 0,±1,±2, . . .} is dense in R and since φ, and thus |φ|, is
continuous, we must have case (f) again. It remains to establish the consequences
of (e) and (f).

Consider (e). Proposition 8.1 shows that (e) holds if and only if both d is a span
and no number exceeding d is a span.

In the case of (f), we have |φ(t1)| = 1 = |φ(t2)| for some t1 and t2 having
t1/t2 = (an irrational number). But |φ(t1)| = 1 and |φ(t2)| = 1 imply that both
2π/t1 and 2π/t2 are spans. Thus if at least two points have positive mass, then the
distance between them must equal m12π/t1 for some integer m1 and it must equal
m22π/t2 for some integer m2. That is, 2πm1/t1 = 2πm2/t2, or t1/t2 = m1/m2 =
(a rational number). This contradiction shows that there can be at most one mass
point a. 2

Exercise 8.1 (Inversion formula for distributions on a grid) LetX be distributed

on a grid with pn = P (X = a+ dn). Then φ(t) =
∑∞

−∞ pn e
it(a+dn). Show that

pm =
d

2π

∫ π/d

−π/d
φ(t) e−it(a+dm) dt.(1)
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9 Conditions for φ to Be a Characteristic Function
Example 9.1 Now, for a > 0,

F ′
a(x) = [1− cos(ax)]/(πax2) for x ∈ R

is a de la Vallée Poussin density function with chf

φa(t) = (1− |t|/a) 1[−a,a](t) for t ∈ R.

Let Fa denote the df. Then

F ≡
n∑

1

pi Fai with pi ≥ 0,
∑n

1 pi = 1, and 0 < a1 < · · · < an

is a df with characteristic function

φ =
∑n

1 pi φai .

Thus any even function φ ≥ 0 with φ(0) = 1 whose graph on [0,∞) is a convex
polygon is a chf. 2

Proposition 9.1 (Pólya) Let φ ≥ 0 be an even function with φ(0) = 1 whose
graph on [0,∞) is convex and ↓. Then φ is a chf.

Proof. Pass to the limit in the obvious picture, using the continuity theorem
to complete the proof. 2

Bochner’s theorem below gives necessary and sufficient conditions for a function
to be a chf. We merely state it, as a background fact. Its proof can be found in a
number of the standard texts.

Definition 9.1 A complex-valued function φ(·) on R is nonnegative definite if
for any finite set T and any complex-valued function h(·) we have

∑
s,t∈T φ(s− t)h(s)h̄(t) ≥ 0.(1)

Theorem 9.1 (Bochner) A complex-valued function φ(·) is a chf if and only if
it is nonnegative definite and continuous.
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Chapter 10

CLTs via Characteristic
Functions

0 Introduction
The classical CLT states that if X1, X2, . . . are iid (µ, σ2), then

√
n (X̄n − µ)→d N(0, σ2) as n→∞.

This chapter will also consider the following generalizations:

(i) Triangular arrays of row-independent non-iid rvs Xn1, . . . , Xnn for n ≥ 1.

Liapunov, Lindeberg–Feller, and the General CLT.

(ii) The speed of convergence of the dfs to the limiting df, via Berry–Esseen.

(iii) Necessary and sufficient conditions for iid rvs to satisfy the CLT.

(iv) Necessary and sufficient conditions for the weak and strong bootstrap.

(v) Convergence of the density functions as well (the local CLT.)

(vi) Random sample sizes, sample quantiles, and many other examples.

(vii) The multidimensional CLT.

(viii) Non-normal limits (with both the degenerate WLLN and the Poisson).

(ix) Note the summaries in Appendix D.

In chapter 11 we will consider situations that lead to both stable and infinitely
divisible rvs as limits. Edgeworth and other approximations are also considered
there. Chapter 13 includes a discussion of martingale CLTs. Chapter 15 has sections
on trimmed means, asymptotic normality of L-statistics, and asymptotic normality
of R-statistics (the latter includes a finite sampling CLT).

The proofs for (iii) and (iv) above require knowledge of Sections ??.??– ??.??.
An inequality in Sections ??.?? is required for the proofs of the Chapter 15 exam-
ples.
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1 Basic Limit Theorems
The goal of this section is to use a chf approach to present the classical central limit
theorems for sums of iid random variables in R and in Rk. We also compare and
contrast the central limit theorem with the Poisson limit theorem.

The Classical CLT

Theorem 1.1 (Classical CLT) For each n ≥ 1, letXn1, . . . , Xnn be iid F (µ, σ2);

this denotes that the df F (·) of the Xnk’s has mean µ and finite variance σ2. Define

the total Tn ≡ Xn1 + · · ·+Xnn and the average X̄n ≡ Tn/n. Then as n→∞,
√
n (X̄n − µ) = 1√

n
(Tn − nµ) = 1√

n

∑n
k=1(Xnk − µ)→d N(0, σ2) .(1)

Proof. Now, for fixed t we have (with 0 ≤ g(t) ≤ 3/2 and g(t)→ 0 as t→ 0)

φ√n (X̄n−µ)(t) =
∏n
k=1 φ(Xnk−µ)/

√
n (t) = [φXnk−µ(t/

√
n )]n(a)

=

[
1− σ2

2

(
t√
n

)2

+

(
t√
n

)2

σ2 g

(
t√
n

)]n
by inequality 9.6.2

=

[
1− σ2t2

2n
+
t2

n
× σ2 g

(
t√
n

)]n
.(b)

The first product lemma 9.6.3 with θ = −σ2t2/2 trivially applies. Thus

φ√n (X̄n−µ)(t)→ e−σ
2t2/2 = φN(0,σ2)(t) ,(c)

using table 13.1.1. Thus
√
n (X̄n − µ)→d N(0, σ2) by the Cramér–Lévy continuity

theorem 9.5.1 and the uniqueness theorem 9.4.1.

Had we chosen to appeal to the second product lemma 9.6.4 instead, we would
have instead claimed that

∣∣φ√n (X̄n−µ)(t)− (1− σ2t2/2n)n
∣∣

=
∣∣∏n

k=1 φ(Xnk−µ)/
√
n (t)−

∏n
k=1(1 − σ2t2/2n)

∣∣(d)

≤∑n
k=1

∣∣φ(Xnk−µ)/
√
n (t)− (1− σ2t2/2n)

∣∣(e)

≤∑n
k=1(t

2/n)σ2 g(t/
√
n ) = t2 σ2 g(t/

√
n )→ 0.(f)

But (1 − σ2t2/2n)n → exp(−σ2t2/2) = φN(0,σ2)(t), so the continuity theorem and
the uniqueness theorem again complete the proof. 2

Degenerate Limits

Exercise 1.1 (WLLN, or classical degenerate convergence theorem) For
each n ≥ 1, let Xn1, . . . , Xnn be iid with finite mean µ. Use chfs to show the WLLN
result that X̄n →p µ as n→∞. Equivalently,

X̄n →d (the degenerate distribution with mass 1 at µ).(2)
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The Classical PLT

Theorem 1.2 (Classical Poisson limit theorem; the PLT) For each n ≥ 1,
suppose that Xn1, . . . , Xnn are independent Bernoulli(λnk) rvs for which the values

of the parameters satisfy λn ≡
∑n

k=1 λnk → λ ∈ (0,∞) while [max1≤k≤n λnk]→ 0.
(This is true if λn1 = · · · = λnn = λn/n for all n, with λn → λ). Then

Tn ≡ Xn1 + · · ·+Xnn →d Poisson(λ) as n→∞.(3)

Proof. From table 13.1.1 we have φXnk
(t) = 1 + λnk(e

it − 1). Thus

φTn(t) =
∏n
k=1 φXnk

(t) =
∏n
k=1 [1 + λnk(e

it − 1)](a)

→ exp(λ(eit − 1)) by the first product lemma 9.6.3(b)

= φPoisson(λ)(t) by table 13.1.1.(c)

Now apply the Cramér–Lévy continuity theorem and the uniqueness theorem. 2

Exercise 1.2 (Poisson local limit theorem) Show that

P (Tn = k)→ P ( Poisson(λ) = k) as n→∞, for k = 0, 1, . . . ,(4)

when λn1 = · · · = λnn in the PLT. Show that this implies

dTV (Pn, P ) ≡ sup{|Pn(A)− P (A)| : A ∈ B} → 0,(5)

where Tn ∼= Pn and Poisson(λ) ∼= P . [Exercise 11.5.4 will improve this.]

Exercise 1.3 Show that if Tλ ∼= Poisson(λ), then (Tλ − λ)/
√
λ →d N(0, 1) as

the parameter λ→∞.

A Comparison of Normal and Poisson Convergence

Exercise 1.4 (a) Suppose the hypotheses of the classical CLT hold. Show that

Mn ≡
[
max

1≤k≤n
1√
n
|Xnk − µ|

]
→p 0 .(6)

(b) Suppose the hypotheses of the classical PLT hold. Show that

Mn ≡
[
max

1≤k≤n
|Xnk|

]
→d Bernoulli(1 − e−λ) .(7)

(∗) There is something fundamentally different regarding the negligibility of the
corresponding terms in these two cases! The CLT involves summing many tiny
pieces, but the PLT arises from very occasionally having a “large” piece.

Remark 1.1 Let Yn1, . . . , Ynn be independent. Let pǫnk ≡ P (|Ynk| > ǫ). Recall
equation (8.3.14) for the conclusion

Mn ≡
[
max

1≤k≤n
|Ynk|

]
→p 0 if and only if

n∑

k=1

pǫnk → 0 for all ǫ > 0.(8)

This was proved via the (8.3.13) inequality

1− exp(−∑n
k=1 p

ǫ
nk) ≤ P (Mn ≥ ǫ) ≤

∑n
k=1 p

ǫ
nk . 2(9)
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The Multivariate CLT

Theorem 1.3 (Classical multivariate CLT) Let Xn ≡ (Xn1, . . . , Xnk)
′, n ≥ 1,

be a sequence of iid (~µ,Σ) random vectors. Then

1

n1/2

n∑

j=1

(Xj − ~µ)→d Nk(O,Σ) as n→∞.(10)

Proof. For any ~λ ∈ Rk the rvs

Yj ≡ ~λ′(Xj − ~µ ) ∼= (0, ~λ′Σ~λ ) are iid for j = 1, . . . , n.(a)

Thus the classic CLT gives
√
n Ȳn →d N(0, ~λ′Σ~λ ).(b)

That is, Zn ≡ n−1/2
∑n

1 (Xj − ~µ ) satisfies
φ~λ′Zn

(t) = φ√n Ȳn
(t)→ exp(−~λ′Σ~λ t2/2).(c)

Now, if Z ∼= Nk(O,Σ), then ~λ
′Z ∼= N(0, ~λ′Σ~λ ); and hence

φ~λ′Z(t) = exp(−~λ′Σ~λ t2/2).(d)

Thus (c) and (d) give φ~λ′Zn
(t)→ φ~λ′Z(t) for all t ∈ R, for each ~λ ∈ Rk. Thus the

Cramér–Wold theorem (theorem 9.5.2) shows that Zn →d
~Z. 2

Exercise 1.5 (Empirical process; Doob) Let Un ≡
√
n [Gn − I] be the uniform

empirical process of sections 6.5 and 12.10, and let U denote the Brownian bridge
of (A.4.13). Show that Un →fd U as n → ∞; that is, show that for any set of
points 0 < t1 < · · · < tk < 1 we have

(Un(t1), . . . ,Un(tk))→d (U(t1), . . . ,U(tk)) as n→∞.
(Essentially, all results in chapter 12 derive from this example—via a suggestion of
Doob(1949).)

Exercise 1.6 (Partial sum process of iid rvs) Let Sn denote the partial sum
process of iid (0, 1) rvs (see (11) below) and let S denote Brownian motion (as in
(A.4.12)). Show that Sn →fd S as n → ∞. [Hint. Set things up cumulating from
the left, and then transform. Or note that the random element you must consider
can be written in a form equivalent to something simpler. Or use the Cramér–Wold
device. One of these methods is much simpler then the others.]

Exercise 1.7 (Partial sum process) Suppose that Xn1, . . . , Xnn are independent
(0, σ2

nk) and satisfy Lindeberg’s condition (10.2.11) below. Define Sn on [0, 1] via

Sn(t) =
∑k
i=1Xni/snn for

s2nk
s2nn
≤ t <

s2n,k+1

s2nn
, 0 ≤ k ≤ n,(11)

with s2nk ≡
∑k

i=1 σ
2
ni and s

2
n0 ≡ 0. Show that Sn →fd S, where S denotes Brownian

motion. (Only attempt this problem following theorem 10.2.2.)
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Example 1.1 (Chisquare goodness of fit statistic) Suppose Ω =
∑k
i=1 Ai.

Now let X1, . . . , Xn be iid on (Ω,A) with all pi ≡ P (X ∈ Ai) > 0. Let

Nni ≡
n∑

j=1

1Ai(Xj) ≡ ( the number of Xj ’s that fall in Ai) for 1 ≤ i ≤ k.(12)

(a) Now, (Z1j , . . . , Zkj)
′, with Zij ≡ (1Ai(Xj) − pi)/√pi , has mean vector O and

covariance matrix Σ = |[σii′ ]| with σii = 1− pi and σii′ = −√pi pi′ for i 6= i′.

(b) Thus Wn ≡
∑n

1 Zj/
√
n→d W ∼= Nk(O,Σ) as n→∞, by theorem 1.3.

(c) The usual chisquare goodness of fit statistic is

Qn(p ) ≡
k∑

i=1

(Nni − npi)2
npi

=

k∑

i=1

(Observedi − Expectedi)
2

Expectedi
(13)

= W′
nWn →d W

′W by the Mann–Wald theorem

= (GW)′(GW) ∼= Chisquare(k − 1) ;(14)

here G is k×k and orthogonal with first row
√
p ′, so that GΣG′ = G[I−√p√p ′ ]G′

= I − (1, 0, . . . , 0)′(1, 0, . . . , 0). This has diagonal elements (0, 1, 1, . . . , 1) with all
off-diagonal elements 0, and then GW ∼= N(O, GΣG′) (by (7.3.5) and (A.3.6)). We
also use (A.1.29) for (16). [If a value of Expected is unknown, it should be replaced
by an appropriate estimator Êxpected.] (See exercise 10.3.26 below.) (This statistic
is just a quadratic form.) 2

Exercise 1.8∗[Independence in an I × J table] Suppose both Ω =
∑I
i=1 Ai and

Ω =
∑J
j=1 Bj represent partitions of Ω.

(a) Let pij ≡ P (AiBj) = pi·p·j, where pi· ≡ P (Ai) and p·j ≡ P (Bj). Let
Nij ≡ (the number of iid observations X1, . . . , Xn that fall in AiBj).

Let p̂i· ≡
∑J
j=1Nij/n and p̂·j ≡

∑I
i=1Nij/n. Show that

Qan ≡
∑I
i=1

∑J
j=1 (Nij − np̂i·p̂·j)2/(np̂i·p̂·j)→d Chisquare((I − 1)(J − 1)).(15)

(b) Let pi|j ≡ P (Ai|Bj). Let n ≡ n·1 + · · · + n·J . For each 1 ≤ j ≤ J , let

Nij ≡ (the number of iid P (·|Bj) observations X
(j)
1 , . . . , X

(j)
nj that fall in AiBj).

Let p̂i|j ≡
∑J

j=1Nij/n·j. Show that when σ[A1, . . . , AI ] and σ[B1, . . . , BJ ] are

independent, the chisquare statistic satisfies

Qbn ≡
∑I
i=1

∑J
j=1 (Nij − nj p̂i|j)2/(nj p̂i|j)→d Chisquare((I − 1)(J − 1))(16)

as n1 ∧ · · · ∧ nJ →∞.

(∗) Suppose that both sets of marginal totals n1·, . . . , nI· and n·1, . . . , n·J are fixed,
and that both sum to n. Suppose that n balls are assigned to the IJ cells at random
without replacement, subject to the side conditions on the marginal totals stated
above. Let Nij denote the number assigned to the (i, j)-th cell. It holds that

Qcn ≡
∑I

i=1

∑J
j=1 (Nij−ni·n·j/n)

2/(ni·nj·/n)→d Chisquare((I − 1)(J − 1))(17)
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as (n1· ∧ · · · ∧ nI·) ∧ (n·1 ∧ · · · ∧ n·J) → ∞. [Suppose I = 5 different social groups
are at work in broadcasting, where the sum of the I group sizes ni· of our data
is n = 250. The number whose salaries fall in each decile (thus J = 10) of the
observed salaries is necessarily n·j = n/J = 25. The statistic in (17) can be used
to test for independence of group and salary level.] 2

Limiting Distributions of Extremes

Exercise 1.9 (a) Let ξn1, . . . , ξnn be iid Uniform(0, 1) rvs. Then the sample
minimum ξn:n satisfies nξn:n → Exp(1).

(b) Now, ξn:n is the sample maximum. Determine the joint asymptotic distribution
of nξn:1 and n(1− ξn:n).

Exercise 1.10 (Special cases of Gnedenko’s theorem) Let Xn:n be the maximum
of an iid sample X1, . . . , Xn from F (·). Then:

P (Xn:n − logn ≤ y)→ exp(−e−y) for all y ∈ R,
when 1− F (x) = e−x for x ≥ 0.

(a)

P (n1/bXn:n ≤ y)→ exp(−|y|b) for all y < 0,

when 1− F (x) = |x|b for − 1 ≤ x ≤ 0, with b > 0.
(b)

P (Xn:n/n
1/a ≤ y)→ exp(−y−a) for all y > 0,

when 1− F (x) = 1/xa for x ≥ 1, with a > 0.
(c)

[Distributions that are “suitably similar” to these prototypes yield the same limiting
results, and these limits are the only possible limits.]
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2 Variations on the Classical CLT
Notation 2.1 LetXnk, 1 ≤ k ≤ n for each n ≥ 1, be row-independent rvs having

means µnk and variances σ2
nk, and let γnk ≡ E|Xnk − µnk|3 < ∞ denote the third

absolute central moments . Let

sdn ≡
√∑n

k=1 σ
2
nk and γn ≡

∑n
k=1 γnk , and let(1)

Zn ≡ 1

sdn

n∑

k=1

[Xnk − µnk] .(2)

Let φnk(·) denote the chf of (Xnk − µnk)/sdn. 2

Theorem 2.1 (Rate of convergence in the CLT) Consider the rvs above.
The df FZn of the standardized Zn is uniformly close to the N(0, 1) df Φ, in that

‖FZn − Φ‖ ≤ 13 γn/sd
3
n .(3)

Corollary 1 (Liapunov CLT)

Zn →d N(0, 1) whenever γn/sd
3
n → 0.(4)

Corollary 2 (Berry–Esseen for iid rvs) Let Xn1, . . . , Xnn be iid rvs with df

F (µ, σ2) having γ ≡ E|X − µ|3 <∞. Then

‖FZn − Φ‖ ≤ 8 γ

σ3
√
n
.(5)

Proof. A much simpler proof of (4) is asked for in exercise 2.4 below. Here
we give a delicate proof of the rate of convergence to normality in (3) based on
Esseen’s lemma, with (4) as a (too difficult) corollary. Without loss, we assume
that all µnk = 0. Now, let a ≡ sd3n/γn; and assume throughout that a ≥ 9 (note

that (3) is meaningless unless a > 13). (Recall that a = b ⊕ c means |a − b| ≤ c.)
Note that∣∣∣φZn(t)− e−t

2/2
∣∣∣ =

∣∣∣
∏n
k=1 φnk(t)− e−t

2/2
∣∣∣

≤ e−t2/2
∣∣∣e

{∑n

k=1
Log φnk(t)

}
+t2/2 − 1

∣∣∣

≡ e−t2/2 |ez − 1| ≤ e−t2/2 |z| e|z| by (9.6.3)(6)

for all z, where

|z| =
∣∣∣∣∣
n∑

k=1

Log φnk(t) + t2/2

∣∣∣∣∣ =
∣∣∣∣∣
n∑

k=1

{
Log (1 + [φnk(t)− 1])− i2 t2σ2

nk

2 sd2n

}∣∣∣∣∣(a)

≤
∣∣∣∣∣
n∑

k=1

{
[φnk(t)−

(
1 +

i2t2σ2
nk

2 sd2n

)
]⊕ |φnk(t)− 1|2

}∣∣∣∣∣(7)

provided that |φnk(t)− 1| ≤ 1
2 , using (9.6.2)
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≤ |t|
3

6

γn

sd3n
+

n∑

k=1

(
|t|3/2E|Xnk|3/2

sd3/2n

K1,1/2

)2

where K2
1,1/2 = 8

9(b)

using (9.6.4) [with m = 2 and δ = 1, then with m = 1 and δ = 1
2 ]

≤ 1
2a |t|3

(
19
9

)
with a ≡ sd3n/γn(c)

using the Liapunov inequality for (E|Xnk|3/2)2 ≤ γnk. But validity of (7) required

that all |φnk(t)− 1| ≤ 1
2 . However, (9.6.4) with m = 1 and δ = 1 gives

|φnk(t)− 1| ≤ 1
2 t

2 σ2
nk/sd

2
n ≤ 1

2 a
2/3[γn/sd

3
n]

2/3 on |t| ≤ a1/3(d)

≤ 1
2 on |t| ≤ a1/3.(e)

Consider for a moment the Liapunov CLT of Corollary 1. For any fixed t, the

bound on |z| in (c) goes to 0 whenever 1/a = γn/sd
3
n → 0. Moreover, (e) always

holds when γn/sd
3
n → 0, since (max σ2

nk/sd
2
n)

3/2 ≤ (max γnk/sd
3
n) ≤ (γn/sd

3
n)→ 0.

Thus φn(t)→ exp(−t2/2) and Zn →d N(0, 1) by (6), whenever γn/sd
3
n → 0. That

is, the Liapunov CLT corollary 1 holds. [This is already a good CLT!]

We now turn to theorem 2.1 itself. Since the bound of (c) gives

|z| ≤ 1
2a |t|3 19

9 ≤ 1
4 t

2 when |t| ≤ 9
38 a (and as a1/3 ≤ 9

38 a, if a ≥ 9),(f)

we can claim from(6), (e) and (c) that

|φZn(t)−e−t
2/2|≤ 19

18a |t|3 e−t
2/4 ≤ 2

a |t|3 e−t
2/4 for |t| ≤ a1/3 (when a ≥ 9).(g)

(Having the bound in (g) only over the range |t| ≤ a1/3 is not sufficient for what is
too come; we extend it in the next paragraph.)

Now, |φn(t)|2 is the chf of the symmetrized rv Zsn ≡ Zn − Z ′
n (and this rv has

mean 0, variance 2, and third absolute moment bounded above by 8γn/sd
3
n (via the

Cr-inequality)). Thus

|φZn(t)| ≤ [ |φn(t)|2 ]1/2 ≤ [1 + 0− 2t2

2! + |t|3
3! 8γn/ sd

3
n ]

1/2

≤ exp(−t2 [ 12 −
2|t|
3 γn/ sd

3
n ]) using 1− x ≤ e−x(h)

≤ exp(−t2/4) for |t| ≤ (3/8) (sd3n/γn),(i)

as was desired. This leads to

|φZn(t)− e−t
2/2| ≤ 2 e−t

2/4 ≤ 2
a |t|3 e−t

2/4 for a1/3 ≤ |t| ≤ 3
8a.(j)

Key chf inequality Combining (6), (e), (f) and (h) gives (provided a ≥ 9)
∣∣∣φZn(t)− e−t

2/2
∣∣∣ ≤ (2 |t|3 γn/sd3n ) e−t

2/4 for 0 ≤ |t| ≤ 3
8 sd

3
n/γn = 3

8 a.(8)
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We apply Esseen’s lemma to (8) and get (since we know the variance of a normal
distribution)

‖FZn − Φ‖ ≤
∫ (3/8)a

−(3/8)a

1

π|t|
2|t|3
a

e−t
2/4 dt+

3.04769

(3/8) a
(k)

≤ 1

a

[
2

π

∫ ∞

−∞
t2e−t

2/4 dt+
3.04769

3/8

]

= [8/
√
π + (8/3) 3.04769]/a

.
= 12.641/a ≤ 13/a.(l)

In the iid case use K1,1 = 1
2 and β ≡ E|X |3/σ3 = γ/σ3 ≥ 1 in (b), and obtain

|z| ≤ |t|
3β

6
√
n
+ n

(
t2σ2

2nσ2

)2

≤ |t|
3β

6
√
n
+
t4β2

4n

≤ 5

12

β√
n
|t|3 ≤ 5

12
|t|3 for all |t| ≤ √n/β,(m)

with (e) necessarily valid. Thus (8) can be replaced in the iid case by

|φZn(t)− e−t
2/2| ≤ 5

12

γ

σ3
√
n
|t|3 e−t2/12 on 0 ≤ |t| ≤ √nσ3/γ;(9)

this yields 8γ/
√
nσ3 when the steps leading to (l) are repeated. 2

Theorem 2.2 (Lindeberg–Feller) LetXn1, . . . , Xnn be row independent, with

Xnk
∼= (µnk, σ

2
nk). Let sd

2
n ≡

∑n
1 σ

2
nk. The following statements are equivalent:

Zn →d N(0, 1) and [max1≤k≤n P ( |Xnk − µnk|/sdn > ǫ)]→ 0 .(10)

LF ǫn ≡
n∑

k=1

∫

[ |x−µnk|≥ǫ sdn]

[
x− µnk
sdn

]2
dFnk(x)→ 0 for all ǫ > 0 .(11)

[Condition (11) implies thatMn ≡ [max1≤k≤n |Xnk−µnk|/sdn]→p 0, via (10.1.9).]

Proof. (Lindeberg) We prove the sufficiency here, with the necessity considered
in the following separate proof. We note that the moment expansion inequality
(found in inequality 9.6.1) gives bounds on βnk(t), where

φnk(t) ≡ 1 + θnk(t) ≡ 1− σ2
nk

sd2n

t2

2
+ βnk(t)(12)

defines θnk(t) and βnk(t). Moreover (in preparation for the product lemma)

φZn(t) =
∏n
k=1 φnk(t) =

∏n
k=1 [1 + θnk(t)] =

∏n
k=1

[
1− σ2

nk

sd2n

t2

2
+ βnk(t)

]
(13)

where

θn(t) ≡
n∑

k=1

θnk(t) = −
t2

2

n∑

k=1

σ2
nk

sd2n
+

n∑

k=1

βnk(t) = −t2/2 +
n∑

k=1

βnk(t) .(14)
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The inequality of (9.6.4) (compare this with (9.6.10), and with (7)) gives
∣∣∣∣∣
n∑

k=1

βnk(t)

∣∣∣∣∣ =
∣∣∣∣∣
n∑

k=1

[
φnk(t)− 1− 0 +

σ2
nk

sd2n

t2

2

]∣∣∣∣∣(a)

≤
n∑

k=1

∣∣∣
∫ {

eit (x−µnk)/sdn −
[
1 +

it(x− µnk)
sdn

+
[it(x− µnk)]2

2 sd2n

]}
dFnk(x)

∣∣∣(15)

≤
n∑

k=1

∫

[|(x−µnk)|<ǫ sdn]

1

6

∣∣∣∣
it(x− µnk)

sdn

∣∣∣∣
3

dFnk(x)(b)

+
n∑

k=1

∫

[|(x−µnk)|≥ǫ sdn]

1
2

∣∣∣∣
it(x− µnk)

sdn

∣∣∣∣
2

dFnk(x)(c)

≤ ǫ |t|
3

6

[∑n
k=1σ

2
nk

sd2n

]
+ t2

2

n∑

k=1

∫

[|(x−µnk)|≥ǫ sdn]

[
x− µnk
sdn

]2
dFnk(x) .(16)

Thus normality holds, since the integral in (16) goes to 0 for all ǫ > 0 by (11).

Note that [max1≤k≤n |θnk(t)| ]→ 0 as required by the product lemma, since we

can use inequality 9.6.1 on the θnk(t) in (12) to claim that |θnk(t)| ≤ t2

2 σ
2
nk/sd

2
n,

and then use (11) on the second term below to claim that

σ2
nk/sd

2
n ≤ [

∫
[|x−µnk|≤ǫ sdn]

(x− µnk)2 dFnk(x)/sd2n(d)

+
∫
[|x−µnk|>ǫ sdn]

(x− µnk)2 dFnk(x)/sd2n

≤ ǫ2 + o(1) ≤ ǫ, for n ≥ (some nǫ) . 2(e)

Proof. (Feller) We proved sufficiency in the previous proof; we now turn
to necessity. Suppose that condition (10) holds. Applying (9.6.2) [since the easy
exercise 10.2.9 below applied to our uan rvs shows that the terms znk = φnk(t)− 1
converge uniformly to 0 on any finite interval] gives

|∑n
k=1 Log φnk(t)−

∑n
k=1 [φnk(t)− 1] | ≤∑n

k=1 |φnk(t)− 1|2(17)

≤ [max1≤k≤n |φnk(t)− 1|]× (t2/2)× [
∑n
k=1 σ

2
nk/sd

2
n] by (9.6.5)(18)

≤ o(1)× (t2/2) × 1→ 0, using (10) via exercise 2.1.(a)

We thus have (for any finite M)

Log
∏n

1 φnk(t) =
∑n

1 [φnk(t)− 1] + o(1), uniformly on any |t| ≤M .(b)
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But we also know that

Log
∏n

1 φnk(t)→ −t2/2,(c)

since we have assumed asymptotic normality. [Recall that a = b ⊕ c means that
|a− b| ≤ c.] Combining (b) and (c) shows that for every tiny ǫ > 0 and every huge
M > 0 we have

−t2/2 = Real(−t2/2) = Real{∑n
1 [φnk(t)− 1]} ⊕ ǫ for |t| ≤M(19)

for all large n; that is, for n ≥ (some nǫM ) we have

t2/2 =
∑n

1

∫
[1− cos(t (x− µnk)/sdn)] dFnk(x) ⊕ ǫ on |t| ≤M.(20)

Define yk ≡ (x − µnk). We further define Ink ≡ [|x− µnk| < ǫ sdn]. Note that

0 ≤ 1− cos(ty/sdn) ≤ (t2y2/2 sd2n).(d)

Thus for all |t| ≤M we have for all n ≥ nǫM that

(t2/2)
∑n
k=1

∫
Icnk

(y2k/sd
2
n) dFnk(x) = (t2/2) [1−∑n

k=1

∫
Ink

(y2k/sd
2
n) dFnk(x)](e)

= (t2/2)−∑n
k=1

∫
Ink

(t2y2k/2 sd
2
n) dFnk(x)

≤ (t2/2)−∑n
k=1

∫
Ink

[1− cos(tyk/sdn)] dFnk(x) by (d)(f)

=
∑n

k=1

∫
Icnk

[1−cos(tyk/sdn)] dFnk(x)⊕ǫ by (20) [the key step](21)

≤ 2
∑n
k=1

∫
Ic
nk
dFnk(x)+ǫ (= 2

∑n
k=1 P (|

Xnk − µnk
sdn

| ≥ ǫ)+ǫ = 2
ǫ2 +ǫ)(g)

≤ (2/ǫ2)
∑n

k=1

∫
Icnk

(y2k/sd
2
n) dFnk(x) + ǫ(h)

≤ 2/ǫ2 + ǫ .(i)

Specifying t2 = M2 = 4/(ǫ2 × θ) in (g) (for any fixed 0 < θ < 1) shows that for all
n ≥ nǫθ we have

sd−2
n

∑n
1

∫
Icnk

y2k dFnk(x) ≤ ( 2
ǫ2 + ǫ) 1

2 ǫ
2 θ ≤ 2 θ,(j)

where θ > 0 is arbitrary. Thus, the Lindeberg condition (11) holds. 2
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Exercise 2.1 (Characterizations of “uan”) The following are equivalent:

|Xnk|’s are uan; that is, [max1≤k≤n P (|Xnk| ≥ ǫ)]→ 0 for all ǫ > 0.(22)

[max1≤k≤n |φnk(t)− 1| ]→ 0 uniformly on every finite interval of t’s.(23)

max1≤k≤n E(X2
nk ∧ 1) = max1≤k≤n

∫
(x2 ∧ 1) dFnk(x)→ 0.(24)

Exercise 2.2 Phrase a simple consequence of the Liapunov CLT that applies to
uniformly bounded row independent rvs Xnk.

Exercise 2.3 Provide the steps leading to (9) referred to in the Berry-Esseen proof.

Remark 2.1 (Lindeberg’s condition) (i) If Lindeberg’s condition fails, it may
still be true that

Sn/sdn →d N(0, a2) with a2 < 1 and [max1≤k≤n σ
2
k/sd

2
n]→ 0.(a)

Let Y1, Y2, . . . be iid (0, 1) rvs, so that
√
n Ȳn →d N(0, 1) by the CLT. Now let

the rv’s Uk be independent (0, c2) with Uk equal to −ck, 0, ck with probabilities

1/(2k2), 1 − 1/k2, 1/(2k2). Since
∑∞

1 P (|Uk| ≥ ǫ) =
∑∞

1 k−2 < ∞, the Borel–

Cantelli lemma shows that for a.e. ω the rv sequence Uk satisfies Uk 6= 0 only

finitely often. Thus
√
k Ūk →a.s. 0 follows. For n ≥ 1 set Xn ≡ Yn + Un, and let

Sn ≡ X1+ · · ·+Xn. Note that sd
2
n ≡ Var[Sn] = (1+c2)n. So, by Slutsky’s theorem,

Sn/sdn = (
√
n Ȳn)/

√
1 + c2 + (

√
n Ūn)/

√
1 + c2

→d N(0, 1)/
√
1 + c2 + 0 ∼= N(0, 1/(1 + c2))

= N(0, a2) with a2 = 1/(1 + c2) < 1.(b)

(One could also let c =
√
n, and have a = 0 in (b).) Note that [maxσ2

nk/sd
2
n]→ 0.

But, even so, Lindeberg’s condition fails, since

LF ǫn =
a2

n

∑n
k=1

∫
[|x|≥ǫ√n/a ] x

2 dFXk
(x)

∼ a2

n

∑

{k:ck≥ǫ√n/a}

(kc)2

k2
+o(1) ∼ c2

1 + c2
1

n

∑

{k:ck≥ǫ√n/a}
1→ c2

(1 + c2)
> 0;(c)

the nonzero contribution shown in the last step is due to the Uk’s, whereas we do
already know that the contribution due to the Yk’s is o(1). This example shows
that it is possible to have Xn →d X without having Var[Xn]→ Var[X ]. Note that

Var[N(0, 1/(1 + c2)] = 1/(1 + c2) < 1 = lim 1 = limVar[Sn/sdn] (via the Fatou
lemma and Skorokhod’s theorem).

(ii) Note that if Xn1
∼= N(0, pn), for some 0 < p < 1, Xnk ≡ 0 for 2 ≤ k ≤ [pn], and

Xnk
∼= N(0, 1) for pn < k ≤ n for independent rvs Xnk, then Sn/sdn →d N(0, 1),

while Lindeberg’s condition fails and [max1≤k≤n σ2
nk/sd

2
n]→ p > 0. 2
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Remark 2.2 It is known that the constant 8 in (5) can be replaced by 0.7975.
It is also known in the iid case with E|X |3 < ∞ that the “limiting distribution
measure” d(F,Φ) ≡ limn→∞

√
n ‖FZn−Φ‖ exists, and that this measure achieves the

bound supF (σ3/γ) d(F,Φ) = (
√
10 + 3)/(6

√
2π ) = 0.409. This sup is achieved by

c [Bernoulli(a)−a], where c = (
√
10−3)/2 and a = (4−

√
10 )/2. Thus the constant

0.7975 cannot be greatly improved. Many other improvements and refinements
of the Berry–Esseen theorem are possible. The books by Bhattacharya and Rao
(1976, pp. 110, 240) and Petrov(1977) both give many. We list three as “exercises”
in exercise 2.15 below. 2

Exercise 2.4 (Liapunov’s (2 + δ)-CLT) Define γδnk = E|Xnk − µnk|2+δ for every

value 0 < δ ≤ 1. Suppose we have Liapunov’s (2 + δ)-condition that
∑n

k=1 E|Xnk − µnk|2+δ/sd2+δn → 0 for some 0 < δ ≤ 1.(25)

Show that 1

sdn

∑n
1 (Xnk−µnk)→d N(0, 1). (Appeal first to (9.6.5). Alternatively,

verify that all LF ǫn → 0.)

Exercise 2.5 Construct an example with iid X1, X2, . . . for which the Lindeberg
condition holds, but for which Liapunov’s (2+ δ)-condition fails for each 0 < δ ≤ 1.

Exercise 2.6 (Liapunov-type WLLN) Let Xn1, . . . , Xnn, n ≥ 1, be a triangular
array of row-independent rvs with 0 means. Then

∑n
k=1 E|Xnk|1+δ/n1+δ → 0 for some 0 < δ ≤ 1

implies that X̄n →p 0 as n→∞. (Or, mimic the WLLN proof.)

Exercise 2.7 (Pitman) For iid rvs, X̄n →p a holds if and only if φ′(0) = ai.

Exercise 2.8 (i) Show that Lindeberg’s condition that all LF ǫn → 0 implies Feller’s
condition (which is not strong enough to guarantee asymptotic normality) that

[max1≤k≤n σ
2
nk ] / sd

2
n → 0.(26)

(ii) Let Xn1, . . . , Xnn be row independent Poisson(λ/n) rvs, with λ > 0. Discuss
which of Lindeberg–Feller, Liapunov, and Feller conditions holds in this context.

(iii) Repeat part (ii) when Xn1, . . . , Xnn are row independent and all have the
probability density c x−3(log x)−2 on x ≥ e (for some constant c > 0).

(iv) Repeat part (ii) when P (Xnk = ak) = P (Xnk = −ak) = 1/2 for the row
independent rvs. Discuss this for general ak ≥ 0, and present interesting examples.

Exercise 2.9 Let Xn1, . . . , Xnn be row independent, with Xnk
∼= (µnk, σ

2
nk). Let

Tn ≡ Zn1 + · · ·+Znn, and set µn ≡
∑n

1 µnk = ETn and sd2n ≡
∑n

1 σ
2
nk = Var[Tn].

The following statements are equivalent:

Zn ≡ (Tn − µn)/ sdn →d N(0, 1) and [max1≤k≤n σ
2
nk ]/ sd

2
n → 0 .(27)

LF ǫn ≡
∑n

k=1

∫
[ |x−µnk|≥ǫ sdn]

[
x−µnk

sdn

]2
dFnk(x)→ 0 for all ǫ > 0 .(28)

(Example 11.1.2 treats the current exercise by a different method.)
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Exercise 2.10 Complete the proof of theorem 8.8.1 regarding the equivalence
of →d, →p, and →a.s. for sums of independent rvs.

Exercise 2.11 Formulate a WLLN in the spirit of the Lindeberg–Feller theorem.

Exercise 2.12 Establish the (2 + δ)-analogue of theorem 2.1. [Hint. Use both
2 + δ and 1 + δ/2 moments in line (b) of the theorem 2.1 proof, via lemma 9.6.2.]

Exercise 2.13 Construct a second example that satisfies the key property of
remark 2.1(i), that the limiting variance is not the limit of the variances.

Exercise 2.14 (Large deviations; Cramér)) Let Xn1, . . . , Xnn be iid F . Suppose
X ∼= F has a moment generation function M(t) ≡ E etX that is finite in some
neighborhood of the origin. Let Zn ≡

√
n (X̄n − µ)/σ, and let Z ∼= N(0, 1), Then

P (Zn > xn)/P (Z > xn)→ 1 provided xn/n
1/6 → 0.(29)

(This exercise is repeated again later as exercise 11.6.6.)

Exercise 2.15∗ (a) (Petrov) Suppose Xn1, . . . Xnk are row independent rvs for

which Xnk
∼= (0, σ2

nk), and set σ2
n ≡

∑n
k=1 σ

2
nk and Fn(x) ≡ P (Sn/σn ≤ x). Then

for some universal constant C we have

‖Fn−Φ‖ ≤ C
[
σ−3
n

∑n
k=1 EX

3
nk 1[|Xnk|<ǫσn] + σ−2

n

∑n
k=1 EX

2
nk 1[ |Xnk|≥ǫσn]

]
.(30)

(b) (Petrov) If E[X2
nk g(Xnk)] <∞ for 1 ≤ k ≤ n where

g ≥ 0 is even and ր for x > 0, and x/g(x) is ր for x > 0,(31)

then for some absolute constant C we have the very nice result

‖Fn − Φ‖ ≤ C∑n
1 E[X

2
nk g(Xnk)]/σ

2
n g(σn).(32)

(c) (Nagaev) Bounds on |Fn(x) − Φ(x)| that decrease as |x| → ∞ are given (in
the iid case) in the expression

|Fn(x)− Φ(x)| ≤ C(E|X |3/σ3)/(
√
n (1 + |x|3)) for all real x.(33)

(d) (Bernstein) Let r > 2. Consider row-independent rvs Xn1, . . . , Xnn for which

we have Xnk
∼= (0, σ2

nk). Let Zn ≡
∑n
k=1(Xnk − µnk)/σn.

(α) Let
∑n

1 E |Xnk|r/σr/2n → 0. Then Zn →d N(0, 1) and E|Zn|r → E|N(0, 1)|r.
(β) The converse holds if [max1≤k≤n σ2

nk/ sd
2
n]→ 0 is also true.

(∗) See Petrov (1975, pp. 118, 113, 125, 103) for (a), (b), (c), and (d).

Exercise 2.16 Beginning with (15), try to obtain the Berry–Esseen bound (but
with a different constant) by appeal to the second product lemma.
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3 Examples of Limiting Distributions

Example 3.1 (Delta method) (a) Suppose cn [Wn − a]→d V where cn →∞,
and suppose g(·) is differentiable at a (recall (4.3.6) and (4.3.12)). Then (as in the
chain rule proof of calculus) immediately

cn [ g(Wn)− g(a)] =a {g′(a)} · cn [Wn − a]→d {g′(a)} · V .(1)

[Recall that Un=a Vn means that Un − Vn →p 0.]

(b) The obvious vector version of this has the conclusion

cn [ g(Wn )− g(a )] =a {∇g(a)} · cn [Wn − a ] . 2(2)

Example 3.2 (Asymptotic normality of the sample variance) Suppose the
rvs X1, . . . , Xn are iid (µ, σ2) with µ4 ≡ EX4 <∞ and σ2 > 0. Then

S2
n ≡

1

n− 1

n∑

k=1

(Xk − X̄)2 = (the sample variance).(3)

For a useful phrasing of conclusions, define

Zk ≡ (Xk − µ)/σ ∼= (0, 1) ,

Yk ≡ Z2
k = [(Xk − µ)/σ]2 ∼= (1, µ4

σ4 − 1) = (1, 2 (1 + γ2/2)) ,
(4)

where γ2 ≡ (µ4 − 3σ4)/σ4 ≡ (the kurtosis) measures the tail heaviness of the
distribution of X . We will show that as n→∞ both

√
n [S2

n − σ2 ] 1√
2σ2

=a
1√
2

√
n [ Ȳn − 1]→d N(0, 1 + γ2/2) and(5)

√
n [Sn − σ] 2

σ =a
√
n [ Ȳn − 1]→d

√
2 N(0, 1 + γ2/2) . 2(6)

Proof. Now,

S2
n

σ2 = 1
n−1

∑n
k=1

(Xk−X̄n)
2

σ2 = n
n−1

1
n

∑n
k=1 [(

Xk−µ
σ )− ( X̄n−µ

σ )]2

= n
n−1

1
n

∑n
k=1 [Zk − Z̄n]2 .(a)

Then note from (a) that

√
n (S2

n − σ2)√
2σ2

=
n

n− 1

1√
2

{√
n ( Ȳn − 1)−√n Z̄2

n

}
−

√
n√

2 (n− 1)
(b)

=a
1√
2

√
n ( Ȳn − 1)→d N(0,Var[Y ]/2). 2(c)
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Exercise 3.1 (a) Determine the joint limiting distribution of
√
n (X̄n − µ) and√

n (Sn − σ) in the iid case, where S2
n ≡ [

∑n
1 (Xk − X̄n)

2/(n − 1)]. (Consider the
representation of Sn in (6) as a normed sum of the rvs Yk.) What condition on the
moments is required for the result?
(b) Find the asymptotic distribution of the (appropriately normalized) coefficient
of variation Sn/X̄n in this iid case; that is, consider

√
n (Sn/X̄n − σ/µ). Obtain a

useful representation by appealing to part (a). (Suppose now that all Xk ≥ 0.)
(c) Note that (6) provides a stronger conclusion than just asymptotic normality, in
that it forms a superb starting point for the further asymptotic work in (a) and (b).
Note also (13) below.

Exercise 3.2 (Moments of X̄n and S2
n) Let X1, . . . , Xn be iid. Note/show

that (provided that µ or σ2 is well-defined) X̄n
∼= (µ, σ2) and ES2

n = σ2. Show that
(provided that µ3 or µ4 is well-defined):

E(X̄n − µ)3 = µ3

n2 .(7)

E(X̄n − µ)4 = 3σ4

n2 + µ4−3 σ4

n3 .(8)

Var[S2
n] =

1
n {µ4 − n−3

n−1 σ
4 } and Cov[X̄n, S

2
n] =

1
n µ3 .(9)

Exercise 3.3 If X1, . . . , Xn are iid (µ, σ2), then
√
n [X̄2

n−µ2 ]→d 2µ×N(0, σ2)

(by the delta method). What is the asymptotic distribution of nX̄2
n when µ = 0?

Exercise 3.4 (Two sample problems) If
√
m (Sm − θ) →d N(0, 1) as m → ∞

and
√
n (Tn − θ) →d N(0, 1) as n → ∞ for independent rvs Sm and Tn, then

√

mn

m+n
(Sm − Tn) →d N(0, 1) as m ∧ n → ∞. [Hint: Suppose initially that λmn ≡

m/(m + n) → λ ∈ [0, 1]. Use Skorohod (or, use convolution or chfs) to extend it.]
This is useful for the two-sample t-test and F -test.

Exercise 3.5 (Simple linear rank statistics) Let TN ≡ 1√
N

∑N
1 ci aπ(i), where

(π(1), . . . , π(N)) achieves each of the N ! permutations of (1, . . . , N) with probability

1/N ! . Here, the ci and ai are constants. Show that:

Eaπ(i) = āN , Var[aπ(i)] = σ2
a ≡ 1

N

∑N
1 (ai − āN)2 ,

Cov[ aπ(i) , aπ(j) ] = − 1
N−1 σ

2
a for all i 6= j .

(10)

1√
N
ETN = c̄N · āN , Var[TN ] =

N
N−1 σ

2
c σ

2
a .(11)

[Hint. Var[
∑N

1 aπ(i) ] = 0, as in (A.1.8).]

Example 3.3 (The median Ẍn) The population median of the distribution of
a rv X ’s is any value θ satisfying P (X ≤ θ) ≥ 1

2 and P (X ≥ θ) ≥ 1
2 . Let X1, . . . , Xn

be iid with df F (· − θ), for some θ ∈ R, where F (0) = 1
2 and F ′(0) > 0 exists and

exceeds zero. (Thus Xi
∼= θ + ǫi, for ǫi’s that are iid F (·) with a unique median
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at 0.) The ordered values of the Xk’s are denoted by Xn:1 ≤ · · · ≤ Xn:n, and are
called the order statistics. The sample median Ẍn is defined to be Xn:m or any
point in the interval [Xn:m, Xn:m+1] according as n equals 2m+ 1 or 2m is odd or

even. Let X l
n and Xr

n denote the left and right endpoints of the interval of possible
sample medians (of course, X l

n = Xr
n = Xn:m+1 if n = 2m + 1 is odd). Let Ẍn

denote any sample median. (a) Then

Z1n ≡
√
n [Ẍn − θ]→d Z1

∼= N(0, 1
4[F ′(0)]2 ) .(12)

(b) If F (·) ∼= (µ, σ2) also, then Z2n ≡
√
n [X̄n − (µ+ θ)]→d Z2

∼= N(0, σ2).

(c) In fact, the limiting normal distribution is given by (Z1n, Z2n) →d (Z1, Z2),
where the covariance of the limiting normal distribution is given by

E{[ǫ− µ]× [1[ǫ>0] − 1/2]/F ′(0)} . 2(13)

Proof. By the event equality [Xr
n − θ ≤ y/

√
n ] = [

∑n
1 1[Xi−θ≤y/

√
n ] > n/2],

we have

P (
√
n [Xr

n − θ] ≤ y) = P (Xr
n − θ ≤ y/

√
n ) = P (

∑n
1 1[Xi−θ≤y/

√
n ] > n/2)

= P ( 1n
∑n

1 1[ǫi≤y/
√
n ] > 1/2) since ǫi ≡ Xi − θ ∼= F (·)(14)

= P ( 1√
n

∑n
1 {1[ǫi>y/√n ] − 1

2} < 0)

= P (Wn +An < 0) .(a)

Here

Wn ≡ 1√
n

∑n
1 {1[ǫi>0] − P (ǫi > 0)} →d Z1

∼= N(0, p(1− p))(15)

with p ≡ P (ǫi > 0) = 1
2 , and (as we will now show)

An ≡ 1√
n

∑n
1 {1[ǫi>y/√n ] − 1[ǫi>0]} →p −y F ′(0) .(16)

Note that all terms in the summation in An are of the same sign. Then

An →p −y F ′(0±) according as y > 0 or y < 0,(b)

since

EAn =
√
n [P (ǫ > y/

√
n )− P (ǫ > 0)] = −y [F (y/√n )− F (0)]/ [y/√n ]

→ −y F ′(0±) [provided only that both F ′(0±) exist](c)

and

Var[An] = [F (y/
√
n )− F (0)]{1− [F (y/

√
n )− F (0)]} → 0 .(d)

Thus Wn +An →d Z1 − yF ′(0) via (15), (16), and Slutsky. By →d we then have

P (
√
n [Xr

n − θ] ≤ y) = P (Wn +An < 0)

→ P (Z1 − yF ′(0) ≤ 0) = P (Z1/F
′(0) ≤ y) for each y.(e)
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That is,

√
n [Xr

n − θ]→d Z1/F
′(0) ∼= N(0, p(1− p)/ [F ′(0)]2) .(f)

In like fashion, [
√
n [X l

n − θ] ≤ y] = [
∑n

1 1[ǫi≤y/
√
n ] ≥ n/2], so that

P (
√
n [X l

n − θ] ≤ y) = P (
∑n

1 1[ǫi≤y/
√
n ] ≥ n/2) = P (Wn +An ≤ 0) .(g)

Thus the same argument as before gives

√
n [X l

n − θ]→d Z1/F
′(0) .(h)

Now we squeeze the general Ẍn in between, via

P (
√
n [Xr

n − θ] ≤ y) ≤ P (
√
n [Ẍn − θ] ≤ y) ≤ P (

√
n [X l

n − θ] ≤ y) ,(i)

where both ends converge to P (Z1/F
′(0) ≤ y). This completes the proof.

Summary It has been demonstrated that the events (note (15))

[ω :
√
n (Ẍn(ω)− θ) ≤ y ] and [ω : Wn(ω) ≤ y F ′(0) ]

differ by a probabilistically negligible amount.
(17)

For the joint result, apply (17) and the multivariate CLT to (Wn, Z2n). 2

Exercise 3.6 (Joint asymptotic normality of quantiles) For 0 < p < 1,
the pth quantile xp of F is now defined as xp ≡ F−1(p). (a) Show that if F has a
derivative F ′(xp) > 0 at xp, then

√
n [Xn:[np] − xp ]→d N(0, p(1− p)/ [F ′(xp)]

2 ) as n→∞.(18)

(b) Establish joint normality for pi and pj quantiles, where the covariance matrix
of the asymptotic distribution has (i, j)th entry

σij ≡ [(pi ∧ pj)− pi pj]/ [F ′(xpi)F
′(xpj )] .

Write out the analogue of (17), and use it.

Exercise 3.7 What happens when you try to apply (12) to:

(a) F ′(x) = exp(−|x|)/2 ? or (b) F ′(x) = 1
2 1[−1,0)(x) +

1
4 1[0,2](x) ?

Show that
√
n [Ẍn − θ]→d (a rv) in both cases. (In case (b) it is not normal.)

Exercise 3.8 Verify (12) both for n = 2m+ 1 odd and for n = 2m even.

Hint. Since Xn:m ≤ Ẍn ≤ Xn:m+1,

P (
∑n

1 1[ǫi≤y/
√
n ] >

n
2 ]) ≤ P (√n (Ẍn − θ) ≤ z) ≤ P (

∑n
1 1[ǫi≤y/

√
n ] ≥ n

2 ]) .

(The right side is an equality when n is odd.)
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Exercise 3.9 Consider (with hypothesis as weak as possible) the asymptotic
distribution of (appropriately normalized forms of) both

1
n

∑n
1 |Xk − X̄n| and 1

n

∑n
1 |Xk − Ẍn|(19)

for iid samples X1, . . . , Xn from a df F (µ, σ2) having median ν.

Exercise 3.10 Let X1, X2, . . . be independent with Xk
∼= Uniform(−k, k). Then

establish that Sn/σn →d N(0, 1).

Exercise 3.11 Determine the limiting distribution of
∑n

k=1(Xk −X2n+1−k)/ {
∑n
k=1(Xk −X2n+1−k)

2}1/2 ,

where X1, X2, . . . are iid (µ, σ2) rvs. Hint. Think “Slutsky.”

Exercise 3.12 Determine the .95-quantile of the limiting distribution of

∏n
k=1 U

−Xk/
√
n

k ,

for independent rvs with Xk
∼= Double Exponential(0, 1) and Uk ∼= Uniform(0, 1).

Example 3.4 (Weighted sums of iid rvs) Suppose that rvs Xn1, . . . , Xnn

are row independent and iid (µ, σ2). Let cn ≡ (cn1, . . . , cnn)
′ for n ≥ 1, and set

c̄n ≡
∑n

k=1 cnk/n and σ2
cn ≡

∑n
k=1 (cnk − c̄n)2/n ≡ SScc/n .

Suppose we have the uan condition

Dc ≡ D(cn) ≡
max1≤k≤n (cnk − c̄n)2∑n

k=1(cnk − c̄n)2
=

[
max1≤k≤n (cnk − c̄n)2/n

]

σ2
cn

→ 0(20)

as n→∞. Then

n∑

k=1

(cnk − c̄n)√
nσcn

Xnk − µ
σ

→d N(0, 1).(21)

[We need not center the cnk’s if the Xnk’s have mean 0.]

Proof. Without loss of generality, set µ = 0. Now, Lindeberg’s condition holds,
as we demonstrate via

∣∣∣∣∣
n∑

k=1

∫

[|cnk−c̄n| |x|≥ǫ σ
√
nσcn ]

[
(cnk − c̄n)
σ
√
nσcn

]2
x2 dF (x)

∣∣∣∣∣

≤ σ−2 · 1 ·
∫
[|x|≥ǫσ/

√
Dc ]

x2 dF (x)→ 0,(a)

since Dc → 0 and
∫
x2 dF (x) <∞. 2

The preceding example is useful in regression situations, and in connection with
the projection techniques of section A.3. See section 10.2.
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Exercise 3.13 (Monte Carlo estimation) Let h : [0, 1] → [0, 1] be a measurable

function, and let θ =
∫ 1

0 h(t) dt. Let X1, Y1, X2, Y2, . . . be iid Uniform(0, 1) rvs.
Define two different estimators of θ by

T1n ≡
∑n
k=1 h(Xk)/n and T2n ≡

∑n
k=1 1[Xk≤h(Yk)]/n.

(a) Show that both T1n and T2n are unbiased estimators of θ, and determine which
estimator has the smaller variance. Indicate how the variance of each estimator
could be estimated.
(b) Determine the joint asymptotic distribution of appropriately normalized forms
of T1n and T2n.

Exercise 3.14 (An analogue of the student-t statistic based on quartiles)
Let X1, . . . , Xn be iid with df F (·). Let m ≡ [n/4], for the greatest integer [·]. Let

Un ≡ Xn:m, Vn ≡ Ẍn ≡ (the median), Wn ≡ Xn:n+1−m

denote the quartiles and median of the sample. Make appropriate assumptions
regarding F (·).
(a) Determine the joint asymptotic distribution of

(
√
n [Vn − ν],

√
n [Wn − Un − µ] )

for appropriately defined µ and ν.
(b) Simplify this if the Xi are symmetrically distributed about 0.
(c) Determine the asymptotic distribution under symmetry of the (student-t like)
statistic (formed from three sample quantiles)

Tn ≡
√
n [Vn − ν]/ [Wn − Un].

Exercise 3.15 Let the Xk’s be iid Cauchy(0, 1) in the previous exercise.

(d) Evaluate F (x) = P (X ≤ x) for x ∈ R.
(e) Solve p = F (x) for xp ≡ F−1(p), when 0 < p < 1.

(f) Express your answers to (b) and (c) of the previous exercise in the present
context.

Exercise 3.16 (Poisson estimation) Let X1, . . . , Xn be iid Poisson(θ).
(a) Reasonable estimators of θ include the sample mean T1n ≡ X̄n, the sample
variance T2n ≡ S2

n, and T3n ≡
∑n

1 kXk/
∑n

1 k (which puts more emphasis on the

more recent observations). Evaluate lim Var[Tin] for i = 1, 2, 3.

(b) Verify that T4n ≡ X̄2
n− X̄n/n and T5n ≡ X2

n− X̄n are both unbiased estimators
of θ2. Evaluate lim Var[Tin] for i = 4, 5.

(c) Determine the asymptotic distribution of Dn ≡
√
n [ X̄n − S2

n ]/ X̄n when the
observations really do follow a Poisson distribution.

(d) What is the asymptotic distribution of Dn when the observations Xk actually
follow a NegBiT(r, p) distribution?
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Theorem 3.1 (Doeblin’s CLT for a random number of rvs) Consider iid
(0, σ2) rvs X1, X2, . . . . Let {νn}∞n=1 be integer-valued rvs such that the proportion
νn/n→p c ∈ (0,∞) as n→∞. Let Tn ≡ X1 + · · ·+Xn denote the total. Then

Tνn/
√
νn →d N(0, σ2).(22)

[Note that νn and X1, X2, . . . need not be independent.]

Proof. Now,

Tνn√
νn

=

√
[cn]

νn

{
T[cn]√
[cn]

+
Tνn − T[cn]√

[cn]

}
.(23)

Note that T[cn]/
√
[cn] →d N(0, 1) and [cn]/νn = [cn]

cn
c

νn/n
→p 1. In the next

paragraph we will show that

(Tνn − T[cn])/
√
[cn]→p 0.(a)

The theorem then follows from Slutsky’s theorem.

We now let An ≡ [|Tνn − T[cn]|/
√
[cn] > ǫ], and note that

P (An) =
∑∞
k=1P (An ∩ [νn = k])(b)

=
∑

{k:|k−[cn]|≤ǫ3cn}
P (An ∩ [νn = k]) +

∑

{k:|k−[cn]|>ǫ3cn}
P (An ∩ [νn = k])

≡∑1 +
∑

2.(c)

Since νn/[cn]→p 1, for n sufficiently large we have

∑
2 ≤ P (|νn − [cn]| > ǫ3cn) ≤ P

(
| νn
[cn]
− 1| > ǫ3

cn

[cn]

)

≤ P
(
| νn
[cn]
− 1| > ǫ3

)
< ǫ.(d)

Also, applying Kolmogorov’s inequality twice,

∑
1 ≤ P

(
max

|k−[cn]|≤ǫ3cn
|Tk − T[cn]| > ǫ

√
[cn]

)

≤ P
(

max
[cn]≤k≤ǫ3cn

|Tk − T[cn]| > ǫ
√
[cn]

)

+ P

(
max

[cn]−ǫ3cn≤k≤[cn]
|Tk − T[cn]| > ǫ

√
[cn]

)

≤ 2

[cn]+ǫ3cn∑

k=[cn]+1

Var[Xk]/ǫ
2[cn] ≤ 2ǫ3cnσ2/ǫ2[cn]

≤ 4 σ2ǫ for all n sufficiently large.(e)

Combining (d) and (e) into (c) shows P (An)→ 0, as required. 2
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Exercise 3.17 Let V 2
n now denote the sample variance. Show, in the context of

Doeblin’s CLT, that Tνn/Vνn →d N(0, 1) as n→∞.

Exercise 3.18 Prove a version of Doeblin’s theorem for Xnk’s independent but
not iid; assume the Lindeberg condition and νn/n →p c ∈ (0,∞). [Revert to the
Liapunov condition, if necessary.]

Exercise 3.19 (Sample correlation coefficient Rn; Cramér and Anderson) Let us
suppose that

[
Xi

Yi

]
are iid

[ [
0
0

]
,

[
1
ρ
ρ
1

] ]
for 1 ≤ i ≤ n,

and that the Σ below has finite entries. Consider
√
n [Rn − ρ], where Rn is the

sample correlation coefficient. Thus Rn ≡ SSXY /{ SSXX SSY Y }1/2 for the sums of
squares SSXY ≡

∑n
1 (Xi − X̄n)(Yi − Ȳn), etc.

(a) Reduce the case of general means, variances and covariances to this case.
(b) Note that




1√
n

∑n
1 (XiYi − ρ)

1√
n

∑n
1 (X

2
i − 1)

1√
n

∑n
1 (Y

2
i − 1)


→d



Z1

Z2

Z3


 ∼= N(0,Σ)(24)

with

Σ ≡



E(X2Y 2)− ρ2
E(X3Y )− ρ
E(XY 3)− ρ

E(X3Y )− ρ
EX4 − 1

E(X2Y 2)− 1

E(XY 3)− ρ
E(X2Y 2)− 1

EY 4 − 1


 .(25)

(c) Then show that
√
n [Rn− ρ]→d Z1− ρ

2 Z2− ρ
2 Z3

∼= N(0, τ2), and evaluate τ2.

(d) Show that when X and Y are independent, then
√
n [Rn − ρ]→d N(0, 1).

(e) If the (Xi, Yi)
′ are jointly normal, show that

Σ =



1 + ρ2

2 ρ
2 ρ

2 ρ
2

2 ρ2

2 ρ
2 ρ2

2


 .(26)

Then simplify the expression for τ2 and obtain
√
n [Rn − ρ]→d N(0, (1− ρ2)2) .(27)

(f) Show that
√
n [g(Rn)− g(ρ)]→d N(0, 1) for g(t) ≡ 1

2 log(
1+t
1−t ).

(g) Approximating the distribution of
√
n− 3 [g(Rn) − g(ρ) − ρ

2(n−1) ] by N(0, 1)

yields an excellent result.

(h) Show that Cov[Xi − X̄n, Yi − Ȳn] = (1− 1
n )Cov[Xi, Yi].

Exercise 3.20 (Extreme Value quantiles) Let X and X1, . . . , Xn be iid with the
Weibull(α, β) density f(x) = (βxβ−1/ αβ) exp(−(x/α)β) on x ≥ 0. Now, (X/α)β ∼=
Exponential(1), and thus Y ≡ logX satisfies

Y ∼= ν + τ W where ν ≡ logα and τ ≡ 1/β
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andW has the Extreme Value density for minima given by exp(w−ew) on (−∞,∞).
Let Yn:1 ≤ · · · ≤ Yn:n denote the order statistics of the rvs Yk ≡ logXk. First, let
0 < p1 < p2 < 1, and then define Un ≡ Yn:[np1] and Vn ≡ Yn:[np2]. We seek values
p1 and p2 such that

[ √
n (Vn − ν)√

n (Vn − Un − τ)

]
→d N(O,Σ).

(a) Let 0 < p < 1. Evaluate yp ≡ F−1
Y (p), fY (yp) and p(1− p)/f2

Y (yp).

(b) Determine values of p1 and p2 that achieve the objective.
(c) Establish the claimed asymptotic normality, and evaluate Σ both symbolically
and numerically.

Exercise 3.21 (Estimating a common normal mean) Consider independent rvs
X1, . . . , Xm and Y1, . . . , Yn from N(θ, σ2) and N(θ, τ2). When γ ≡ σ2/τ2 is known,
the unbiased estimator of θ that has minimum variance (for all possible values of
the parameters within this model) is known to be

θ̂o ≡ θ̂o,mn ≡ mX̄m+γ·nȲn

m+γ·n .

Define α ≡ αmn ≡ m/(m + γ · n). Let α̂ ≡ α̂mn(S
2
X , S

2
Y ) depend only on the

two sample variances S2
X ≡

∑m
1 (Xi − X̄m)

2/(m − 1) = SSXX/(m − 1) and also

S2
Y ≡

∑n
1 (Yj− Ȳn)2/(n−1) = SSY Y /(n−1), and suppose that α̂ is a rv with values

in [0, 1]. We hypothesize that

α̂2/ α2 →p 1 as m ∧ n→∞.

(All limits below are to be taken as m ∧ n→∞.) Then define

θ̂ ≡ θ̂mn = α̂X̄n + (1− α̂)Ȳn ,

v2o ≡ v2omn ≡ 1
m α2σ2 + 1

n (1− α)2τ2 ,

v̂2 ≡ v̂2mn ≡ 1
m α2S2

X + 1
n (1− α)2S2

Y ,

V̂ 2 ≡ V̂ 2
mn ≡ 1

m α̂2S2
X + 1

n (1− α̂)2S2
Y ,

α̃ ≡ α̃mn ≡ (m−1)
(m−1)+(n−1)S2

X/S
2
Y
= SSY Y /(SSXX + SSY Y ) .

Note that γ̃ ≡ γ̃mn ≡ S2
X/S

2
Y →p γ, and α̃

2/ α2 →p 1 is indeed true.

(a) Show that E θ̂ = θ.

(b) Show that (θ̂ − θ)/ vo →d N(0, 1).

(c) Show that |v̂2 − v2o | / v2o →p 0 and |V̂ 2 − v̂2| / v̂2 →p 0.

(d) Thus (θ̂ − θ)/ V̂ →d N(0, 1).

(e) Evaluate v2 ≡ v2mn ≡ Var[θ̂] in terms of Eα̂2 and E(1− α̂)2.
(f) Determine the distribution of α̃. Does α̃/ α→L2 1?
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Exercise 3.22 (Exponential estimation) Let X1, . . . , Xn be iid Exponential(θ).
The minimum variance estimator of θ is known to be the sample mean X̄n. Another
unbiased estimator of θ is Tn ≡ Ḡn/Γn(1 + 1/n), where Ḡn ≡ (

∏n
1 Xk)

1/n denotes
the geometric mean of the observations. Evaluate the limiting ratio of the variances
lim Var[X̄n]/Var[Tn].

Exercise 3.23 Let X1, . . . , Xn be iid Poisson(λ). Show the moment convergence
E|X̄n − λ|3 → E|N(0, 1)|3.

Statistical Applications

Exercise 3.24 (Simple linear regression) Consider the simple linear regression
model of (A.3.25); thus we are assuming that

Ynk = γ + β xnk + ǫk ≡ α+ β (xnk − x̄n) + ǫk for iid rvs ǫk ∼= (0, σ2)(28)

and for known constants xnk for 1 ≤ k ≤ n. The least squares estimators (LSEs)

α̂n and β̂n of α and β are defined to be those values of a and b that minimize the

sum of squares
∑n

1 [Ynk − (a+ b (xnk − x̄n) ]2.
(a) Show that the LSEs are given by

α̂n = Ȳn and

β̂n =
∑n

1 (xnk−x̄n)Ynk∑
n
1 (xnk−x̄n)2

≡∑n
k=1 dnkYnk .

(29)

(b) Let SSxx ≡
∑n

1 (xnk − x̄n)2, dn = (dn1, . . . , dnn)
′, xn ≡ (xn1, . . . , xnn)

′, and

D(xn) ≡
[
max

1≤k≤n
|xnk − x̄n|2

]/
SSxx =

[
max

1≤k≤n
dnk

]
= D(dn) .(30)

Use the Cramér–Wold device and the weighted sums of theorem 9.5.2 to show that
[ √

n [α̂n − α]√
SSxx [β̂n − β]

]
→d N(O, σ2 I), provided that D(dn) = D(xn)→ 0(31)

(recall (10.3.20)). [Note also that the LSE β̂n of β is given by β̂n = SSxY /SSxx.]

Definition 3.1 (Noncentral distributions) (a) Let X1, . . . , Xm be independent,

and suppose that Xi
∼= N(θi, σ

2). Let θ2 ≡ ∑m
1 θ2i , and define δ via δ2 ≡ θ2/ σ2.

Show that the quadratic form

U ≡∑m
1 X2

i / σ
2 ∼= (Z1 + θ)2 +

∑m
i=2 Z

2
i ,(32)

where Z1, . . . , Zm are iid N(0, 1) rvs. Denote this distribution by

U ∼= χ2
m(δ2/2),(33)

and say that U is distributed as noncentral chisquare with m degrees of freedom
and noncentrality parameter δ.

(b) Let Y ∼= N(θ, 1), U ∼= χ2
m(δ2/2) and V ∼= χ2

n be independent rvs. We define the

noncentral Student-tn(θ) distribution and the noncentral Snedecor-Fm,n(δ
2/2) via

Tn(θ) ≡
Y

V/n
∼= Student-tn(θ) and

n

m

U

V
=
U/m

V/n
∼= Snedecor-Fm,n(δ

2/2) .(34)

(Note that T 2
n(θ)

∼= F1,n(θ
2/2).)
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Proposition 3.1 (Form of the noncentral distributions) Consider the rvs U , V ,
and Y of the previous definition. Let y > 0. (a) The rv U of (32) satisfies

P (χ2
m(δ2/2) > y) =

∑∞
k=0 P (Poisson(δ

2/2) = j)× P (χ2
m+2j > y) .(35)

Here, Poisson(λ) denotes a Poisson rv with mean λ, and χ2
r denotes an ordinary

chisquare rv with r degrees of freedom.

(b) It is thus trivial that

P (Fm,n(δ
2/2) > y) =

∑∞
k=0 P (Poisson(δ

2/2) = j)× P (Fm+2j,n > y) .(36)

(c) For Cn ≡ 2(n+1)/2 Γ(n/2)
√
π n we have

P (Tn(δ) > y)

= 1
Cn

∫∞
y

∫∞
0
u(n−1)/2 e−u/2 exp(− 1

2 (v(
u
n )

1/2 − δ)2) du dv .(37)

Exercise 3.25 Prove proposition 3.1.

Exercise 3.26 (Chisquare goodness of fit, again) (a) (Local alternatives) We
suppose that the statistic Qn ≡ Qn(p0) of (10.1.13) is computed, but that in

reality the true parameter vector is now pn ≡ p0 + a/
√
n (with

∑k
1 ai = 0, so that

the coordinates pni add to 1). Let p̂ni ≡ Nni/n estimate pni for 1 ≤ i ≤ k. Show
that the vector

Wk×1
n ≡ |[√n (p̂ni − p0i)/

√
p0i ]| →d W+ d ,(38)

where W ∼= N(O, I −√p√p ′ ) and di ≡ ai/√p0i for 1 ≤ i ≤ k. Thus

Qn = W′
nWn →d Q ≡ (W+ d )′(W+ d ) ∼= χ2

k−1(d
′d/2) .(39)

(b) (Fixed alternatives) Suppose that Qn ≡ Qn(p0) is computed, but a fixed p is
true. Show that

1
n Qn →a.s.

∑k
i=1 (pi − p0i)2/ p0i .(40)

Exercise 3.27 Suppose X ∼= N(~θ,Σ), with rank(Σ) = r. Show that

X′ Σ− X = Y ′Y ∼= χ2
r(
~θ
′
Σ− ~θ/2) , where(41)

Y ≡ Σ−1/2X = (ΓD−1/2Γ′)X ∼= N

(
Σ−1/2θ,

[
Ir
0

0
0

])
.(42)
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4 Local Limit Theorems
Recall from Scheffé’s theorem that if fn and f are densities with respect to some
dominating measure µ, then

fn(x)→ f(x) a.e. µ(1)

implies that

dTV (Pn, P ) ≡ sup
B∈B
|P (Xn ∈ B)− P (X ∈ B)| → 0 as n→∞.(2)

Thus convergence of densities implies convergence in total variation distance, which
is stronger than convergence in distribution. We will now establish (1) in a CLT
context, for summands that are either suitably continuous or else are distributed
on a grid.

Theorem 4.1 (Local limit theorem, continuous case) Let X,X1, X2, . . . be

iid (0, σ2) with
∫∞
−∞ |φX(t)| dt <∞. Then Sn/

√
n has a density fn(·) for which

sup
−∞<x<∞

|fn(x)− (1/σ)fZ(x/σ)| → 0 as n→∞,(3)

for the N(0, 1) density fZ(·).

Theorem 4.2 (Local limit theorem, discrete case) Let X1, X2, . . . be iid
(0, σ2) rvs that take values on the grid a ± md for m = 0,±1,±2, . . . . Now let

x∗ = (na+md)/(σ
√
n ), m = 0,±1,±2, . . . , denote a possible value of Sn/(σ

√
n ),

and let pn(x) ≡ P (Sn/(σ
√
n ) = x). Then

sup
−∞<x∗<∞

|(σ√n/d ) pn(x)− fZ(x)| → 0 as n→∞,(4)

for the N(0, 1) density fZ(·).

Example 4.1 Let X1, . . . , Xn be iid Bernoulli(θ) rvs. Then (by (4))

sup
0≤m≤n

√
n

∣∣∣∣∣P (Sn = m)− 1√
nθ(1− θ)

fZ

(
m− nθ√
nθ(1 − θ)

)∣∣∣∣∣→ 0 . 2(5)

Exercise 4.1∗ Verify (5) by direct computation.

Exercise 4.2 Give an example where Xn →d X , but (2) fails.

Proof. Consider theorem 4.1. Without loss of generality we may suppose that
σ = 1. Notice that

∫
|φSn/

√
n (t)| dt <∞, since |φSn/

√
n (t)| = |φX(t/

√
n )|n ≤ |φX(t/

√
n )|.(a)

Thus the Fourier inversion formula of (9.4.9) gives

fn(y) ≡ fSn/
√
n (y) = (1/2π)

∫∞
−∞ e−ity φSn/

√
n (t) dt.(b)



4. LOCAL LIMIT THEOREMS 251

This same formula also holds for the distribution of a N(0, 1) rv Z. Thus

2π|fn(x)− fZ(x)| ≤
∫∞
−∞ |φnX(t/

√
n )− e−t2/2| dt(c)

=
(∫

[|t|≤a] +
∫
[a<|t|<δ√n ] +

∫
[|t|≥δ√n ]

)
|φnX(t/

√
n )− e−t2/2| dt

≡ I1n + I2n + I3n.(d)

We first specify δ > 0 so small that |φX(t)| ≤ exp(−t2/4) for |t| ≤ δ. This is

possible, since |φ(t)| = |1 − 0 − t2/2| + |o(t2)| ≤ 1 − t2/4 ≤ exp(−t2/4) in some

neighborhood |t| ≤ δ, by inequality 9.6.2.

Thus for a specified large enough (since |φX(t/
√
n )|n ≤ e−t

2/4 for |t| < δ
√
n )

we have

I2n ≤
∫
[|t|>a] 2e

−t2/4 dt < ǫ.(e)

For this fixed large a we have

I1n < ǫ for n ≥ ( some n1),(f)

since the Cramér–Lévy theorem implies that the convergence of these chfs is uniform
on any |t| ≤ a.

Now, X is not distributed on a grid (we have a formula for the density). Thus
|φX(t)| < 1 for all t 6= 0, by proposition 9.8.2. Moreover, |φX(t)| → 0 as |t| → ∞,

by the Riemann–Lebesgue lemma, giving |φX(t)| < (some θ) < 1 for |t| > (some λ).
Thus, since θ < 1,

I3n < θn−1
∫∞
−∞ |φX(t/

√
n )| dt+

∫
[|t|>δ√n ]

e−t
2/2 dt

=
√
n θn−1

∫∞
−∞ |φX(t)| dt+ 2(δ

√
n )−1e−nδ

2/2

= o(n−r) for any r > 0 whenever lim|t|→0 |φX(t)| < 1.(6)

< ǫ for n ≥ (some n2).(g)

Combining (e), (f), and (g) into (d) establishes the claim made in the theorem. 2

Proof. Consider theorem 4.2. By the inversion formula (9.8.1) given for
distributions on grids,

σ
√
n

d
pn(x) =

σ
√
n

d

d

σ
√
n 2π

∫ πσ
√
n/d

−πσ√n/d
φnX(t/

√
n )e−itx dt.(h)

By the inversion formula (9.4.9) given for densities,

fZ(x) = (1/2π)
∫∞
−∞e

−t2/2e−itx dt.(i)
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Thus

|(σ√n/d) pn(x)− fZ(x)|(j)

≤ (1/2π)
∫ πσ√n/d
−πσ√n/d |φnX(t/

√
n )− e−t2/2| dt

+(1/2π)
∫
[|t|>πσ√n/d ] e

−t2/2 dt

=
(∫

[|t|≤a] +
∫
[a<|t|<δ√n ]

+
∫
[δ
√
n<|t|<πσ√n/d ]

)
|φnX(t/

√
n )− e−t2/2| dt(k)

+o(n−r)

≡ I1n + I2n + I3n + o(n−r).(l)

The proof of theorem 4.1 applies, virtually verbatim; the only thing worthy of note
is that 0 < θ < 1 now holds, since πσ

√
n/d is only 1

2 of the period. 2
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5 Normality Via W̃insorization and Ťruncation
Definition 5.1 (a) Call Xn1, . . . , Xnn weakly negligible (or, strongly negligible) if

Mn ≡ [ max1≤k≤n |Xnk| ]→p 0 (or, if Mn →a.s. 0).(1)

(b) Call them uniformly asymptotically negligible (or uan) if

max1≤k≤n P ( |Xnk| ≥ ǫ )→ 0 for all ǫ > 0.(2)

The objective is to now investigate when some version of the CLT holds for uan
pieces, as in (2). (That is, there are to be no monsters among the many, no giants
among the peons, etc., and the law of the mob is to hold sway. These are cute
descriptive phrases others have used to summarize the problem very cleverly.)

Theorem 5.1 (Asymptotic normality) Let Xn1, . . . , Xnn be independent rvs.
Let a > 0 and b be arbitrary. Fix the truncation constant; let it be any c > 0.
Let X̌nk be the Ťruncated rv that equals Xnk or 0 according as |Xnk| < c or as

|Xnk| ≥ c. As above, let Mn ≡ [max1≤k≤n |Xnk| ]. The following are equivalent:

∑n
k=1Xnk →d N(b, a2) for uan rvs Xn1, . . . , Xnn.(3)

∑n
k=1 P ( |Xnk| ≥ ǫ)→ 0 for all ǫ > 0 (equivalently, Mn →p 0), while

µ̌n ≡
∑n

k=1 EX̌nk → b and σ̌2
n ≡

∑n
k=1Var[X̌nk]→ a2 .

(4)

If (4) holds for one c > 0, then it holds for each c > 0. [These results also hold with

W̃insorized quantities X̃nk, µ̃n, σ̃
2
n replacing the Ťruncated quantities X̌nk, µ̌n, σ̌

2
n.]

(The deficiency in this result is that the norming of the original rvs fails to appear.)

Corollary 1 Suppose that Yn ≡
∑n

1 Xnk →d (some rv Y ), for uan Xnk’s. Then

Y has a Normal distribution iff Mn ≡ [ max1≤k≤n |Xnk| ]→p 0.(5)

Corollary 2 Let the Xnk above be symmetric. Then (3) (with b = 0) holds iff
∑n

1 X
2
nk →p a

2 for uan rvs Xn1, . . . , Xnn.(6)

Proof. Suppose (4). Then P (
∑n

1 Xnk 6=
∑n

1 X̌nk) ≤
∑n

1 P ( |Xnk| ≥ c) → 0,

so that
∑n

1 Xnk =a
∑n

1 X̌nk. Thus we need only show that the normalized rv

Žn ≡ (
∑n

1 X̌nk − µ̌n)/σ̌n →d N(0, 1). It suffices to verify that Lindeberg’s ĽF ǫn of

(10.2.11) satisfies ĽF ǫn → 0. We will do so presently. First, note that Mn →p 0, by

(8.3.14). Thus [max |X̌nk| ] ≤Mn →p 0 (and [max |X̃nk| ] ≤Mn →p 0). Thus

m̌n ≡ max | µ̌nk| ≤ E maxk |X̌nk| → 0,(a)

by the DCT with dominating function “c.” Thus for n ≥ (some nǫ) we have

m̌n ≤ ǫ a/8, and also σ̌n ≥ a/2 .(b)
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Then (3) must hold, since the Lindeberg–Feller quantity ĽF ǫn of (10.2.11) satisfies

ĽF ǫn ≡ 1
σ̌2
n

∑n
k=1

∫
[|x−µ̌nk|≥ǫ σ̌n]∩[|x|≤c] [x− µ̌nk]2 dFnk(x)(c)

≤
[
c+ǫ a/8
a/2

]2 ∑n
k=1

∫
[|x−µ̌nk|≥ǫ σ̌n]∩[|x|≤c] dFnk(x) for n ≥ nǫ, by (b)(d)

≤
[
c+ǫ a/8
a/2

]2 ∑n
k=1 P ( |Xnk| ≥ ǫ a/4) by (b) again(e)

≤
[
c+ǫ a/8
a/2

]2
2P (Mn ≥ ǫ a/4)→ 0, since Mn →p 0 by (4)(f)

(noting (8.1.8) as well). (Only very minor modifications of the above are called for
in order to verify this for the W̃inorized case.)

Suppose that (3) holds. (We now assume knowledge of theorem C.1.1.Then
∑n

1 X
s
nk →d N(0, 2a2) for the symmetrized uan rvs Xs

nk ≡ Xnk−X ′
nk,(7)

defined as in section 8.3. Applying the continuity theorem for chf’s then yields

φsn(t) ≡
∏n

1 φ
s
nk(t)→ exp(−a2 t2), uniformly on any |t| ≤M,(g)

as n → ∞. Since the Xs
nk’s are symmetric, their chf’s are real valued. Moreover,

all (1−φsnk(t)) = E(1− cos tXs
nk) ≥ 0. Thus lemma 8.1.4 (more powerful than the

first product lemma 9.6.3, for positive numbers) shows that (g) holds if and only if
∑n

1 E(1 − cos tXs
nk) =

∑n
1 (1− φsnk(t))→ a2 t2, uniformly on any |t| ≤M.(8)

Thus for all n ≥ (some nǫ,t) we have (recalling that a = b⊕c means that |a−b| ≤ c)
1
3 a

2t3 =
∫ t
0
a2 u2 du =

∫ t
0

∑n
1 E (1 − cosuXs

nk) du⊕ ǫ from (8)(h)

=
∫ t
0
{∑n

1

∫∞
−∞ (1− cosux) dF snk(x)} du⊕ ǫ

=
∫∞
−∞ {

∑n
1

∫ t
0
(1− cosux) du} dF snk(x)⊕ ǫ by Tonelli(i)

=
∑n

1

∫∞
−∞ {u(1− sinux

ux )|t0 } dF snk(x)⊕ ǫ

=

n∑

1

∫ ∞

−∞
t

(
1− sin tx

tx

)
dF snk(x)⊕ ǫ uniformly on any |t| ≤M(9)

whenever (8) holds. (Recall the inequality 9.5.1 for “comparison.”) Let t1 = 1 and

t2 = 2. Since 1
2 (8 t31 − t32) = 0, subtracting the t2-value of expression (9) from 8

times the t1-value of expression (9) gives

0 = 1
2

∑n
1

∫∞
−∞[8(1− sin x

x )− 2(1− sin 2x
2x )] dF snk(x) ⊕ ǫ(j)

=

n∑

1

∫ ∞

−∞

[
3− 4 sinx

x
+
sin 2x

2x

]
dF snk(x)⊕ ǫ ≡

n∑

1

∫ ∞

−∞
h(x) dF snk(x)⊕ ǫ.(10)

Consider the function h(x) ≡ (3 − 4 sin x
x + sin 2x

2x ). Let g(x) ≡ inf{h(y) : y ≥ x},
so that g is the ր function closest to f(·) from below. (On [0, 4] the function h
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increases from 0 to about 4, it then oscillates ever smaller about 3, and eventually
converges to 3 at ∞.) The proof of the basic inequality (3.4.18) trivially gives

P (max1≤k≤n |Xs
nk| ≥ ǫ) ≤

∑n
1 P ( |Xs

nk| ≥ ǫ) ≤ (
∑n

1 E (h(Xs
nk))/ g(ǫ)→ 0.(k)

Thus, (8.3.14) and (k) yield

M s
n ≡ [ max1≤k≤n |Xs

nk| ]→p 0, while Mn ≡ [ max1≤k≤n |Xnk| ]→p 0(11)

holds true since [max1≤k≤n |Xnk − m̈nk| ] →p 0 follows from M s
n →p 0 and the

symmetrization inequality (8.3.9), and the uan condition then guarantees that

[max1≤k≤n |m̈nk| ] → 0. (See Kallenberg (1997) regarding (11) via (10).) (Note

that the “if” implication in Corollary 1 is now established as well.) Since (11) yields

|P (∑n
1 X̌

s
nk ≤ x) − P (

∑n
1X

s
nk ≤ x) | ≤

∑n
1 P ( |Xs

nk| ≥ c)→ 0(l)

(where X̌s
nk denotes X

s
nk truncated at ±c), we have also established from (11) that

∑n
1 X̌

s
nk →d N(0, 2a2), for X̌s

nk ≡ Xs
nk · 1[ |Xs

nk|≤ c ].(12)

Application of the continuity theorem to (12) yields (for every value of c > 0)

a2 t2 ←∑n
1 E (1− cos tX̌s

nk) =
∑n

1
1
2 t

2 E (X̌s
nk)

2 ⊕∑n
1 t

4 E (X̌s
nk)

4(m)

= 1
2 t

2∑n
1 E (X̌s

nk)
2⊕c2 t4∑n

1 E (X̌s
nk)

2 = 1
2 t

2∑n
1 E (X̌s

nk)
2(1⊕2 c2 t2).(n)

Let n become very large and specify c > 0 tiny in (m)–(n) to obtain
∑n

1 E (X̌s
nk)

2 → 2 a2, while (M s
n)

2 = [max1≤k≤n (X
s
nk)

2 ]→p 0(13)

follows from (11). The hypothesis of (C.1.9)are thus satisfied for the rvs n (Xs
nk)

2,

with all νn ≡ 1 (or, 2a2). (Recall, (13) holds for all c > 0.) Thus (C.1.3)
∑n

1 (X̌
s
nk)

2 =a
∑n

1 (X
s
nk)

2 →p 2 a
2.(14)

(Recall that appendix C could have been read immediately after chapter 8.) Further,

the means of the (
∑n

1 X̌
s
nk) form a bounded sequence, since (using (13))

{E |∑n
1 X̌

s
nk| }2 ≤ E {(∑n

1 X̌
s
nk)

2} =∑n
1 E (X̌s

nk)
2 → 2 a2.(15)

A further consequence of (11) is that
∑n

1 X̌
s
nk =a

∑n
1 X

s
nk =

∑n
1 (Xnk −X ′

nk) =a
∑n

1 (X̌nk − X̌ ′
nk) =

∑n
1 X̌

s
nk.(16)

From (16) we can further claim that
∑n

1 E (X̌s
nk)

2 → 2 a2 and

2 σ̌2
n ≡ 2

∑n
1 σ̌

2
nk = 2

∑n
1 Var[X̌nk]

∑n
1 E (X̌s

nk)
2 → 2 a2

(17)

using (13) for the first → and mimicking (m)–(13) for the rvs X̌s
nk for the second.

It is known from hypothesis (and Mn →p 0 in (11)) that

(
∑n

1 X̌nk −
∑n

1 µ̌nk) + (
∑n

1 µ̌nk) =a
∑n

1 Xnk →d N(b, a2).(o)

Combining this with (17) gives

µ̌n ≡
∑n

1 µ̌nk → b, and σ̌2
n =

∑n
1 σ̌

2
nk → a2(p)

has already been shown. Thus (4) is established, and this gives theorem 5.1.
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Consider Corollary 2. If (3) holds, then (7) holds with a2 and (14) gives (6).
If (6) holds for symmetric uan rvs, then (C.1.3) and it implies (C.1.9)and hence

(4). In light of the remark below (11), we now turn to the “only if” part of
Corollary 1. Since Yn →d Y , the symmetrized versions satisfy Y sn →d Y

s ≡ Y −Y ′.
That Mn →p 0 (and hence M s

n →p 0) means that the truncated versions also

satisfy Y̌n ≡
∑n

1 X̌nk →d Y and Y̌ sn →d Y s. Assume that σ̌n′ → ∞ on some

subsequence n′. Then Y̌ sn′/σ̌n′ →p 0, but then a trivial application of Liapunov
yields the contradictory result that Y̌ sn′/σ̌n′ →d N(0, 2). Thus lim supn σ̂n < ∞.

Pick a further subsequence n′′ on which σ̌n′′ → (some a) and µ̌n′′ → (some b).
(Recall (15) and (8.3.18) regarding “b.”) Then (4) implies (3) gives Y ∼= N(b, a2).2

Remark 5.1 In the proof of theorem 5.1, it was shown that (15) implies both

∑n
1 (Xnk − µ̌nk)/ {

∑n
1 σ̌

2
nk}1/2 → N(0, 1),

∑n
1 µ̌nk → b,

∑n
1 σ̌

2
nk → a2, and Mn ≡ {max1≤k≤n |Xnk|} →p 0, and

M̌n ≡ {max1≤k≤n |Xnk − µ̌nk| } / {
∑n

1 σ̌
2
nk}1/2 →p 0 and

M̃n ≡ {max1≤k≤n |Xnk − µ̃nk| } / {
∑n

1 σ̃
2
nk}1/2 →p 0.

(18)

Moreover, this holds for any choice of the truncation point “c” of the given rvs Xnk.

(We can replace M̌n →p 0 by M̃n →p 0 in (18) since the added contributions to the

W̃insorized quantities satisfy the bounds (for every c > 0)

|∑n
1 µ̃nk −

∑n
1 µ̌nk | ≤ c

∑n
1 P ( |Xnk| ≥ c)→ 0 and

|∑n
1 σ̃

2
nk −

∑n
1 σ̌

2
nk | ≤ c2

∑n
1 P ( |Xnk| ≥ c) + 3 c2

∑n
1 P ( |Xnk| ≥ c)→ 0,

(19)

since Mn →p 0 is equivalent to
∑n

1 P ( |Xnk| ≥ c)→ 0. 2

Notation 5.1 Let Yn1, . . . , Ynn denote the “original” row independent “rvs of
interest,” with dfs Fn1, . . . , Fnn. Let

∑n
1 Xnk ≡

∑n
1 (Ynk − bnk)/

√
n an =

√
n (Ȳn − b̄n)/an(20)

for some constants b̄n ≡ 1
n

∑n
1 bnk and some an > 0. Further, let

∑n
1 X

s
nk ≡

∑n
1 Y

s
nk /
√
n an =

√
n Y sn /an(21)

for the symmetrized Y snk ≡ Ynk − Y ′
nk; see (8.3.2). Let νn ≡ a2n. Ťruncate, by

letting ˇY snk ≡ Y snk · 1[ |Y s
nk|≤

√
n an]. Then

√
n Y̌ sn /an =

∑n
1

ˇY snk/
√
n an has mean 0 and variance Usn(

√
nan)/a

2
n(22)

where

Usn(x) ≡ 1
n

∑n
1 E ( (Y snk)

2 · 1[ |Y s
nk|≤x ]). 2(23)
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Theorem 5.2 Consider the original rvs of interest Ynk given in notation 5.1 above,
always assuming the resulting Xnk’s to be uan. The following claims are equivalent.

√
n (Ȳn − b̄n)/an →d N(0, 1) for some b̄n and an > 0.(24)
√
n (Ȳ sn − 0)/an →d N(0, 2) for some an > 0.(25)

(a) M s
n/νn ≡ [ maxk

1
n (Y snk)

2 ]/a2n = [maxk |Xs
nk| ]2 →p 0 and

(b)
∑n

1 E(Y̌
s
nk)

2/n νn = E(Y̌ sn )2/a2n → 2. (So νn ≡ a2n ∼ 1
2 E (Y̌ sn )2).)

(26)

1
n

∑n
1 (Y

s
nk)

2/νn = (Y sn )
2/a2n →p 2, with νn = a2n as in (26)(b).(27)

Claims (C.1.3)–(C.1.10) hold for the (Y snk)
2, with νn = a2n as in (26)(b).(28)

When (26) holds, the constants in (24) (now, named àn and b̀n) must satisfy both:

à2n ∼ 1
n

∑n
1 Var[ ˇ̈Ynk] ∼ 1

2
1
n

∑n
1 Var[

ˇY snk] =
1
2 E (Y̌ sn )2)= 1

2 U
s
n(
√
n an) ∼ a2n .

√
n { b̀n − 1

n

∑n
1 (m̈nk + E ˇ̈Ynk)}/ àn → 0

(29)

for the median m̈nk of Ynk and for the truncated ˇ̈Y nk as defined as in (31) below.
(Specify an “inspired” truncation point, and hope that something like (30) below
saves us from the circularity of Usn(

√
n an) ∼ 2 a2n in (29). See remark 10.6.2.)

Proof. That (24) implies (25) is trivial. That (25), (26), and (27) are equivalent
is just theorem 5.1 and its corollary 2. That (27) and (28) are equivalent is just a
careful comparison of (27) with (C.1.3)(which brings (C.1.4)–(C.1.10) with it).

Before going on, it is instructive to include an (unnecessary) proof that (26) is
(C.1.9)in disguise. The first statement in (C.1.9)is exactly (26)(a). Also, for the
specific νn = a2n defined in (26)(b), the second claim in (C.1.9)is

µ̌sn/νn = Usn(
√
n an)/a

2
n =

∑n
1 E {(Y snk)2 · 1[ |Y s

nk|≤
√
n an ]}/na2n

=
∑n

1 E {(Xs
nk)

2 · 1[(Xs
nk)

2≤1]} → 2, which is exactly (26)(b).
(30)

We now show that (26) implies (24). Let m̈nk denote any median of Ynk and

set Ÿnk ≡ Ynk − m̈nk , and for the an of (26)(b) set

ˇ̈Ynk ≡ Ÿnk · 1[ |Ÿnk|≤
√
nan]

; label its mean ˇ̈µnk and variance ˇ̈σ
2
nk .(31)

Let Ẍnk ≡ Ÿnk/
√
nan = (Ynk − m̈nk)/

√
nan and set

ˇ̈Xnk ≡ Ẍnk · 1[ |Ẍnk|≤1 ] ≡
ˇ̈Ynk/

√
nan.(32)

Combining (8.3.9) and (26)(a) yields

M̈n ≡ [ maxk |Ẍnk| ] = [maxk |Ynk − m̈nk| ]/
√
n an →p 0.(33)

Since the DCT (domination with “1”) and (33) imply [maxk |ˇ̈µnk| ]/
√
nan → 0

(just as in line (a) of the proof of theorem 5.1), we get

ˇ̈Mn ≡ [ maxk | ˇ̈Xnk − E( ˇ̈Xnk)| ] =a [ maxk |Ynk − m̈nk − ˇ̈µnk| ]/
√
n an →p 0.(34)
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Note that the ˇ̈Xnk− ˇ̈µnk are 0 mean rvs that satisfy (34). NowXs
nk, Ẍ

s
nk, n and ˇ̈X

s

nk

denote the symmetrized versions ofXnk, Ẍnk, and
ˇ̈Xnk, and let X̌s

nk and
ˇ̈Xs
nk denote

the truncated (at
√
n an) versions of X

s
nk and Ẍs

nk. All of the rvs Ẍs
nk are exactly

equal to the rvs Xs
nk; so (with c = 1) each ˇ̈Xs

nk equals X̌s
nk. Thus

∑n
1
ˇ̈X
s

nk =a
∑n

1
ˇ̈Xs
nk =

∑n
1 X̌

s
nk =a

∑n
1 X

s
nk →d N(0, 2),(35)

using (33) for the first =a in (35) and (26)(a) for the second. Thus (using (26)(b)

and then ˇ̈Xs
nk=X̌

s
nk in line (a))

1 ∼ E (Y̌ sn )2/2 a2n = 1
2

∑n
1 E (X̌s

nk)
2 = 1

2

∑n
1 E ( ˇ̈Xs

nk)
2(a)

∼ 1
2

∑n
1 E ( ˇ̈X

s

nk)
2 by (34), (35), and (26)(b) applied to the ˇ̈X

s

nk(b)

=
∑n

1 Var[
ˇ̈Xnk] =

∑n
1 Var[

ˇ̈Ynk]/n a
2
n.(36)

Thus the first claim in (29) holds. The second claim follows from the convergence
of types theorem. (The implication of (34)–(36) is that first symmetrizing and
then truncating the Ẍnk’s is asymptotically equivalent to first truncating and then
symmetrizing the Ẍnk’s.) (More complete results for iid rvs are presented in the
next section.) 2

From a Quantile Point of View

Notation 5.2 (Weak negligibility in the CLT context) LetXn1, . . . , Xnn

be independent rvs with dfs Fn1, . . . , Fnn. Fix θ > 0. Define xθn by requiring
[−xθn, xθn] to be the shortest closed, symmetric interval to which F̄n ≡ 1

n

∑n
1 Fnk

assigns probability at least 1 − θ/n. Let P̄n(x) ≡ 1
n

∑n
1 P ( |Xnk| > x) denote the

average tail probability, and then let Kn denote the qf of the df 1− P̄n(·). Note the
quantile relationship xθn = Kn(1 − θ/n).

Let X̃nk denote Xnk W̃insorized outside [−xθon, xθon] (commonly, use θo ≡ 1).

Let µ̃nk and σ̃2
nk denote the resulting means and variances; set both µ̃n ≡ 1

n

∑n
1 µ̃nk

and σ̃2
n ≡ 1

n

∑n
1 σ̃

2
nk. Applying discussion 8.3.1 to the rvs |Xnk|/

√
n σ̃n (whose

average df has (1−θ/n)th quantile xθn/
√
n σ̃n) shows that the following conditions

for the weak negligibility of the rvs Xnk/
√
n σ̃n are equivalent:

Mn ≡ [ max1≤k≤n |Xnk| ]/
√
n σ̃n →p 0 .(37)

xθn/
√
n σ̃n → 0 for all 0 < θ ≤ θθ0 .(38)

∑n
1 P ( |Xnk| > ǫ

√
n σ̃n)→ 0 for all 0 < ǫ ≤ 1 . 2(39)

Theorem 5.3 (CLT using W̃insorization) LetXn1, . . . , Xnn be independent
rvs having dfs Fn1, . . . , Fnn. If any/all of (37), (38), and (39) holds, then both

Z̄n ≡
√
n [X̄n − µ̃n]/σ̃n →d N(0, 1) and(40)

M̃n ≡ [ max1≤k≤n |Xnk − µ̃nk| ]/
√
n σ̃n →p 0 .(41)



5. NORMALITY VIA W̃INSORIZATION AND ŤRUNCATION 259

Proof. For the proof, we will need notation similar to that above, for any θ.

For 0 < θ ≤ θ0 let X̃θ
nk denote Xnk Winsorized outside [−xθn, xθn]; let µ̃θnk and σ̃θnk

denote the obvious, and define both µ̃θn ≡ 1
n

∑n
1 µ̃

θ
nk and σ̃2

θn ≡ 1
n

∑n
1 (σ̃

θ
nk)

2. Let

X̃θn ≡ 1
n

∑n
1 X̃

θ
nk, and let Z̃θn ≡

√
n [X̃θn−µ̃θn]/σ̃θn. Define third central moments

γ̃θnk ≡ E |X̃θ
nk − µ̃θnk |3, and let γ̃θn ≡

∑n
1 γ̃

θ
nk .

Call the rvs Ỹ θnk ≡ (X̃θ
nk−µ̃θnk)/

√
n σ̃θn the associated summands, and let M̃θn ≡

[ maxk |Ỹ θnk| ] denote their maximal summand. Now, all µ̃nk ∈ [−xθ0n, xθ0n]. Thus
Mn →p 0 implies that M̃n →p 0 by using (37) and (38) in the triangle inequality.

Fix 0 < θ ≤ θ0. Observe that with δn ≡ P (
∑n

1 Xnk 6=
∑n

1 X̃
θ
nk)), we have

P (Z̄n ≤ z) = P (Z̃θn × (σ̃θn/σ̃n) +
√
n(µ̃θn − µ̃n)/σ̃n ≤ z) ⊕ δn .(42)

Since P (
∑n

1 Xnk 6=
∑n

1 X̃
θ
nk) ≤ θ is trivial, and since ‖FZ̃θn

−Φ‖ ≤ 13 γ̃θn/
√
n σ̃3

θn

by the Berry–Esseen theorem, (40) will follow immediately from showing that (43)
below holds. [Recall that a = b ⊕ c means |a− b| ≤ c.] 2

Inequality 5.1 For each 0 < θ ≤ θ0, results (44), (47), and (45) below lead to

(i)
γ̃θn√
n σ̃3

θn

→ 0 , (j)
σ̃2
θn

σ̃2
n

→ 1 , (k)

√
n | µ̃θn − µ̃n |

σ̃n
→ 0 .(43)

Proof. For convenience, set θ0 = 1. We then note that σ̃n = σ̃1n. Bounding

one power of |X̃θ
nk − µ̃θnk|3 by 2 xθn in the integrand of each γ̃θnk gives

γ̃θn√
n σ̃3

θn

≤ 2
xθn√
n σ̃θn

≤ 2
xθn√
n σ̃n

→ 0,(44)

using (38). Since the probability outside [−x1n, x1n] is at most 1/n,
√
n | µ̃θn − µ̃n |/σ̃n ≤ xθn/

√
n σ̃n → 0(45)

by (38). We need some notation before turning to (43)(j). Let Ṽθn denote the

average of the second moments of the X̃θ
nk, and set Ṽn ≡ Ṽ1n. Now, F̄n assigns

at most 1/n probability to the complement of the interval [−x1n, x1n], and on
[−xθn, xθn] the integrand of Ṽθn never exceeds x2θn. And so

0 ≤ [ σ̃2
θn − σ̃2

n]/ σ̃
2
θn = {Ṽθn − Ṽn}/σ̃2

θn − 1
n

∑n
1 {(µ̃θnk)2 − µ̃2

nk}/σ̃2
θn(46)

= {Ṽn⊕ 1
n x

2
θn−Ṽn}/σ̃2

θn− 1
n

∑n
1 {[ µ̃nk⊕xθn P ( |Xnk| > x1n)]

2−µ̃2
nk}/σ̃2

θn(a)

≤ x2θn/[n σ̃2
θn] + 2 1

n

∑n
1 { [ |µ̃nk| xθn P ( |Xnk| > x1n]/σ̃

2
θn }

+ x2θn
1
n

∑n
1 P

2( |Xnk| > x1n)/σ̃
2
θn (where all P 2(·) ≤ P (·))

≤ (1 + 2 + 1) {x2θn/n σ̃2
θn} = 4 {x2θn/n σ̃2

n} → 0(47)

by (38). Thus (43) holds, and it gives the normality of Z̄n in (40). (Note the
equivalence of (C.1.5) and (C.1.6), with r = 2.) The proof of (43) also showed

{Ṽθn − Ṽn}/ σ̃2
θn → 0 and 1

n

∑n
1 {(µ̃θnk)2 − µ̃2

nk}/σ̃2
θn → 0.(48)

(Contrast these calculations with those in remark 5.1.) 2
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Remark 5.2 (Summary) The work above is in the context of theorem C.1.1, not
the context of theorem 5.1. For illustration, we have often done extra work with
the cumbersome W̃insorized rvs, as well as basic work with the simpler Ťruncated
rvs. Here is why! Use the Ťruncated rvs to prove, then claims made for the more
“natural” W̃insorized rvs are often the ones of true interest that “look familar.”

(Deceptively simple uan requirement) In most cases centering at medians is
not possible, and it looks from (26)(b) or from Usn(

√
nan) ∼ 2 a2n in (29) like we

have an infinite loop in deciding where to truncate. Not necessarily! The fact that
µ̌n/νn → 1 in (30)= (C.1.9)gives us some hope. Also, we would much rather claim
asymptotic results for a sum that has been “prettied up” so that it looks familiar.
That is, use the simplest equivalence to prove your result. Then use all the other
equivalences to claim all the familiar looking results you can think of that are in the
same vein. (In the next section on iid rvs we can be much more specific about this.
See remark 10.6.2.) Compare the final sentence in the statement of theorem 5.1
with the circularity of the requirement that Usn(

√
nan) ∼ 2 a2n in (29). 2
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6 Identically Distributed RVs

Notation 6.1 (W̃insorization notation) Let K be a fixed qf. Let a > 0 be tiny.

We agree that dom(a, a) denotes [0, 1− a), (a, 1], or (a, 1− a) according as X ≥ 0,

X ≤ 0, or general X , and that K̃a,a(·) denotes K W̃insorized outside dom(a, a).

[For example, when X takes on both positive and negative values, then K̃a,a(·)
equals K+(a), K(t), K(1 − a) according as t ≤ a, a < t < 1 − a, 1 − a ≤ t.]

Define q(t) ≡ K+(1 − t) + K−
+ (t). Then define v(t) ≡ [K+(1 − t)]2 + [K−

+ (t)]2.

[Note that v(t) ≤ q2(t) ≤ 2 v(t).] Let ξ be a Uniform(0, 1) rv. Let X ≡ K(ξ), and

X̃(a) ≡ K̃a,a(ξ). We also define notation for various moments by agreeing that

X̃(a) ≡ K̃a,a(ξ) ∼= (µ̃(a), σ̃2(a)) with γ̃(a) ≡ E|X̃(a)− µ̃(a)|3 .(1)

Now define the rvs (Xn1, . . . , Xnn) ≡ (K(ξn1), . . . ,K(ξnn)) for row-independent

Uniform(0, 1) rvs ξn1, . . . , ξnn; thus they are row-independent with df F and qf K.
Our interest is in

Z̄n ≡
√
n [X̄n − µ̃n]/σ̃n, where µ̃n ≡ µ̃(1/n) and σ̃n ≡ σ̃(1/n) ,

Z̃(an) ≡
√
n [X̃n − µ̃(an)]/σ̃(an), where X̃n ≡ 1

n

∑n
1 X̃nk(an),

(2)

This is sufficient for the following theorem, but we now prepare for its follow up.

Let σ̃n ≡ σ̃1n ≡ σ̃(1/n). Let v1n ≡ V (1/n), where

V (t) ≡
∫
dom(t,t)

K2(s) ds on [0, 1/2] and

m(t) ≡
∫
dom(t,t)

|K(s)| ds on [0, 1/2] ,
(3)

which for all t sufficiently small are equal to
∫
dom(t,t) v(s) ds and

∫
dom(t,t) q(s) ds.

The Winsorized second moment (when Winsorized outside dom(1/n, 1/n)) is given

by ṽ1n ≡ E K̃2
1/n,1/n(ξ).

Let |X | have df F|X|(·) and qf K|X|(·). Let v̄(t) ≡ K2
|X|(T ). Define the partial

second moments and the truncated second moments in terms of both dfs and qfs via

V|X|(t) ≡
∫
[0,1−t)K

2
|X|(s) ds on [0, 1] ,

U(x) ≡
∫
[|y|≤x] y

2 dF (y) on [0,∞) .
(4)

Let v̄1n ≡ V|X|(1/n) and u1n ≡ U(x1n), and we define xθn ≡ K|X|(1−θ/n) to be the

(1−θ/n)-quantile of the rv |X |. Thus [−xθn, xθn] is the shortest interval symmetric

about 0 that contains at least the proportion (1 − θ/n) of the X probability. The

Winsorized second moment in the present context is ũ1n, where

ũ1n ≡ u1n + x21n P ( |X | > 1/n) equals ˜̄v1n ≡ v̄1n +K2
|X|(1 − 1/n)/n,(5)

even though u1n ≥ m1n always holds (by (C.1.53)). 2
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Theorem 6.1 (CLT for iid rvs) LetXn1, . . . , Xnn be row independent iid rvs.
(See (2)–(5) for the possible νn choices in (9).) The following are equivalent.

r̃2(t) ≡ t q2(t)/σ̃2(t)→ 0 as t→ 0. (Note (28) below.)(6)

Z̄n →d N(0, 1).(7)

Z̃(1/n)→d N(0, 1).(8)

[max1≤k≤n 1
n X

2
nk]/νn →p 0 for νn any of v1n, ṽ1n, u1n, v̄1n, ũ1n, or σ̃1n.(9)

xθn/ (
√
n σ̃n)→ 0 for all 0< θ ≤1 (or, use any νn as in (27)).(10)

S2
n/σ̃

2
n ≡ (X2

n − X̄2
n )/σ̃

2
n →p 1.(11)

Moreover, µ̌n ≡
∫
(1/n,1−1/n)K(t) dt can replace µ̃n in the definition of Z̄n in (7).

Proof. Consider (7). We are Winsorizing the qf on [t, 1 − t], not the df on
[−xθn, xθn]. Even so, we essentially repeat the argument used for (10.5.34). Let

µ̃θn ≡ µ̃(θ/n) , σ̃θn ≡ σ̃(θ/n) , Z̃θn ≡
√
n { 1n [

∑n
1 X̃nk(θ/n)]−µ̃θn}/σ̃θn.(a)

(Now, a = b ⊕ c means that |a − b| ≤ c.) First observe, with the probability that

the two rvs differ bounded by δn ≡ P (
∑n

k=1Xk 6=
∑n

k=1 X̃nk(θ/n)), that

P (Z̄n ≤ z) = P (Z̃θn × (σ̃θn/σ̃n) +
√
n(µ̃θn − µ̃n)/σ̃n ≤ z) ⊕ δn .(b)

Since δn = P (
∑n

1 Xk 6=
∑n

1 X̃nk(θ/n)) ≤ 2θ is trivial, and since the Berry–Esseen

theorem gives ‖FZ̃θn
− Φ‖ ≤ 9 γ̃θn/

√
n σ̃3

θn, the current theorem will follow from
showing that for each θ > 0 we have

(i)
γ̃θn√
n σ̃3

θn

→ 0 , (j)
σ̃(θ/n)

σ̃(1/n)
→ 1 , (k)

√
n | µ̃(θ/n)− µ̃(1/n) |

σ̃(1/n)
→ 0 .(12)

Recall from above that q(a) ≡ K+(1 − a) +K−
+ (a). Then when r(t)→ 0, we have

γ̃θn√
n σ̃3

θn

≤ 1√
θ
×
√
θ/n q(θ/n)

σ̃(θ/n)
= r̃(θ/n)/

√
θ → 0 using r̃(t)→ 0,(c)

σ̃2(θ/n)/σ̃2(1/n)→ 1 in analogy with (10.5.38), using r̃(t)→ 0,(d)
√
n | µ̃(θ/n)− µ̃(1/n) |/σ̃(1/n) ≤ {q(θ/n)− q(1/n)}/√n σ̃(1/n)(e)

≤ q(θ/n)/√n σ̃(1/n)
≤ {r̃(θ/n)/

√
θ } {σ̃(θ/n)/σ̃(1/n)} → 0 by (c) and (d).(f)

Thus (12), and so Z̄n →d N(0, 1) in (7). Just (12)(i)(θ=1) gives normality in (8).

Before completing this proof, we will present a definition and a proposition that
will add a myriad of other equivalences to the list. 2

Definition 6.1 (Slowly varying functions) (a) Call L(·) > 0 slowly varying
at 0 (written L ∈ R0 or L ∈ L) provided L(ct)/L(t)→ 1 as t→ 0, for each c > 0.

(b) The function l(·) > 0 on (0,∞) is called slowly varying at∞ (written as l ∈ U0)
if it satisfies l(cx)/l(x)→ 1 as x→∞, for each positive number c > 0.

(∗) The functions L(t) = log(1/t) and l(x) = log(x) are the prototypes.
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Proposition 6.1 (Equivalent conditions that give a CLT for iid rvs)
The following contains just the “best” items from a long list of equivalents. When
any one (hence all) hold, we write either F ∈ D(Normal) orK ∈ D(Normal) and say
that F (or, K) is in the domain of attraction of the normal distribution. [We require
one specific an ց 0 having lim (an/an+1) <∞) in (29); an = θ/n is one such.] (See

notation 5.1 for v1n, ṽ1n, u1n, v̄1n, ũ1n = ˜̄v1n or σ̃1n.) The following are equivalent:

R(x) ≡ x2 P (|X | > x)/U(x)→ 0 (or, p x2 P (|X | ≥ x)/U(x−)→ 0) .(13)

x [M(cx)−M(x)]/U(x)→0, all c>0; where M(x) ≡
∫
[|y|≤x] |y| dF (y).(14)

U(·) is slowly varying at infinity, where U(x) ≡
∫
[|y|≤x] y

2 dF (y).(15)

V (·) is slowly varying at zero, where V (t) ≡
∫
dom(t,t)

K2(s) ds(16)

V|X|(·) is slowly varying at zero, where V|X|(t) ≡
∫
[0,1−t)K

2
|X|(s) ds(17)

σ̃2(·) is slowly varying at zero, where σ̃2(t) ≡ Var [K̃2
t,t(ξ)].(18)

X2
n /νn →p 1 for any one specific νn > 0.(19)

X2
n / νn →p 1, for νn one of v1n, ṽ1n, u1n, v̄1n or ũ1n = ˜̄v1n.(20)

S2
n / σ̃

2
n →p 1 , where σ̃2

1n ≡ Var [K̃2
1/n,1/n(ξ)].(21)

D2
n ≡ [ 1

n maxk (Xnk − X̄n)
2 ]/S2

n →p 0.(22)

[maxkX
2
nk ] / nX

2
n →p 0.(23)

[maxk
1
n X

2
nk ] / νn →p 0 and U(n νn)/ νn → 0.(24)

[maxk
1
n X

2
nk ] / νn →p 0 for νn one of v1n, ṽ1n, u1n, v̄1n, ũ1n, or σ̃1n.(25)

nP (X2 > cn v̄1n)→ 0 for all c>0 (or, use any νn as in (25)).(26)

xθn/ [
√
n σ̃n]→ 0 for all 0< θ ≤1 (or, use any νn as in (25)).(27)

r̃2(t) ≡ t q2(t)/σ̃2(t)→ 0 as t→ 0 . (See near (1) for q(·)).(28)

r̃(an) =
√
an q(an)/σ̃(an)→ 0 for one specific an ց 0, as above.(29)

tK2
|X|(1− t)/V|X|(t)→ 0 where V|X|(t) ≡

∫
[0,1−t)K

2
|X|(s) ds .(30)

t [K2
+(t) ∨K2(1 − t)]/V (t)→ 0 where V (t) ≡

∫
dom(t,t)

K2(s) ds .(31)

t [K2
+(ct) ∨K2(1− ct)]/σ̃2(t)→ 0 for all 0 < c ≤1. (Or, use K2

|X|(ct).)(32)

q(θ/n) / [
√
n σ̃(1/n)]→ 0 for all θ > 0. (See near (1) for q(·)).(33)

[q(θ/n)− q(1/n)] / [√n σ̃(1/n)]→ 0 for all θ > 0.(34)
√
n [m(θ/n)−m(1/n)] / σ̃(1/n)→ 0 for all θ > 0. (See (3) for m(·)).(35)

[v(θ/n)−v(1/n)] / [n σ̃2
n(1/n)]→ 0 for all θ > 0 . (See near (1) for v(·).)(36)

(Recall the Gnedenko–Kolmogorov theorem 6.6.1, (6.6.3)–(6.6.9), and (C.2.20).)
Equivalents for theXs≡X−X ′ ’s follow from (25), (10.5.26), (10.5.36), and (8.3.9).



264 CHAPTER 10. CLTS VIA CHARACTERISTIC FUNCTIONS

Corollary 1 (Asymptotic normality of the Student-T statistic) If any one
(hence, all) of (16)–(36) holds, then

Tn ≡
√
n [ X̄n − µ̃n ] /Sn →d N(0, 1).(37)

Thus, we have a confidence interval available for µ1n that is asymptotically valid
for any df F ∈ D(Normal).

Proof. (Continued) The equivalence of conditions (13)–(36) was specifically
developed in section C.1–section C.3 where much longer lists of equivalences are
given. Theorem C.1.1 needed only to tie the CLT into the combined list. As earlier
pointed out, many of these equivalences are found in the literature. (Be aware that
having a different denominator in a condition, or being required to verify it only on
some sequence of values, can be very valuable.)

That (6) implies (7) and (8) has already been established. The equivalence of
(6), (9) and (10) (as well as all the equivalences in proposition 6.1 was shown in
appendix C. Also, (9) (using νn = σ̃1n) is exactly the same as (10.5.37), which was
shown in theorem 10.5.3 to imply (7). The following easy exercise will complete
the loop regarding (8). 2

Exercise 6.1 Show that (8) implies (7).

Remark 6.1 (Natural parameters) The conclusion
√
n [X̄n− bn]/an →d N(0, 1)

for some bn and some an > 0 has been shown to imply that necessarily
√
n [X̄n − µ̃n]/σ̃n →d N(0, 1).(38)

Statisticians like to use means and standard deviations in their conclusions, even if
they chose to verify (13) or (15) as the easiest way to establish such a result. That

conclusions (7), (11), (9), (13), (15), (18), (20), and (22) are all equivalent(39)

is a beautiful result. Verify the easiest of (6)–(37) to establish the rest. (Those
troubling, but enabling, a2n’s have disappeared from the verification process for
many of these conditions, and they have disappeared entirely from (38).) 2

Remark 6.2 (Determining νn ≡ a2n) Consider the possibility

a2n ≡ U(
√
n ) where U(x) ≡

∫
[ |y|≤x] y

2 dF (y).(40)

It is in the spirit of (10.5.29) that

U(
√
n an)
a2n

=
U(
√
nU(

√
n ))

U(
√
n )

“should converge” to 1,(a)

whenever F ∈ D(Normal) (that is, whenever U(·) is slowly varying). The prototype
slowly varying function is log(·). If U(n) ∼ logn were true, then indeed

U(
√
n an)
a2n

∼ log(
√
n log(

√
n ))

log(
√
n )

→ 1.(b)

Thus the strategy (40) is worth a look. (It is even worth a try in the non-iid case of

(10.5.29). Just replace U(x) above by Un(x) ≡
∫
[ |y|≤x] y

2 dF̄n(y).) (Just for fun,

seek the order of U(
√
n an)/ a

2
n when a2n = U(

√
n cn) with c

2
n ≡ U(

√
n )?) 2
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7 A Converse of the Classical CLT
Theorem 7.1 (Domain of normal attraction of the normal df) Consider
iid rvs X1, X2, . . . , and set Zn =

∑n
1 Xk/

√
n. Then:

Zn = Op(1) implies EX1 = 0 and E(X2
1 ) <∞.(1)

EX1 = 0 and Var[X1] <∞ imply Zn →d N(0,Var[X1] ).(2)

Proof. (Giné and Zinn) Now, (2) was established previously. Consider (1).
Fix t > 0. Let Zǫn ≡

∑n
1 ǫkXk/

√
n for iid Rademacher rvs ǫ1, ǫ2, . . . that are

independent of the Xk’s. By Giné–Zinn symmetrization of (8.3.10), we have

P (Zǫn > 2λ) ≤ 2 supn≥1 P (Zn > λ) ;(a)

and thus P (Zǫn > λ) = Op(1) by our hypotheses. Also, Khinchin’s inequality in
exercise 8.3.3 (regarding the Xk’s as fixed constants, and with r = 1) gives

Eǫ |Zǫn| ≥ 1
3 X

2
n

1/2
= c Sn, now with S2

n ≡ X2
n and c = 1

3 .(b)

Applying Paley–Zygmund’s inequality 3.4.9 to Zǫn (conditioned on fixed values of

the Xk’s) for the first inequality and (b) for the second yields

Pǫ(|Zǫn| > t) ≥
(

(Eǫ|Zǫn| − t)+
(Eǫ{(Zǫn)2})1/2

)2

≥
(
(cSn − t)+

Sn

)2

(c)

= c2 (1− t/cSn)2 1[Sn>t/c] ≥ (c2/4) 1[Sn>2t/c] .(d)

Taking expectations across the extremes of this inequality with respect to the Xk’s
gives the bound

P (|Zǫn| > t) ≥ (c2/4)P (Sn > 2t/c) .(e)

Thus Sn = Op(1), by combining (e), (a), and the hypothesis.

Fix M > 0. The SLLN gives

1
n

∑n
1 X

2
k 1[X2

k
≤M ] →a.s. E{X2

1 1[X2
1≤M ] } .(f)

But →a.s. implies →d . Thus, applying (9.1.12) to the open set (t,∞) gives

1(0,E(X2
1 1

[X2
1
≤M]

))(t) ≤ limn P (
1
n

∑n
1 X

2
k 1[X2

k≤M ] > t)(g)

≤ sup
n
P ( 1n

∑n
1 X

2
k 1[X2

k≤M ] > t), for each t > 0.(h)

It follows that for each t > 0 we have

sup
M>0

1(0,E(X2
1 1

[X2
1
≤M]

))(t) ≤ sup
M>0

sup
n
P ( 1

n

∑n
1 X

2
k 1[X2

k≤M ] > t) .(i)

≤ sup
n
P ( 1n

∑n
1 X

2
k > t) ≤ sup

n
P (S2

n > t) .(j)
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Since Sn =Op(1), we have S
2
n =Op(1); and this implies that we can specify a t value

of t0 in (j) so large that the right-hand side of (j) at t0 is less than 1/2. But this
implies that for this t0 the indicator function in (i) must equal zero uniformly in
M . This means that

sup
M>0

E(X2
1 1[X2

1≤M ]) ≤ t0 .(k)

But this last supremum equals E(X2
1 ), and hence we must have E(X2

1 ) ≤ t0 <∞.
To complete the proof, we must now show that E(X1) = 0. Since EX2

1 < ∞,
the WLLN gives X̄n →p EX1. But the hypothesis that Zn = Op(1) implies that
X̄n = Zn/

√
n→p 0. Combining these gives EX1 = 0. 2



8. BOOTSTRAPPING 267

8 Bootstrapping
Suppose X1, X2, . . . are an iid sample from F . Denote the empirical df of the sample

Xn ≡ (X1, . . . , Xn)
′ by Fn(·). This empirical df Fn has mean X̄n and variance S2

n.

Let X∗
n ≡ (X∗

n1, . . . , X
∗
nn) denote an iid sample from Fn, called the bootstrap sample.

Let X̄∗
n and S∗

n denote the mean and the standard deviation of the bootstrap sample.

Since the moments of Fn exist, we will work with normed summands. Note that

the normed summands of a bootstrap sample always constitute a uan array, since

maxk P
∗(|X∗

nk − X̄n|/
√
nSn ≥ ǫ) ≤ Var[X∗

1n]/(ǫ
2nS2

n) = 1/nǫ2 → 0,(1)

all ǫ > 0. The maximum normed summand (when forming the bootstrap mean) is

M∗
n ≡ [maxk |X∗

nk − X̄n| ]/
√
nSn].(2)

Now (random sampling Xi − X̄n values), we can view M∗
n as the value of both the

Mn = M̃n of (10.5.37) and of (10.5.41), and note that (for each 0 < θ ≤ θ0 = 1/2)

the quantity xθn/
√
n σ̃n in (10.6.10) now has a value of Dn, where

Dn ≡ D(Xn) ≡ [ maxk |Xk − X̄n| ]/
√
nSn .(3)

Now, Dn is formed from the original sample, whileM∗
n is formed from the bootstrap

sample. The following theorem is in the spirit of result (10.5.40). (Note, moreover,

that 0 ≤M∗
n ≤ Dn, while P (M∗

n = Dn) ≥ 1− (1− 1/n)n→ 1− 1/e > 0 also holds.)

The “standardized” rv of (10.5.40) is now equal to

Z̄∗
n ≡
√
n [X̄∗

n − X̄n]/Sn , and also define T ∗
n ≡
√
n [X̄∗

n − X̄n]/S
∗
n .(4)

Agree that the weak bootstrap holds if

Z̄∗
n →d N(0, 1)

for the joint probability on Ω× Ω∗
n.

(5)

Agree that the strong bootstrap holds if

P (Z̄∗
n ≤ z|X1, . . . , Xn)→ P (N(0, 1) ≤ z)

for a.e. given sequence of values of X1, X2, . . ..
(6)

Theorem 8.1 (Bootstrapping) Consider Z̄∗
n in the iid case.

(i) The weak bootstrap for Z̄∗
n is equivalent to both

Dn →p 0 and/or σ̃2(·) is slowly varying at zero(7)

and/or any one (hence, all) of (10.5.6)–(10.5.37).

(ii) The strong bootstrap for Z̄∗
n is equivalent to both

Dn →a.s. 0 and/or Var[X1] = σ2
F ∈ (0,∞) .(8)

Corollary 1 (i) The weak bootstrap holds for T ∗
n whenever Dn →p 0.

(ii) The strong bootstrap holds for T ∗
n whenever Dn →a.s. 0.
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Proof. Now (10.6.22) and (10.6.18) show that Dn →p 0 is equivalent to σ̃2(·)
being slowly varying. (Thus, (7) is a true statement.) Additionally, it is known
from the SLLN of theorem 8.4.1 and proposition 6.6.1 (or, from exercise 8.4.20(ii))
that Dn →a.s. 0 is equivalent to Var[X1] <∞. (Thus, (8) is a true statement.)

We next verify normality. Consider (ii). The Liapunov bound of (10.2.5) is

‖FZ̄∗
n
− Φ‖ ≤ 8 γn/

√
nS3

n ≤ 8 [max1≤k≤n |Xk − X̄n| ]/Sn = 8Dn → 0(a)

for a.e. sample value of X1, X2, . . . . Consider (i). Well, P (Dn > ǫ/8) < ǫ for all
n ≥ (some nǫ) means that P ( ‖FZ̄∗

n
−Φ‖ > ǫ) < ǫ for all n ≥ nǫ. That is, (5) holds.

Consider the converse of the normality statements. Suppose Z̄∗
n →d N(0, 1) for

a fixed array (x1, . . . , xn, . . .) . The summands are necessarily uan by (1). Thus
(10.6.10) (for any θ < 1) is equivalent to Dn → 0 for this same fixed array (as
already noted just above (3)). Thus Dn →a.s. 0 is implied by the strong bootstrap,
and Dn →p 0 is implied (by going to subsequences) by the weak bootstrap.

Consider the corollary next. Use (10.6.20) and (6.6.4) to conclude that both

S∗
n/Sn →p×p∗ 1 if Dn →p 0 and(9)

S∗
n/Sn →p∗ 1 for a.e. value of (X1, X2, . . .) if Dn →a.s. 0.(10)

These last two results are useful in their own right. 2

Exercise 8.1 Establish all the minor details of (9), via theorem C.1.1 (if needed).
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9 Bootstrapping with Slowly ր W̃insorization

Let kn and k′n denote W̃insorization numbers, with kn ∧ k′n → ∞. But suppose
the W̃insorization fractions (an ∨ a′n) ≡ (kn ∨ k′n)/n → 0. Bootstrapping such a
W̃insorized mean from an iid sample always works!

Notation 9.1 Let Kn ≡ F−1
n denote the qf associated with some fixed nonde-

generate df Fn. We can always specify that dom(an, a
′
n) ≡ (an, 1 − a′n) for any

n(an ∧ a′n) → ∞. However, if Fn−(0) = 0, then specifying that dom(0, a′n) ≡
[0, 1− a′n) is preferable; and if Fn(0) = 1, then specifying that dom(an, 0) ≡ (an, 1]

is preferable. So we agree to let an∧a′n denote an∧a′n, or a′n, or an according to the

scheme used. Let K̃n(·) denote Kn(·) W̃insorized outside of dom(an, a
′
n), and let

µ̃n and σ̃2
n denote the mean and variance of K̃n(ξ) . Then the rvs X̃nk ≡ K̃n(ξnk)

are (unobservable) row-independent with qf K̃n (when ξnk are row-independent

Uniform(0, 1) rvs). Let X̃n ≡ (X̃n1 + · · · + X̃nn)/n and S̃2
n ≡

∑n
1 (X̃nk − X̃n)

2/n.
The quantities of primary interest here are

Z̃n ≡
√
n [X̃n − µ̃n]/σ̃n and Ẑn ≡

√
n [X̃n − µ̃n]/S̃n .(1)

Let γ̃n≡E|X̃n1− µ̃n|3. Let Fn denote the collection of all dfs Fn having σ̃n > 0. 2

Theorem 9.1 (Universal studentized CLT) Suppose the W̃insorization fractions
satisfy n(an ∧ a′n) = (kn ∧ k′n)→∞. Then uniformly in Fn:

‖FZ̃n
− Φ‖ ≤ 9 γ̃n/

√
n σ̃3

n ≤ 9/
√
n(an ∧ a′n) = 9/

√
kn ∧ k′n → 0 .(2)

P (|S̃n/σ̃n − 1| ≥ ǫ)→ 0.(3)

‖FẐn
− Φ‖ → 0.(4)

Requiring (an ∨ a′n)→ 0 guarantees that every nondegenerate df F is eventually in
all further Fn. (Recall again that the rvs X̃nk are unobservable rvs.)

Example 9.1 Let all Fn be Bernoulli(10−10). Then n must be huge before
σ̃n(an) > 0. 2

Proof. That ‖FZ̃n
− Φ‖ ≤ 9 γ̃n/

√
n σ̃3

n is immediate from the Berry–Esseen

theorem. Maximizing one power |K̃n(t) − µ̃n|1 in the integrand of γ̃n (but leaving
|K̃n(t)− µ̃n|2 to integrate) gives

γ̃n/
√
n σ̃3

n ≤ [ |K+(1− a′n)− µ̃n| ∨ |K−
+ (an)− µ̃n| ]/

√
n σ̃n

≤ 1/
√
n (an ∧ a′n) = 1/

√
kn ∧ k′n → 0 ,

(5)

as claimed. Thus (2) holds. Let qn ≡ K(1− a′n)−K+(an), as usual. Moreover,

S̃2
n/σ̃

2
n = { [∑n

1 (X̃nk − µ̃n)2/n]/σ̃2
n } − {(X̃n − µ̃n)/σ̃n}2 ≡ {I2n} − {I1n}2 ,(a)

where Chebyshev’s inequality gives both P (|I1n| ≥ ǫ) ≤ 1/(ǫ2 n)→ 0 and
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P ( |I2n−1| ≥ ǫ) ≤ 1

n2 ǫ2
∑n

1 Var[

(
X̃nk − µ̃n

σ̃n

)2

−1] ≤
∑n

1 E[(X̃nk − µ̃n)4]
ǫ2n2 σ̃4

n

(b)

≤ 1

ǫ2 n(an ∧ a′n)
· (an ∧ a

′
n) q

2
n

σ̃2
n

≤ 2

ǫ2 n(an ∧ a′n)
· 1 =

2

ǫ2(kn ∧ k′n)
→ 0(c)

uniformly in all dfs F ∈ Fn. Thus (3) holds. Writing

Ẑn =
√
n (X̃n − µ̃n)/S̃n = Z̃n + Z̃n (σ̃n/S̃n − 1) ,(d)

we obtain (4); note that P (Anǫ) ≡ P ([ |Z̃n| ≤ Mǫ]) can be made uniformly small
via Chebyshev, even though this set depends on F , while P (|σ̃n/S̃n − 1| ≥ ǫ) → 0
uniformly in F ∈ Fn also (as exhibited in (c)). 2

Notation 9.2 Let Xn ≡ (Xn1, . . . , Xnn)
′ denote an iid sample from the qf Kn,

and let X̄n, S
2
n, Gn, and Kn(·) denote its sample mean, sample variance, sample

third absolute central moment, and sample qf. Let X̃n ≡ (X̃n1, . . . , X̃nn)
′ denote

the (kn, k
′
n)-W̃insorized sample, for integers kn and k′n having kn ∧ k′n going to ∞

(here kn∧k′n will denote either kn∧k′n, or k′n, or kn as in the scheme of notation 9.1).

Let an ≡ kn/n and a′n ≡ k′n/n. Let X̃n, S̃n, G̃n, and K̃n denote the sample mean,
sample variance, sample third central moment, and sample qf of the population X̃n.

Let ~X∗
n ≡ (X∗

n1, . . . , X
∗
nn)

′ denote the iid bootstrap sample from K̃n(·), and let X∗
n

and S̃∗2
n be the sample mean and sample variance of the bootstrap sample X∗

n. Let
P∗n denote the bootstrap probability distribution. Our rvs of interest are

Z̃∗
n ≡
√
n [ X̃∗

n − X̃n]/S̃n and Ẑ∗
n ≡
√
n [ X̃∗

n − X̃n]/S̃∗
n .(6)

[We saw in the previous section that the sample mean and sample variance X∗
n and

S∗2
n of an iid bootstrap sample from Kn are such that Z̄n ≡

√
n [X∗

n − X̄n]/Sn

satisfies the strong (or the weak) bootstrap if and only if Var[X ] ∈ (0,∞) (or
F ∈ D(Normal)). But next we see the glories of Winsorizing! Winsorizing does do
what Winsorizing was supposed to do. The bootstrap always works, provided that
we Winsorize just a little bit.] 2

Theorem 9.2 (Universal bootstrap CLT) Suppose the W̃insorization fractions
are such that (kn ∧ k′n) = n(an ∧ a′n) → ∞ in the context of notation 9.2. Then

uniformly in all Xn for which S̃n > 0 we have that for a.e. Xn, conditional on Xn,

‖F
Z̃∗

n
− Φ‖ ≤ 9 G̃n/

√
n S̃3

n ≤ 9/
√
n(an ∧ a′n) = 9/

√
kn ∧ k′n → 0 ,(7)

P∗n(|S̃∗
n − S̃n|/S̃n ≥ ǫ

∣∣∣Xn )→ 0 ,(8)

‖F
Ẑ∗

n
− Φ‖ → 0,(9)

lim S̃n > 0 if we also specify that (an ∨ a′n)→ 0 , with F nondegenerate .(10)

Proof. This is immediate from the previous theorem. 2



9. BOOTSTRAPPING WITH SLOWLY ր W̃INSORIZATION 271

Remark 9.1 If we knew how to Winsorize correctly in theorem 9.1, it would be
a useful theorem. The point is, we do always know how to Winsorize correctly in
the bootstrap of theorem 9.2.

But should we instead do bootstrap sampling from the empirical qf Kn itself,
rather than K̃n, and then Winsorize this sample? No! Sampling from K̃n gives
us the analog of theorem 9.1, while sampling from Kn (it can be shown) does not.
(Sampling from Kn could, however, be shown to work for any qf K in a very large
class of distributions.) 2

Exercise 9.1 Let ξ1, ξ2, . . . be iid Uniform(0, 1) rvs. Let Xnk ≡ F̌−1
n (ξk) with

F̌−1
n (t) ≡ −

√
t ∨ (1/n)

−1
1(0,1/2)(t) +

√
(1− t) ∨ (1/n)

−1
1[1/2,1)(t).

Let Vn ≡ Var[Xnk], and let X̄n ≡
∑n

k=1Xnk/n. Compute Vn, as well as the higher

moments E|Xnk|3 and EX4
nk.

(a) Show that Zn ≡
√
n X̄n/

√
Vn →d N(0, 1) by verifying the Lindeberg condition.

(b) What conclusion does the Berry–Esseen theorem imply for Zn?

(c) Show that X2
n ≡

∑n
k=1X

2
nk/n satisfies X2

n/Vn →p 1.

(d) Of course, this immediately implies that Tn ≡
√
n X̄n/(X2

n )
1/2 →d N(0, 1).

(e) Show that (E|Xnk|)2/Vn → 0.

Exercise 9.2 Formulate and solve another example in the spirit of exercise 9.1.

Exercise 9.3 Verify that S2
n ≡

∑n
k=1(Xnk− X̄n)

2/(n− 1) satisfies S2
n/σ̃

2
n →p 1,

and do it by verifying a Lindeberg type condition in the context of theorem 10.5.1.
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Chapter 11

Infinitely Divisible and
Stable Distributions

1 Infinitely Divisible Distributions

Definition 1.1 (Triangular arrays, and the uan condition) A triangular
array is just a collection of rvs Xn1, . . . , Xnn, n ≥ 1, such that the rvs in the nth
row are independent. Call it a uan array if the uniform asymptotic negligibility
condition holds, that is

max
1≤k≤n

P ( |Xnk| ≥ ǫ )→ 0 as n→∞ for all ǫ > 0.(1)

The uan condition is a natural one for preventing one term from dominating the
whole sum.

The Problem: Let Sn ≡ Xn1 + · · ·+Xnn denote the nth row sum of a uan array.

(i) Find the family of all possible limit laws of Sn.

(ii) Find conditions for convergence to a specified law of this form.
Find specialized results for further restrictions on the uan array.

(a) Suppose variances exist.

(b) Suppose the limit law is normal or Poisson.

(c) Consider Sn = [(X1+· · ·+Xn)−Bn]/An for a singly subscripted sequence
of iid rvs X1, . . . , Xn, . . . .

Some of the results in this chapter are stated with only indications of the proofs.
The goal in this chapter is simply to develop some rough understanding of the
subject. We will see in this section that the set of all possible limit laws of row
sums Sn ≡ Xn1 + · · ·+Xnn of a uan array of Xnk’s is exactly the class of infinitely
divisible laws, which we now define. 2

273
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Definition 1.2 (Infinitely divisible) Call both the rv Y and its distribution
infinitely divisible (id ) if for every value of n it is possible to decompose Y into n
iid components as

Y ∼= Yn1 + · · ·+ Ynn for some iid rvs Yn1, · · · , Ynn .(2)

We denote the class of all id distributions by I; the subclass with finite variance is
denoted by I2. (We remark that the Yni’s of this definition form a uan array, but
this needs to be shown; note exercise 1.2.)

Exercise 1.1 (Chf expansions for the uan array Xn1 + · · · + Xnn) Consider a
uan array of rvs Xnk, as in (1).
(a) Let Fnk and φnk denote the df and the chf of Xnk. Show that

[max1≤k≤n |φnk(t)− 1|]→ 0 uniformly on every finite interval.(3)

[Hint. Integrate over |x| < ǫ and |x| ≥ ǫ separately to obtain

|φnk(t)− 1| ≤ δǫ + 2P (|Xnk| ≥ ǫ),

from which point the result is minor.] We then define (as will be useful regarding
an expansion of Log (1 + (φnk(·)− 1)) below)

ǫn(t) ≡
∑n

k=1|φnk(t)− 1|2.(4)

(b) Verify the elementary fact that if Xnk
∼= (0, σ2

nk) , and σ
2
n ≡

∑n
1 σ

2
nk ≤M <∞

with [max1≤k≤n σ2
nk]→ 0, then ǫn(t)→ 0 uniformly on each finite interval.

Exercise 1.2 (Chf expansions for the uan array Y ∼= Yn1 + · · ·+ Ynn)
(a) If φ is id, then φ(t) 6= 0 for any t.
(b) Let φ and φn denote the chf of Y and of the Ynk’s, respectively, in (2). Show
that these Yn1, . . . , Ynn form a uan array.
(c)∗ If Ym →d Y for id rvs Ym, then Y is id. (Or, give an “approximate proof.”)

Motivation 1.1 (Limits of uan arrays) Suppose that Sn ≡ Xn1 + · · · +Xnn

for some row independent uan array. Let Fnk and φnk denote the df and chf of
the rv Xnk. Then for the function ǫn(·) of (4) we necessarily have for n sufficiently
large (recall that a = b⊕ c means that |a− b| ≤ c) that

Log φSn(t) =
∑n

1Log φnk(t) =
∑n

1Log (1 + (φnk(t)− 1))

=
∑n

1 [φnk(t)− 1]⊕ ǫn(t) with ǫn(·) as in (4)

=
∑n

k=1

∫∞
−∞ (eitx − 1) dFnk(x)⊕ ǫn(t).(5)

If we further assume that all the Xnk’s have 0 means and finite variances, then we
can rewrite (5) to obtain

Log φSn(t) =

n∑

k=1

∫ ∞

−∞

[
eitx − 1− itx

x2

] [
x2 dFnk(x)

]
⊕ ǫn(t) .
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Thus

Log φSn(t) =
∫∞
−∞ { e

itx−1−itx
x2 } [x2∑n

1 dFnk(x) ] ⊕ ǫn(t)

≡
∫∞
−∞{φ(x, t) } [ dKn(x) ] ⊕ ǫn(t) .

(6)

Observe additionally that

φ(x, t) is continuous on the (x, t)-plane with
each φ(·, t) bounded and continuous, and equal to − t2/2 at x = 0 .

(7)

Moreover, take the point of view that

Kn(x) =
∫ x
−∞ y2 d

∑n
k=1 Fnk(y) = (the contribution to variance up to x).(8)

It is natural to hope that Sn will converge in distribution to a rv Y whose Log chf
is of the form

Log φY (t) ≡
∫∞
−∞ φ(x, t) dK(t) ,(9)

provided that Kn →d K.

When means and variances need not exist, we define

α(x) ≡ x2 ∧ 1 and β(x) ≡ (|x| ∧ 1) sign(x).(10)

We then note that (5) can also be manipulated to give

Log φSn(t) =

∫ ∞

−∞

[
(eitx − 1− itβ(x))

α(x)

] [
α(x) d

n∑

k=1

Fnk(x)

]

+ it [
∫∞
−∞ β(x)d

∑n
k=1Fnk(x)] ⊕ ǫn(x)

≡
∫∞
−∞ φ(x, t) dHn(x) + it βn ⊕ ǫn(x),(11)

where this new φ(x, t) still satisfies (7), and where we now define

Hn(x) =
∫ x
−∞ α(u) d

∑n
k=1 Fnk(u)

.
= (contribution to variance up to x),(12)

at least for x near 0, which is where all the action is in any uan array. It is natural
to hope that Sn will now converge in distribution to a rv Y whose chf is of the form

Log φY (t) ≡ itβ +
∫∞
−∞ φ(x, t) dH(x),(13)

provided that Hn →d H and βn → β.

We are thus particularly interested in the behavior of Kn and/or Hn (and ǫn(·)),
both for the general uan Xnk’s of (1) and for the special uan Ynk’s of (2). 2

The next example enables us to show that any chf of the form (9) or (13) is the
chf of some id distribution. The details are left to the easy exercise 1.3.
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Example 1.1 (Generalized Poisson and compound Poisson distributions) We
suppose that the rvs Xn1, . . . , Xnn are iid with

Xnk =

{
aj with probability pnj , for 1 ≤ j ≤ J ,
0 otherwise,

where npnj → λj ∈ (0,∞) as n→∞. Then

φSn(t)→ φY (t) ≡ exp(
∑J

j=1 λj(e
itaj − 1)) =

∏J
j=1 exp(λj(e

itaj − 1)).(14)

Thus the limiting distribution is that of Y ≡∑J
j=1 ajYj for independent Poisson(λj)

rvs Yj . This is called the generalized Poisson distribution.
Note also that the chf on the right-hand side of (14) satisfies

φY (t) = exp(λ
∑J

j=1 pj(e
itaj − 1)) = exp(λ(φW (t)− 1)) = Eeit(W1+···+WN ),(15)

where λ ≡ ∑J
j=1 λj , pj ≡ P (W = aj) = λj/λ for 1 ≤ j ≤ J , φW is the chf of W ,

and W1,W2, . . . are iid as W and N ∼= Poisson(λ). The distribution of the rv Y
is called the compound Poisson distribution, and is distributed as a Poisson sum of
independent Multinomial(k;λ1/λ, . . . , λk/λ) rvs.

The compound Poisson distribution of (15) is obviously id, as is clearly seen by
using λ/n in place of λ in (15) for the iid Ynk’s of (2). And thus the generalized
Poisson distribution in (14) is also id. It is in the compound Poisson format that
we recognize that this distribution is id, but it will be in its generalized Poisson
format that we will put it to work for us. 2

Exercise 1.3 Our heuristics have suggested that if Y is id, then its chf φ is of
the form (13) (the reader should also note (29), where the normal component of
the limit is removed). They have not yet suggested the converse. However,

iβt+
∫∞
−∞ φ(x, t) dν(x) ←∑mn

j=1 {[eitxj − 1− itβ(xj)]/α(xj)}ν(Ij) + iβt

=
∑mn

j=1 (e
itxj − 1)λj + itβn(16)

with λj ≡ [ν(Ij)/α(xj)] and βn ≡ β −
∑mn

j=1 ν(Ij)β(xj)/α(xj)

and appropriate intervals Ij (with xj , Ij and λj all depending on n)

→ (a limit of generalized Poisson rvs)

= (a limit of id rvs) = id,(17)

since the limit under →d of id rvs is also an id rv (as was stated in exercise 1.2(c)).
[The present exercise is to make all this rigorous.]

Theorem 1.1 (Kolmogorov’s representation theorem) Let the rv Y have
chf φ and finite variance. We will use the symbol K to denote a generalized df with
0 = K(−∞) < K(+∞) <∞. Now, Y is id if and only if

Log φ(t) = iβt+

∫ ∞

−∞
φ(x, t) dK(x) for some such gdf K and some real β,(18)

with φ(x, t) as in (6) (and (7)). The representation is unique. Moreover, it holds
that β = EY and K(+∞) = Var[Y ] .
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Theorem 1.2 (Bounded variances limit theorem for I2) (a) We start with a
triangular array of row-independent rvs Xnk

∼= (µnk, σ
2
nk) having

max
1≤k≤n

σ2
nk → 0 and σ2

n ≡
∑n

k=1 σ
2
nk ≤M <∞(19)

(such a triangular array is necessarily uan). Then

Sn ≡
n∑

k=1

Xnk →d Y,(20)

where the limiting rv necessarily satisfies

Log φY (t) = iβt+

∫ ∞

−∞

[
eitx − 1− itx

x2

]
dK(x) = itβ +

∫ ∞

−∞
φ(x, t) dK(t)(21)

with K(+∞) ≤ lim supσ2
n, if and only if

µn ≡
n∑

k=1

µnk → β and Kn(·) ≡
n∑

k=1

∫ ·

−∞
y2 dFnk(y + µnk)→sd K(·).(22)

If Kn(∞) = σ2
n ≤ M < ∞ is replaced by Kn(+∞) = σ2

n → Var[Y ] < ∞, then we
can claim that Var[Y ] = K(+∞) = limσ2

n, and we will write Kn →d K.
(b) The family of all possible limit laws of such Sn is the family I2 of all possible
infinitely divisible laws that have finite variance.

Proof. (If one grants exercises 1.1 and 1.3, then the proof we give will be
complete. These exercises are straightforward.) Any chf of the form (18) or (21)
is id, by exercise 1.3. Differentiating twice in (21) shows that this chf has mean β
and variance

∫∞
−∞ 1 dK = K(+∞). For the uniqueness of the representation, just

differentiate (21) twice, and thus obtain −(Log φ(t))′′ =
∫
eitx dK(x) subject to

0 = K(−∞) < K(+∞) = Var[Y ]; then applying the ordinary inversion formula to∫
eitx dK(x) gives K in terms of −(Log φ)′′.
It remains to show that any id Y with mean 0 and finite variance has a chf of

the form (21) with β = 0. Reconsider (6). For the special uan Ynk’s of (2) we
have Var[Ynk] = Var[Y ]/n, so that exercise 1.1(b) implies that ǫn(t)→ 0 uniformly
on all finite intervals. Moreover, the family of functions φ(·, t) in (7) are bounded
and continuous functions that converge to 0 as |x| → ∞. Applying the Helly–Bray
exercise 12.1.1 to each φ(·, t) in (6) shows (for the first equality we need only recall
that Y ∼= Tn ≡ Yn1 + · · ·+ Ynn) that

Log φY (t) = Log φTn(t)→
∫
φ(x, t) dK(x), provided that Kn →sd K.(a)

So we must show that Kn →sd K. Now, every subsequence n′ has a further n′′ on
which Kn′′ →sd (some K). But every resulting such

∫
φ(x, t) dK(x) with a limiting

K inserted must equal Log φY , and thus the first paragraph of this proof implies
that K has 0 = K(−∞) < K(+∞) = Var[Y ]. In fact, all possible subsequential
limits K must be equal, by the uniqueness of the representation in equation (21).
Thus Kn →sd K on the whole sequence n. Thus Log φY =

∫
φ(x, t) dK(t). This

completes the proof of theorem 1.1.
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We now turn to the proof of theorem 1.2. Under the basic hypothesis (19), we
have in (6) that ǫn(t) → 0 uniformly on all finite intervals (by exercise 1.1(b)).
Thus whenever Kn →sd (some K) and µn → µ, we have by applying Helly–Bray

to each φ(·, t) in (7) that Log φSn(t) → Log φ(t) for each t, for the φ of (21) with

β = µ. Thus Sn →d Y for the id Y with chf given by (21).
Suppose Sn →d Y . We argue (as in the proof of theorem 1.1) that each subse-

quence n′ has a further n′′ on which the Kn of (6) satisfies Kn′′ →sd (the same K)
and µn′′ → (the same µ). Thus Kn →sd K and µn → µ, using theorem 1.1 for

this uniqueness. That is, Log φSn(t) → Log φ(t) for the φ of (21) having this K

and µ. But Log φSn(t) → Log φY (t) also. Thus Log φY = Log φ. Moreover,

K(+∞) = Var[Y ] ≤ lim inf Var[Sn] = lim inf
∑n

1 σ
2
nk ≤ M (using Fatou and a

Skorokhod representation for which S∗
n →a.s. Y

∗). If

Kn(+∞) = Var[Sn] = σ2
n → Var[Y ] = K(+∞) ,(b)

then Kn →sd K reasonably becomes Kn →d K. 2

Example 1.2 (Normal convergence)
(i) (Representation) The N(0, 1) chf φ has

Log φ(t) = −t2/2.
Thus µ = 0 and K = 1[0,∞).

(ii) (Lindeberg–Feller theorem) Suppose the triangular array with Xnk
∼= (µnk, σ

2
nk)

satisfies µnk = 0 and σ2
n ≡

∑
σ2
nk = 1 for all n. Then

Sn ≡
∑n

k=1Xnk →d N(0, 1) and [max1≤k≤n σ
2
nk]→ 0(23)

if and only if
∑n

k=1

∫
[|x|≥ǫ] x

2 dFnk(x)→ 0 for all ǫ > 0. 2(24)

Exercise 1.4 Verify example 1.2.

Example 1.3 (Poisson convergence)
(i) (Representation) The Poisson(λ) chf φ has

Log φ(t) = λ(eit − 1) = itλ+ λ(eit − 1− it).
Thus µ = λ and K = λ1[1,∞).

(ii) (Convergence) Suppose the triangular array with Xnk
∼= (µnk, σ

2
nk) satisfies

[max1≤k≤n σ2
nk]→ 0, and

∑n
1 σ

2
nk → λ ∈ (0,∞). Then

Sn ≡
∑n

1 Xnk →d Poisson(λ)(25)

if and only if
∑n

k=1 µnk → λ and
∑n

k=1

∫
[|x−1|≥ǫ] x

2 dFnk(x+ µnk)→ 0. 2(26)
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Exercise 1.5 Verify example 1.3.

Exercise 1.6 (Decomposition of normal and Poisson distributions) Suppose that
X ∼= X1 +X2, where X1 and X2 are independent I2 rvs. Then:

X normal implies that X1 and X2 are both normal.(27)

X Poisson implies that X1 and X2 are both Poisson.(28)

[This is also true if I replaces I2.]

Exercise 1.7 If φ is a chf, then exp(c(φ − 1)) is an id chf for all c > 0. Thus
any chf such as the one in (15) represents the log of an id chf. (We do not make
explicit use of this anywhere.)

From here to the end of this section we mainly just state results, mostly by analogy.

Theorem 1.3 (Lévy–Khinchin representation theorem) Let Y have chf φ.
Then Y is infinitely divisible (id) if and only if

Log φ(t) = iβt+

∫ ∞

−∞
φ(x, t) dH(x) = iβt− σ2t2/2 +

∫ ∞

−∞
φ(x, t) dν(x),(29)

where σ2 = ∆H(0) and ν ≡ H − σ21[0,∞),

for φ(x, t) as in (11) (and (7)). The representation is unique. (We write Y =r (β,H)
to denote this representation. We will think of iβt−σ2t2/2 as the normal component
of the limit law.)

Theorem 1.4 (General limit theorem for I) Let the rv’s Xnk form a uan
triangular array. Then

Sn ≡
n∑

k=1

Xnk =

n∑

k=1

(Xnk − bnk) +
n∑

k=1

bnk →d Y,(30)

where necessarily

Log φY (t) = iβt+

∫ ∞

−∞
[(eitx − 1− itβ(x))/α(x)] dH(x),(31)

if and only if for some finite-measure generalized df H and for some real β we have

βn → β and Hn →d H(32)

where

βn ≡
∑n

k=1 [bnk +
∫∞
−∞ β(x) dFnk(x+ bnk)] and

Hn(·) =
∑n
k=1

∫ ·
−∞ α(y) dFnk(y + bnk) ,

(33)

and where bnk ≡ EXnk1(−δ,δ)(Xnk), with δ > 0 arbitrary but fixed. The family
of possible limit laws of such Sn is the family I of all possible infinitely divisible
distributions.
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Theorem 1.5 (Normal limits of uan arrays)
(a) Let Sn ≡ Xn1 + · · ·+Xnn for iid Xnk’s, and suppose that Sn →d S. Then

Mn →p 0 if and only if S is normal.(34)

(b) Let Sn ≡ Xn1 + · · ·+Xnn for independent Xnk’s, and suppose Sn →d S. Then

Mn →p 0 if and only if S is normal and the Xnk’s are uan.(35)

(Compare this to (10.5.5).)

Exercise 1.8 (a) Show that all Gamma(r, ν) rvs are infinitely divisible.
(b) Show that an infinitely divisible rv can not be concentrated on a finite interval.

Exercise 1.9 Use theorem 1.4 to prove the asymptotic normality condition of
theorem 10.5.3.

Exercise 1.10 Use theorem 1.4 to prove theorem 1.5.

Exercise 1.11 Use chfs to determine necessary and sufficient conditions under
which the WLLN will hold.
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2 Stable Distributions
Definition 2.1 (Domain of attraction) Let X,X1, X2, . . . be iid F . Suppose
an An > 0 and a Bn exist such that Sn ≡ X1 + · · ·+Xn satisfies

(Sn −Bn)/An →d Y ∼= G.(1)

Then F is said to belong to the domain of attraction of G, and we write F ∈ D(G).
We also say that G possesses a domain of attraction. [If Var[X ] < ∞ above, then
necessarily (Sn − nEX)/

√
n →d N(0,Var[X ]) by the ordinary CLT; thus the only

new and interesting cases have EX2 =∞.]

Definition 2.2 (Stable law) Call a df G stable if for all n there exist constants
an > 0 and bn with

Sn ∼= anX + bn, where X,X1, . . . , Xn are iid as G.(2)

We call G strictly stable if we may take all bn = 0 in (2).

Theorem 2.1 (Only stable dfs have domains of attraction) A df G will
possess a domain of attraction if and only if G has a stable distribution. More-
over, the an of (2) must satisfy

an = n1/α for some 0 < α ≤ 2.(3)

We call α the characteristic exponent of G. [To compare with section ??.??
results for R−β with β > 0, we define

β ≡ (2/α)− 1 or α = 2/(β + 1),(4)

where 0 < α ≤ 2 and 0 ≤ β <∞.]

Definition 2.3 (Basic domain of attraction) The df F is said to belong to
the basic domain of attraction of G (or the domain of normal attraction of G), which
is denoted by writing F ∈ DN (G), provided An = (constant) × n1/α works in (1).

Remark 2.1 (a) Suppose that G1 and G2 are both of the same type (in the sense
of definition 9.1.4). Then:

D(G1) = D(G2) and DN (G1) = DN (G2),

G ∈ D(G) if G is stable.
(5)

(Thus there is a domain of attraction for the normal type, but this is not so for a
particular normal df.) 2

Proof. Suppose G is stable. Then Sn ∼= anX + bn, or (Sn − bn)/an ∼= X ∼= G
for all n. Thus G ∈ D(G).

Suppose G possesses a domain of attraction. Thus there exists X1, X2, . . . iid F
where F ∈ D(G). Hence for some An > 0 and some Bn we have

Tn ≡ (X1 + · · ·+Xn −Bn)/An →d Y ∼= G.(a)
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Replace n by nk in (a) and obtain

Tnk =
X1 + · · ·+Xnk −Bnk

Ank

=

[
(X1 + · · ·+Xn)−Bn

An
+ · · ·+ (Xn(k−1)+1 + · · ·+Xnk)−Bn

An

]
An
Ank

(b)

−(Bnk − kBn)/Ank ,

which can be rewritten in the more useful format

Ank
An

Tnk +

[
Bnk − k Bn

An

]

=

[
X1 + · · ·+Xn −Bn

An

]
+ · · ·+

[
Xn(k−1)+1 + · · ·+Xnk −Bn

An

]

→ Y1 + · · ·+ Yk for Y1, . . . , Yk iid as G.(c)

Let k be fixed. Recall that the convergence of types theorem states that if

Tnk →d Y (true, from (a)) and also

ank Tnk + bnk →d Y1 + · · ·+ Yk (true, from (c)),
(d)

with ank ≡ Ank/An and bnk ≡ (Bnk − k Bn)/An, then it must be that

ank → (some ak) ∈ (0,∞), bnk → (some bk) ∈ (−∞,∞), where(e)

Y1 + · · ·+ Yk ∼= ak Y + bk.(f)

From (f), we see that G is stable. This completes the proof of the first statement.
Now we further exploit equation (e). From it we determine that

amk = lim
n→∞

Anmk
An

= lim
n→∞

Anmk
Anm

Anm
An

= akam for all m, k ≥ 1.(g)

We now let Z ≡ Y − Y ′ and Zn ≡ Yn − Y ′
n, where Y, Y

′, Y1, Y ′
1 , . . . are iid as G.

Then the rvs Z and Zn are symmetric, and (1) shows that

Z1 + · · ·+ Zn ∼= anZ for the same an’s as in (2).(h)

Thus for some x > 0 fixed we have

P (Z > (am/am+n)x) = P (am+nZ > amx)

= P (Z1 + · · ·+ Zm+n > amx) by (h)

= P ((Z1 + · · ·+ Zm) + (Zm+1 + · · ·+ Zm+n) > amx)

= P (amZ1 + anZ2 > amx) by (h)

≥ P (anZ2 ≥ 0 and amZ1 > amx) = P (Z2 ≥ 0)P (Z1 > x)

≥ (some δ) > 0 for all m and n (by choice of x).(i)
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Thus am/am+n stays bounded away from ∞ for all m and n. Letting m = kI and
m+ n = (k + 1)I , we have from (h) that

(ak/ak+1)
I = akI/a(k+1)I = am/am+n

≤ ( some M) <∞ for all k and I.(j)

Thus (ak/ak+1) ≤ 1 for all k; that is,

an isր, where amk = am ak for all m, k ≥ 1,(k)

was shown in (a). Thus exercise 2.1 below shows that an = n1/α for some α > 0.
Suppose that α > 2. Then Var[Y ] < ∞ by exercise 2.2 below. We can thus claim
that

√
n(Ȳ − µ) →d N(0, 1) by the ordinary CLT. Thus An =

√
n and ak =

√
k

work above. By the convergence of types theorem, there are no other choices. That
is, when α > 2, then only α = 2 works. (See Breiman (1968, p. 202).) 2

Exercise 2.1 Suppose that an ր with a1 = 1, and suppose that amk = amak
for all k,m ≥ 1. Then show that necessarily an = n1/α for some α ≥ 0.

Exercise 2.2 (Moments) Suppose that Y ∼= G is stable with characteristic
exponent α. Then

E|Y |r <∞ for all 0 < r < α.(6)

[Hint. Use the inequalities of section 8.3 to show that nP (|X | > an x) is bounded
in n, where an ≡ n1/α. Then bound the appropriate integral.]

Exercise 2.3 (Strictly stable dfs) Suppose that G is stable with characteristic
exponent α 6= 1. Then there is a number b such that G(· + b) is strictly stable.
[Hint. Show that b must satisfy b′n ≡ bn+(an−n)b = 0 for all n, and specify b such
that b′2 = 0. Or else b′2 = b = 0 immediately.]

Example 2.1 (Hitting time as a stable law) Watch Brownian motion S until it
first attains height a. The time this takes is denoted by Ta. According to the strong
Markov property,

Tna ∼= T (1)
a + · · ·+ T (n)

a with T (1)
a , . . . , T (n)

a iid as Ta .(7)

Checking the covariance functions, we see that S(a2·)/a ∼= S on [0,∞), and thus
Ta ∼= a2T1. Putting these last two equations together gives

T (1)
a + · · ·+ T (n)

a
∼= Tna ∼= n2a2T1 ∼= n2Ta ;(8)

thus Ta is strictly stable with α = 1
2 . From (12.7.3), P (Ta < t) = 2[1 − Φ(a/

√
t )]

for the N(0, 1) df Φ. Thus the df Fa and the density fa of Ta are given by

Fa(x) = 2[1− Φ(a/
√
x )] and fa(x) =

a√
2πx3/2

e−a
2/(2x) for x > 0. 2(9)
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3 Characterizing Stable Laws

Theorem 3.1 (General stable chfs) Suppose that Y ∼= G is stable. Then either
Y is a normal rv or there is a number 0 < α < 2 and constants m1,m2 ≥ 0 and β
for which

Log φ(t) = iβt+m1

∫∞
0 [ eitx − 1− itα(x) ] 1

x1+α dx

+m2

∫ 0

−∞ [ eitx − 1− itα(x) ] 1
|x|1+α dx.

(1)

For 0 < α < 1 or 1 < α < 2 this can be put in the form

Log φ(t) = idt− c |t|α × (1 + iθ Cα sign(t)),(2)

where d ∈ (−∞,∞), c > 0, |θ| ≤ 1, and Cα ≡ tan(π α/2). For α = 1 the form is

Log φ(t) = idt− c |t| × (1 + iθ sign(t) log |t|)(3)

with c, d, θ as above. In fact, θ = (m1 −m2)/(m1 +m2) measures skewness, while
the constants d and (1/c)(1/α) are just location and scale parameters. Then let
p ≡ m1/(m1 +m2) = (1 + θ)/2.

Corollary 1 (Symmetric stable chfs) φ(·) is the chf of a nondegenerate and
symmetric stable distribution with characteristic exponent α if and only if

φ(t) = exp(−c|t|α) for some 0 < α ≤ 2 and some c > 0.(4)

Proof. We give only a direct proof of the corollary. This keeps things simple.
Let Y ∼= G be strictly stable with chf φ and let ψ ≡ Log φ. Since Sn ∼= anY , we
have φn(t) = φ(ant). Thus (modulo 2πi)

nψ(t) = ψ(ant) = ψ(am(an/am)t) = mψ((an/am)t)

= mψ((n/m)1/αt) by (11.2.3).(a)

Thus for all rationals r > 0 we have shown that

rψ(t) = ψ(r1/αt) modulo 2πi,(5)

and by continuity, (5) also holds for all real r > 0. Set t = 1 and r = τα in (5) for

ψ(τ) = c τα for all τ > 0, with c ≡ ψ(1).

≡ (−c1 + ic2) τ
α.(b)

It must be true that c1 > 0; if c1 < 0 were true, then we would have the impossible
situation that φ(τ) → ∞ as τ → ∞, while c1 = 0 would imply that |φ(τ)| = 1 for
all τ , and that Y is degenerate by proposition 9.8.2. Thus for some c1 > 0, for t > 0
we must have

φ(t) = exp[(−c1 + ic2) t
α], with φ(−t) = φ(t).(c)
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We can summarize the two equations in (c) as

φ(t) = exp(−c1|t|α × [1− i(c2/c1) sign(t)] ) .(d)

Since G is symmetric, φ is real, and so c2 = 0. Thus (5) holds. All that remains is
to be sure that φ is a valid chf. This follows from the next two exercises.

If α 6= 1, then exercise 11.2.3 shows that φ(t) exp(idt) is a strictly stable chf for
some real d. Thus it satisfies (d), which is almost (2). 2

Exercise 3.1 Suppose that X ∼= F with chf φ that satisfies

φ(t) = 1− c |t|α +O(t2) as t→ 0(6)

for some fixed α ∈ (0, 2). Suppose now that X1, . . . , Xn are iid as F . Show that
the properly normed sum satisfies Sn/n

1/α →d Z where φZ(t) = exp(−c|t|α).

Exercise 3.2 Suppose X has density f(x) = (α/2) |x|−(α+1) × 1(1,∞)(|x|) with
the constant α ∈ (0, 2). Show that φ satisfies (6).

Exercise 3.3 (Holtzmark–Chandrasekar) LetXn1, . . . , Xnn be iid Uniform(−n, n).
We now let 0 < 1/p < 2 and M > 0 be fixed. Let

Zn ≡
∑n
k=1Znk ≡

∑n
k=1(M sign(Xnk)/|Xnk|p.

Regard Zn as the sum of forces exerted on a unit mass at the origin by n stars of
mass M that are uniformly distributed on (−n, n) in a universe where an inverse
pth power of attraction is operating. Show that Zn →d Z, where the chf of Z is
given by φZ(t) = exp(−c|t|α) for appropriate c and α.

Exercise 3.4 Show that (1) can be put into the form (2) or (3).



286 CHAPTER 11. INFINITELY DIVISIBLE AND STABLE DISTRIBUTIONS

4 The Domain of Attraction of a Stable Law
We now merely state some results that assert when convergence in distribution to
a general stable law takes place.

Theorem 4.1 (Stable domain of attraction with 0 < α < 2)
(a) Now, F ∈ D(G) for some stable G with characteristic exponent α ∈ (0, 2) if and
only if (as x→∞) both

U(x) ≡
∫
[|y|≤x] y

2 dF (y) ∈ U2−α [for α = 2/(β + 1)](1)

(or equivalently)

V (t) ≡
∫ 1−t
t

K2(s) ds ∈ R−β [for β ≡ (2− α)/α])(2)

and also

P (X > x)/P (|X | > x)→ (some p) ∈ [0, 1].(3)

Moreover, α and p determine G up to type, as follows from the theorem of types.
(b) The constants An of (Sn −Bn)/An →d Y ∼= G necessarily satisfy (according to
the theorem of types)

nU(An)/A
2
n ∼ nA−α

n L(An)→ 1 as n→∞.(4)

(c) The following are equivalent (for some constant 0 < α < 2, and then for some
c > 0 and some 0 ≤ p ≤ 1):

F ∈ DN (G) for some stable G with characteristic exponent α.(5)

xαP (X > x)→ c p and xαP (X < −x)→ c (1− p) as x→∞.(6)

t|K(1− t)|α → cp and t|K(t)|α → c(1− p) as t→ 0.(7)

Theorem 4.2 (Domain of attraction of the normal) F ∈ D(Normal) if and
only if either (hence, both) U(·) is slowly varying at∞ or V (·) is slowly varying at 0.
(Theorem 10.6.1 and proposition 10.6.1 give a myriad of other equivalences.)

Exercise 4.1 Use section C.4 to show that for 0 < α < 2 the following are
equivalent conditions:

U ∈ U2−α.(8)

P (|X | > x) ∈ Uα.(9)

[x2P (|X | > x)/
∫
[|y|≤x]y

2 dF (y)]→ 2−α
α as x→∞.(10)

Other characterizations in terms of K can be found in or derived from theorem
C.4.2. The theorems and this remark can also be proved via the Lévy–Khinchin
theorem and results about regularly varying functions.
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Exercise 4.2 (a) State necessary and sufficient conditions on F for F ∈ D(Cauchy).
(b) Do the same for F ∈ DN (Cauchy).
(c) Show by example that DN (Cauchy) is a proper subset of D(Cauchy).
(d) Observe that a symmetric df F (·) is in D(Cauchy) if and only if the tail function
defined by xP (X > x) = x(1 − F (x)) is slowly varying. (Recall the tail function
τ(·) of Feller used in the WLLN in (8.4.2).)

Exercise 4.3 (a) Show by example that the domain of normal attraction of
the normal law DN (N(0, 1)) is a proper subset of the domain of attraction of the
normal law D(N(0, 1)). To this end, let X1, X2, . . . be iid with density

f(x) = |x|−3 × (2 log |x|) × 1[1,∞)(|x|)

and consider Sn/(
√
n logn).

(b) Give a second example that works.
(c) For both examples, determine an An that works.

Exercise 4.4 (a) Consider the context of theorem 11.4.2. The constants An used
for (Sn −Bn)/An →d Y ∼= N(0, 1) must satisfy n σ̃2

n/A
2
n → 1 (equivalently, it must

hold that nU(An)/A
2
n → 1 as n→∞) as follows from the theorem of types.

(b) It is also true that

F ∈ DN (Normal) if and only if σ2 <∞.(11)

(When σ2 ∈ (0,∞), we know already that
√
n(X̄n − µ)/σ → N(0, 1).)
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5 Gamma Approximation
If the underlying summands Xnk in a CLT approximation are symmetric, then a
normal approximation may seem particularly appropriate. But what if the under-
lying distribution is positively skewed? (If X is negatively skewed, we just consider
−X instead.) Consider the rv Gr ≡ [Gamma(r)− r]/√r ∼= (0, 1), where r is chosen
to make the the third cumulants match. Might this not give a better approximation
for small n? And since Gr →d N(0, 1) as r → ∞, there is no contradiction at the
limit. We will show that this recipe works. The fact that the sum of independent
gammas is again gamma is crucial to the technical details of the proof.

Can we go one step further and match the first four cumulants? Yes, because
sums of independent rvs that are distributed as “gamma-gamma” again belong to
the same family. [This will also work within our ability to match up the cumulants.]

The skewness γ1 ≡ µ3/σ
3 = E(X−µ)3/σ3 is defined to be the third cumulant of

the standardized rv, and the tail heaviness (or kurtosis) is the fourth such cumulant
defined by γ2 ≡ µ4/σ

4 − 3 = E(X − µ)4/σ4 − 3. We will use these formulas with
µ = 0 and σ2 = 1, so that the skewness becomes µ3 and the tail heaviness becomes
µ4 − 3. For the standardized gamma, the first four cumulants are given by

Gr ≡
Gamma(r)− r√

r
∼=
(
0, 1;

2√
r
,
6

r

)
.(1)

For the difference of two independent gammas we let p+ q = 1 and c, d > 0 and set
u ≡ p/c and v ≡ q/d, and then further define r = c2n and s = d2n and set

Gr,s ≡ −√pGc2n +
√
q Gd2n ∼=

(
0, 1; 2√

n
(− p3/2c + q3/2

d ), 6
n (p

2

c2 + q2

d2 )
)

=
(
0, 1; 2√

n
(−√pu+

√
q v), 6

n (u2 + v2)
)
.

(2)

[This parameterization can match all (µ3, µ4) pairs for which µ
2
3 ≤ 2

3 (µ4− 3), all of
which have heavier tails than normal distributions.]

Theorem 5.1 (Gamma approximation; the GLT) Let Xn1, . . . , Xnn be iid
as an X having df F with cumulants (0, 1; µ3, µ4 − 3), where µ3 ∈ (0,∞), so that

Zn ≡ 1√
n

∑n
k=1Xnk

∼= (0, 1; µ3/
√
n, (µ4 − 3)/n) .(3)

Assume either (4)(a) for the df results below or (4)(b) for the density results, where:

(a) |φX(t)| → 0 as |t| → ∞ or (b)
∫∞
−∞ |φX(t)| dt <∞ .(4)

(i) Let r ≡ 4n/µ2
3, so thatGr ≡ [Gamma(r)−r]/√r ∼= (0, 1; µ3/

√
n, 3µ2

3/2n). Then

for some constants CF or CF,n → 0 (that may depend on the df of (X − µ)/σ),
‖FZn − FGr‖ ≤ CF /n and ‖fZn − fGr‖ ≤ CF /n when µ4 <∞,(5)

‖FZn − FGr‖ ≤ CF,n/
√
n and ‖fZn − fGr‖ ≤ CF,n/

√
n when µ3 ∈ (0,∞).(6)

(ii) Suppose r and s can be specified so Gr,s ∼= (0, 1; µ3/
√
n, (µ4−3)/n). Then n3/2

can replace n in (5) when µ5 <∞. And n can replace
√
n in (6) when µ4 <∞.

(iii) The density gr(·) of Gr(·) may replace the N(0, 1) density in the local limit
theorems of section 10.3.
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Proof. We initially approximate the distribution of Zn by that of

Z̄n ≡ 1√
2
N(0, 1) + 1√

2
[Gamma(r̄)− r̄]/

√
r̄ with r̄ ≡ n/(2µ2

3)(a)

∼= 1√
2
(0, 1; 0, 0) + 1√

2
(0, 1; 2/

√
r̄, 6/r̄) = (0, 1; 1/

√
2r̄, 3/2r̄)

∼= (0, 1; µ3/
√
n, 3µ2

3/n) matching (3) to three cumulants(b)

≡ 1√
n

∑n
1 [

1√
2
Nk +

1√
2
Wk] ≡ 1√

n

∑n
1 Yk ,(c)

where the Nk ∼= N(0, 1) and the Wk
∼= [Gamma(a) − a]/

√
a with a = 1/(2µ2

3)
are independent. Let φY (t) ≡ EeitY and ψY ≡ logφY , with φX and ψX defined
analogously. Then

|φZn(t)− φZ̄n
(t)| = |φZ̄n

(t)| × |en[ψX(t/
√
n )−ψY (t/

√
n )] − 1|

≡ |φZ̄n
(t)| × |ez − 1|

≤ |φN(0,1)(t/
√
2 )| × |φ∑Wk/

√
n (t/
√
2 )| × |z|e|z|(d)

≤ e−t2/4 × 1× |z|e|z| .(e)

Here (provided that |t|/√n is sufficiently small for the expansion of (9.6.22) to be
valid) the inequality (9.6.22) then gives (since the first three cumulants of X and
Y match)

|z| = n |ψX(t/
√
n )− ψY (t/

√
n )| ≤ t4 c̄4 [EX4 + EY 4]/n(f)

≤ t4 c̄4 [(3 + (µ4 − 3)) + (3 + 3µ2
3) ]/n ≤ t4 7 c̄4 µ3/2

4 /n

≡ t4 c2/n(g)

≤ t2/9 for |t| ≤ √n/3c .(h)

Plugging both (g) and (h) into (e) gives

|φZn(t)− φZ̄n
(t)| ≤ (c2 t4/n) exp (−(5/36) t2) for |t| ≤ (some d )

√
n ,(i)

where c and d depend on the β2 value of (X − µ)/σ. [The specification in (a) that
Z̄n has a normal component is not natural or practically useful, but it delivers the
technically lovely exponential bound component exp (−t2/4) in both (d) and (e).
Since (a) is not useful for a practical approximation, we will overcome this objection
by doing the approximation (a) again—to difference it out. (I believe this whole
approach may be new.)]

Let Gn1, . . . , Gnn be iid as [Gamma(b)− b]/
√
b for b ≡ 4/µ2

3. Then

Gr ≡ 1√
n

∑n
1 Gnk

∼= [Gamma(r) − r]/√r with r ≡ 4n/µ2
3(j)

∼= (0, 1; µ3/
√
n, (3/2)µ2

3/n), matching (3) to three cumulants.(k)

We now approximate Gr by the Z̄n of (a) [just as earlier we approximated Zn by
the Z̄n of (a)]. This gives (with generic constants c and d)

|φGr (t)− φZ̄n
(t)| ≤ (c2 t4/n) exp (−(5/36) t2) for |t| ≤ d√n .(l)
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Combining (i) and (l) gives

|φZn(t)− φGr (t)| ≤ (c t4/n) exp (−(5/36) t2) for |t| ≤ d√n ,(7)

where the generic c and d may depend on the df of (X − µ)/σ.
Consider (5)(b). The inversion formula (using (9.6.22) to expand) gives

|fZn(x) − fGr(x)| = 1
2π |
∫∞
−∞ e−itx [φZn(t)− φGr (t) ] dt | ≤ I1n + I2n + I3n

≡
∫
[ |t|≤d√n ] |φZn(t)− φGr (t) | dt(m)

+
∫
[|t|>d√n ] |φZn(t)| dt+

∫
[|t|>d√n ] |φGr (t)| dt .

Now (7) bounds the integrand of the lead term to give

I1n ≤
∫
(c t4/n) exp (−(5/36)t2) dt ≤ c/n .(n)

Since
∫
|φX(t)| dt <∞ by (4)(b), the density inversion formula (9.4.9) shows that

X has a density fX(·). Since X is thus not distributed on a grid (and likewise Y ),
proposition 9.8.2 gives

θ ≡ ‖φX‖∞d ∨ ‖φW ‖∞d < 1 .

Thus the second term in (m) satisfies

I2n =
∫
[|t|>d√n ]

|φX(t/
√
n )|n dt ≤ √n

∫
[|s|>d ] |φX(s)|n ds

≤ θn−1
√
n
∫∞
−∞ |φX(s)| ds = o(n−r), for any r > 0,(o)

since the θn term goes to 0 geometrically. Likewise, I3n = o(n−r), for any r > 0,
since |φG|k satisfies (4)(b), for some k. Combine (n) and (o) into (m) to get (5)(b).

Consider (5)(a). We will apply Esseen’s lemma. Thus

‖FZn(x) − FGr(x)‖ ≡ I ′1n + I ′2n + I ′3n

≤ {
∫
[|t|≤d√n ]

+
∫
[d
√
n<|t|≤dn ]

} 1
|t| |φZn(t)− φGr(t)| dt+ 24 ‖gr‖/ π dn(p)

≤
∫
(c|t|3/n) exp (−(5/36)t2) dt+ 2(dn/d

√
n )θn + 24‖gr‖/(πdn)(q)

= O(1/n) ,

where (4)(a) is now used to obtain θn.
Consider (6), when µ4 is not assumed finite. Use of (9.6.22) at line (f) must be

replaced by use of (9.6.21). The |t|3 E|X |3 in (9.6.22) would give a bound of only
CF /
√
n at line (m) of the current proof; but the added δ3(t/

√
n ) term in (9.6.21)

that is valid on |t| ≤ d
√
n (now with a tiny d ) allows a CF to be replaced by

a CF,n → 0. Dominated convergence is used for this, with dominating function
guaranteed by E|X |3 <∞.

If we knew any appropriate two-parameter family closed under convolution, we
could choose those two parameters to match both third and fourth cumulants. Then
CF /n

3/2 under µ5 <∞ and CF,n/n under µ4 <∞ would be possible. The proof is
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essentially unchanged, and needs no further comment. The difference of two gam-
mas can be specified in several different ways. All work. The only question is which
has the greatest coverage of the (skewness, kurtosis)-plane. Using gammas, we seem
stuck with positive kurtosis, which leaves out some of the least important situations.
[Edgeworth expansions allow us to cover the whole (skewness, kurtosis)-plane, but
they have some other deficiencies. For instance, the Edgeworth approximation to a
df or density is not necessarily a df or density itself.] 2

Poisson Approximation

Most discrete distributions we care about live on the integers, and the write-up
here will reflect that fact and make this case fit our notation with the least effort.
Rather than approximating sums of such rvs X by an appropriate gamma with a
continuity correction, we will use a nice discrete analogue of the gamma.

For the standardized Poisson, the first four cumulants are

Gr ≡
Poisson(r) − r√

r
∼=
(
0, 1;

1√
r
,
1

r

)
.(8)

For the difference of two Poissons we let p+ q = 1 and c, d > 0 and set u ≡ p/c and
v ≡ q/d, and then define r = c2n and s = d2n and set

Gr,s ≡ −√pGc2n +
√
q Gd2n ∼= (0, 1; 1√

n
(− p3/2c + q3/2

d ), 1
n (p

2

c2 + q2

d2 ))

= (0, 1; 1√
n
(−√p u+

√
q v), 1

n (u2 + v2)) .

(9)

[This approach can (multiply) match all (µ3, µ4) pairs for which µ
2
3 ≤ (µ4 − 3).]

Theorem 5.2 (Poisson approximation) Consider a rv X on the integers and
let Zn be as in (3). Let r ≡ n/µ2

3, so that

Gr ≡ [Poisson(r) − r]/√r ∼= (0, 1; µ3/
√
n, µ2

3/n).

(i) Then for some constants CF and CF,n → 0 (that may depend on the df of the
standardized rv (X − µ)/σ):

‖pZn − pGr‖ ≤ CF /n3/2 when µ4 <∞ .(10)

‖pZn − pGr‖ ≤ CF,n/n when only µ3 ∈ (0,∞) .(11)

[Most probabilities that one computes involve summing over the appropriateM
√
n

number of terms that are each of the type pZn(·).]
(ii) Suppose r and s can be specified so that Gr,s ∼= (0, 1; µ3/

√
n, (µ4−3)/n). Then

n2 can replace n3/2 in (10), provided that µ5 <∞. And n3/2 can replace n in (11),
provided that µ4 <∞.

Proof. The appropriate inversion formula now (for a distribution on the grid
am+ b) is given by

pm ≡ P (X = m) = a
2π

∫
[ |t|≤π/a ] exp (−it(am+ b))φX(t) dt .(12)
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By the previous proof (including the previous step (a) normal component, but now
appearing in step (u)) yields

|φZn(t)− φGr (t)| ≤ (c2 t4/n) exp (−(5/36) t2) for |t| ≤ d√n ,(u)

for c and d that may depend on the df of (X−µ)/σ. Applying the inversion formula
in (12) now gives

√
n |P (Zn = m/

√
n )− P (Gr = m/

√
n ) |(v)

=
√
n

2π
√
n
|
∫
[ |t|≤π√n ] e

−itm/√n [φZn(t/
√
n )− φGr(t/

√
n )] dt|

≤
∫
[ |t|≤d√n ] |φZn(t/

√
n )− φGr (t/

√
n )| dt(w)

+
∫
[d
√
n<|t|≤π√n ]

|φZn(t/
√
n )| dt+

∫
[ d

√
n<|t|≤π√n ]

|φGr (t/
√
n )| dt

≤ c/n+ o(n−r) + o(n−r) ,(x)

as is now easily shown with the same arguments as before (because θ < 1, since
π
√
n never reaches a full period of φX ; recall proposition 9.8.2). 2

Exercise 5.1 Verify part (iii) of theorem 3.1.

Exercise 5.2 Show that the chf φ of the Gr of (1) satisfies
∫
|φ(t)|k dt <∞ for

some k > 0.

Exercise 5.3 We can replace the Poisson by the NegBiT(r, p) distribution with
the moment structure

Gr ≡
NegBiT(r, p)− r/p√

rq/p2
∼=
(
0, 1;

1√
r

1 + q√
q
,
1

r

1 + 4q + q2

q

)
.(13)

This is probably more useful than the previous theorem. (a) Verify the claim.
(b) Provide some numerical work to compare Poisson and NegBiT approximations
to a situation of interest.

Remark 5.1 (Gamma approximation or Edgeworth approximation?) In the
next section we will derive the classical Edgeworth approximations. The first-order
Gamma (or Poisson, or NegBiT) approximations of the current section are of the
same order as the first-order Edgeworth approximations. Moreover, approximation
by the Gr-distribution is an approximation by a probability distribution; but this
is not true of the Edgeworth approximation. Happily, gamma approximations are
easily and accurately implemented in S-plus, say.

The situation is similar regarding the two second-order approximations, provided
that the first two cumulants of the underlying rv can be matched within the family
of Grs-distributions. However, the Grs-distributions are not available within any
set of computer-generated routines I know, so that this would be hard to implement
at present. However, this would seem to make a nice project for a computer-oriented
statistician. 2
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Examples

Example 5.1 (Sampling distribution of X̄n and S2
n) Suppose X1, . . . , Xn is

a random sample from a population whose first four cumulants are (µ, κ2;κ3, κ4).
[Let K&S denote Kendall and Stuart (1977, Vol. I).] How do we apply a gamma
approximation?
(a) Consider first an infinite population, in which κ2 = σ2, κ3 = µ3, and κ4 = µ4−3.
Then (9.6.20) gives the first four cumulants of

√
n (X̄n − µ) as

√
n (X̄n − µ) ∼= (0, σ2; 1√

n
κ3,

1
n κ4 ) .(14)

Now, unbiased estimators κ̂j of these κj are given (see K&S (p. 297, 300)) by

κ̂2 ≡ n
n−1 m̂2, κ̂3 ≡ n2

(n−1)(n−2) m̂3,

κ̂4 ≡ n2

(n−1)(n−2)(n−3){(n+ 1)m̂4 − 3 (n− 1)m̂2
2},

(15)

where m̂j ≡
∑n

1 (Xj − X̄n)
j/n. We will combine these facts with the theorems of

the previous sections to approximate the distribution of
√
n(X̄n − µ). Additionally

(by K&S (p. 306-307),
√
n (S2

n − σ2) ∼= (0, κ4 +
2n
n−1 κ

2
2;

1
n κ6 +

12
n−1 κ4 κ2 +

4(n−2)
(n−1)2 κ

2
3 +

8n
(n−1)2 κ

3
2) ,(16)

where correcting for skewness in (16) should probably be ignored. An unbiased
estimator of the variance in (16) (unbiasedness verifiable from K&S (p. 296)) is

n−1
n+1 [κ̂4 + 2 n

n−1 κ̂
2
2] .(17)

(b) Finally (by K&S (p. 327)),

Corr[κ̂1, κ̂2] = γ1/{γ2 + 2n
n−1}1/2 .(18)

(c) In approximating the bootstrap distribution of X∗
n , it is exactly true that

√
n (X∗

n − X̄n) ∼= (0, κ̂2;
1√
n
κ̂3,

1
n κ̂4 ) .(19)

(d) Now consider a finite population X1, . . . , XN whose second, third, and fourth
true cumulants Kj are given by (15), with N replacing n. Unbiased estimators K̂j

are also given by (15), now with n again (see K&S (p. 320)). It is also true (by
K&S (p. 321-322)) that

√
n (X̄n − X̄N ) ∼=

(
0, N−n

N K2 ;
N2−3nN+2n2

n2 N2 K3 ,(20)

{α3 − 4α2/N + 6α1/N
2 − 3(N−1)

N(N+1) α
2
1 }K4 + 3 N−1

N+1 α
2
1K

2
2

)
,

where αr ≡ (n−r −N−r). Finally (by K&S (p. 323)),
√
n (S2

n − S2
N ) ∼= (0,K4 + 2 n

n−1 K
2
2 ) .(21)

Then (by K&S (p. 323)) an unbiased estimator of this last variance is given by (17)
(with K̂j replacing κ̂j). (Though straightforward, the results cited from K&S are
somewhat cumbersome.) 2
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Example 5.2 (Hall) A noncentral chisquare rv χ2
n(δ) satisfies

T ≡ [χ2
n(δ)− (n+ δ)]√

2(n+ 2δ)
∼= 1√

n

n∑

1

Xk
∼=
(
0, 1; µ3 ≡

23/2 (1 + 3 δ/n)√
n (1 + 2 δ/n)3/2

)
.(22)

So we approximate this distribution by Gr with r ≡ (n+ 2 δ)3/(2(n+ 3 δ)2). Then

P (χ2
n(δ) ≤ x)

.
= P (Gamma(r) ≤ r + [x− (n+ δ)](n+ 2 δ)/2(n+ 3 δ))(23)

= (1− α) if x ≡ (n+ δ) + (γα − r)2(n+ 3 δ)/(n+ 2 δ) ,(24)

where γα denotes the upper 1 − α percentage point of Gamma(r). This is easy to
implement in Splus, for example. (Hall found that the accuracy seemed quite good,
especially in relation to previous proposals.) 2

Exercise 5.4 (Poisson approximation of the generalized binomial) We suppose
Xn1, . . . , Xnn are independent rvs with Xnk

∼= Bernoulli(pnk). Suppose further
that Ynk ∼= Poisson(pnk) are independent for 1 ≤ k ≤ n. Let Pn and Qn denote the
distributions of Xn ≡

∑n
1 Xnk and Yn ≡

∑n
1 Ynk. Show that the total variation

distance between Pn and Qn satisfies

dTV (Pn, Qn) ≡ sup{|Pn(A)−Qn(A)| : A ∈ B} ≤
∑n

k=1 p
2
nk .(25)

If pnk = λk/n for 1 ≤ k ≤ n, then the bound becomes λ2/n.
[Hint. The first step is to replace the original Bernoulli(pnk) rvs by different
Bernoulli(pnk) rvs, to be denoted by Xnk also. To this end we now define the
new Znk ∼= Bernoulli(1 − (1 − pnk)epnk) rvs that are independent for 1 ≤ k ≤ n
(and they are also independent of the Ynk’s). Now define

Xnk ≡ 1[Ynk≥1] + 1[Ynk=0] 1[Znk=1] ,(26)

and verify that it is indeed a Bernoulli(pnk) rv. (This choice of the jointly distributed
pair (Xnk, Ynk) maximizes the mass on the diagonal x = y of an (x, y)-coordinate
system.) Now verify that

dTV (Pn, Qn) ≤ P (Xn 6= Yn) ≤
∑n

1 P (Xnk 6= Ynk) ≤
∑n

1 p
2
nk .(27)

This type of proof is called a coupling proof, in that the (Xnk, Ynk) pairs are coupled
together as closely as possible.]

Exercise 5.5 (a)–(d) Derive the claims made in example 5.1(a)–(d).
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6 Edgeworth Expansions

The Setup

Let F0, f0, and φ0 denote the N(0, 1) df, density, and chf. Thus

f0(x) ≡ e−x
2/2/
√
2π and φ0(t) ≡ e−t

2/2(1)

on the real line. These are related via the inversion formula for chfs as

f0(x) =
∫∞
−∞ e−itxφ0(t) dt/(2π).(2)

Differentiating f0 gives

f ′
0(x) = −x f0(x), f

′′

0 (x) = (x2 − 1) f0(x),

f
′′′

0 (x) = −(x3 − 3x) f0(x), f
(iv)
0 (x) = (x4 − 6x2 + 3) f0(x),

f
(v)
0 (x) = −(x5 − 10x3 + 15x) f0(x),

f
(vi)
0 (x) = (x6 − 15x4 + 45x2 − 15) f0(x);

(3)

and in general,

f
(k)
0 (x) = (−1)kHk(x)f0(x)(4)

defines what we will call the kth Hermite orthogonal polynomial Hk (see exercise 6.1).
Equating the derivatives in (3) to derivatives of the right-hand side of (2) gives

(−1)kHk(x)f0(x) =
∫∞
−∞ e−itx(−it)kφ0(t) dt/(2π),(5)

which expresses Hkf0 as the inverse Fourier transform of (it)kφ0(t). This gives the
key result that

(it)kφ0(t) is the Fourier transform of Hk(·) f0(·).(6)

Now suppose that X1, . . . , Xn are iid where

X ∼= (0, σ2) has chf φ(·).(7)

We let Sn ≡
∑n
k=1Xk, and agree that

Fn(·) denotes the df of Sn/(σ
√
n ).(8)

The idea is to expand Fn in terms of the orthogonal polynomials Hk. However, we
choose instead to obtain a first-order or second-order approximation, together with
an error analysis. Also,

fn(·) denotes the density of Sn/(σ
√
n ), if it exists.(9)

In this latter case we will also seek to expand fn. The expansions we will derive for
fn and Fn are known as Edgeworth expansions.
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Edgeworth Expansions for Densities

Instead of just assuming that fn exists, we assume instead that the chf φ of the rv
X ∼= (0, σ2) satisfies

∫∞
−∞ |φ(t)|m dt <∞, for some positive integer m.(10)

This guarantees both that fn exists for all n ≥ m, and that it can be found from
the Fourier inversion formula (9.4.9).

Theorem 6.1 Suppose condition (10) holds. Let γ1 ≡ E(X/σ)3 denote the
skewness, and let γ2 ≡ E(X/σ)4 − 3 denote the tail heaviness of X ∼= F (0, σ2).
(a) Then

∥∥∥∥fn(·)− f0(·) {1 +
γ1

3!
√
n
H3(·)}

∥∥∥∥

= o(1/
√
n ) (as a function of E|X/σ|3 and FX/σ) [if E|X |3 <∞](11)

or

= O(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 <∞].(12)

(b) Moreover,

∥∥∥∥fn(·)− f0(·)
{
1 +

[
1√
n

γ1
3!
H3(·)

]
+

1

n

[
γ2
4!
H4(·) +

γ21
2(3!)2

H6(·)
]}∥∥∥∥

= o(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 <∞](13)

or

= O(1/n3/2) (as a function of E|X/σ|5 and FX/σ) [if E|X |5 <∞].(14)

We specifically write out that H0(x) ≡ 1 and

H1(x) ≡ x, H2(x) ≡ x2 − 1,

H3(x) ≡ x3 − 3x, H4(x) ≡ x4 − 6x2 + 3,

H5(x) ≡ x5 − 10x3 + 15x, H6(x) ≡ x6 − 15x4 + 45x2 − 15,

(15)

for use in the current set of theorems. The previous theorem was for densities. The
next is for dfs. Condition (10) is used to control the extreme tails in the Fourier
inversion formulas for densities. In proving analogues of (11) and (12) for dfs, we
will be able to use Esseen’s lemma to control these tails instead. However, the
analogues of (13) and (14) run into other problems, and these are again overcome
via a (now weaker) restriction on φ. All proofs are at the end of this section.

Exercise 6.1 Find H7(·). Show that
∫∞
−∞HmHnf0 dλ = n! if m = n, and 0 else.
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Edgeworth Expansions for Distribution Functions

Consider the potential hypothesis

lim sup
|t|→∞

|φ(t)| < 1.(16)

(This is weaker than (10). The Riemann–Lebesgue lemma shows that (16) holds if
F has an absolutely continuous component, à la theorem 6.1.1.)

Theorem 6.2 Suppose that X is not distributed on a grid. Let γ1 ≡ E(X/σ)3

denote the skewness, and let γ2 ≡ E(X/σ)4 − 3 denote the tail heaviness of the rv
X ∼= F (0, σ2). (a) Then

∥∥∥∥Fn(·)− F0(·) + f0(·)
{

γ1
3!
√
n
H2(·)

}∥∥∥∥

= o(1/
√
n ) (as a function of E|X/σ|3 and FX/σ) [if E|X |3 <∞](17)

or (additionally requiring (16) for (18))

= O(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 <∞].(18)

(b) Moreover, when (16) holds,

∥∥∥∥Fn(·)− F0(·) + f0(·)
{

1√
n

γ1
3!
H2(·) +

1

n

[
γ2
4!
H3(·) +

γ21
2 · (3!)2H5(·)

]}∥∥∥∥

= o(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 <∞](19)

or

= O(1/n3/2) (as a function of E|X/σ|5 and FX/σ) [if E|X |5 <∞].(20)

Exercise 6.2 Let Zn ≡ Sn/σ
√
n as above, and let fn denote its density under

condition (10). Let Z∗
n ≡ [Gamma(r)−r]/√r, with r ≡ 4n/γ21 , and let gn(·) denote

its density. Show that ‖fn−gn‖ = O(1/n) as a function of E|X/σ|4 and FX/σ when
E|X |4 <∞.

The Proofs

We defined and expanded the cumulant generating function ψ(·) ≡ Log φ(·) in
exercise 9.6.6. The first few cumulants of the standardized rv X/σ were seen to be
0, 1, γ1, and γ2.

Proof. Consider theorem 6.1(a). Without loss of generality we suppose that
σ = 1. We now agree that

dn ≡ fn −
[
1 +

1√
n

γ1
3!
H3

]
f0(a)
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denotes the difference between the true fn and our first approximation to it. Note
from (6) that dn has Fourier transform

φn(t) ≡ [φ(t/
√
n )]n − φ0(t)

[
1 +

1√
n

γ1
3!
(it)3

]
(21)

= e−t
2/2 {et2/2+nψ(t/

√
n ) − [1 + (γ1/3!)(it)

3/
√
n ]}(b)

≡ e−t2/2 [ez+ǫ − (1 + z)].(c)

Thus the Fourier inversion formula (9.4.9) gives

dn(x) =
∫∞
−∞ eitxφn(t) dt/(2π),(d)

since (10) implies that
∫∞
−∞ |φn(t)| dt <∞. Thus for any fixed θ > 0 and all x > 0

we have

|dn(x)| ≤
∫∞
−∞ |φn(t)| dt =

∫∞
−∞ e−t

2/2 |ez+ǫ − (1 + z)| dt

=
∫
[|t|≤θ√n/E|X|3] e

−t2/2 |ez+ǫ − (1 + z)| dt+ o(n−r)(e)

for any r > 0, as in (10.3.6). Now,

|φn(t)| = e−t
2/2 |enψ(t/

√
n )−(−t2/2) − [1 + (γ1/3!)(it)

3/
√
n ]|(f)

≡ e−t2/2 |ez+ǫ − (1 + z)| = e−t
2/2 |ez (eǫ − 1) + (ez − (1 + z))|

≤ e−t2/2 [|ǫ| e|ǫ| e|z| + z2 e|z|/2](g)

using (9.6.3). Note that for all |t| ≤ θ√n/E|X |3 we have

|z| ≤ (|t|3/6)E|X |3/√n ≤ θt2/6 ≤ t2/8 if θ ≤ 3
4 ,(h)

|ǫ| = |nψ(t/√n )− [−t2/2 + (γ1/6) (it)
3/
√
n ]|

≤ c3 |t|3 E|X |3 δ(θ)/
√
n ≤ c3 t2 θ δ(θ) ≤ t2/8 if θ is small enough,(i)

where δ(·) denotes the function δ3(·) function of (9.6.21) associated with the rv
X/σ. Using (h) and (i), the bound in (e) becomes (for some θ small enough)

|dn(x)| ≤
∫
[|t|≤θ√n/E|X|3] e

−t2/2 {|ǫ| e|ǫ| e|z| + z2 e|z|/2} dt+ o(n−r)

≤ c3 δ(θ) [E|X |3/
√
n ]
∫∞
−∞ |t|3 e−t

2/4 dt(j)

+[(E|X |3)2/(72n)]
∫∞
−∞ |t|6 e−3t2/8 dt+ o(n−r)

= o(n−1/2) uniformly in x,(k)
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since a tiny δ(θ) results from a sufficiently tiny θ. Thus (11) holds. For (12), we
replace the bound in line (i) above by

|ǫ| ≤ c̄4 t4 EX4/n ≤ t2/8, which is valid for |t| ≤ √n/
√
8 c̄4 E|X |4 ,(l)

as (9.6.22) guarantees. We then use (l) instead of (i) during (j) (now integrated

over the interval [|t| ≤ √n/
√
8/c̄4EX4 ]).

We now turn to (13), and then (14). We first redefine

dn ≡ fn − f0
{
1 +

1√
n

γ1
3!
H3 +

1

n

[
γ2
4!
H4 +

γ21
2 · (3!)2H6

]}
.(m)

Taking the inverse of its Fourier transform φn(·) gives (as in (e)) that for any fixed
value of θ > 0 and all x,

|dn(x)| ≤
∫∞
−∞ |φn(t)| dt

=
∫
[|t|≤θ√n/EX4] e

−t2/2 |et2/2+nψ(t/
√
n ) − {1 + z + z2/2}| dt+ o(n−r)(n)

=
∫
[|t|≤θ√n/EX4]

e−t
2/2 |ez+ǫ − (1 + z + z2/2)| dt+ o(n−r)(o)

for each fixed r > 0, with

z ≡ 1√
n

γ1
3!
(it)3 +

1

n

γ2
4!
(it)4.(p)

The final details are nearly the same as before. 2

Exercise 6.3 Finish the details of the previous proof of theorem 6.1(b).

Proof. Consider theorem 6.2(a). We note that

Dn ≡ Fn−F0+ f0

[ 1√
n

γ1
3!
H2

]
has D′

n = dn ≡ fn− f0
[
1+

1√
n

γ1
3!
H3

]
,(q)

where dn is as in line (a) of the previous proof (just use xH2(x) − 2x = H3(x) to
verify this). Esseen’s lemma then gives

‖Dn‖ ≤
1

π

∫

[|t|≤a√n/E|X|3]

|φn(t)|
|t| dt+

24‖ f0 [1 + (γ1/3!)H3/
√
n ] ‖

π a
√
n/E|X |3 ,(r)

where φn is the same φn appearing in (21). Since the norm in the second term
on the right of (r) is bounded, the second term in (r) is less that ǫ/

√
n whenever

a ≡ a(ǫ, FX/σ) chosen large enough. Fix this a in the limits of integration of (r),
and then break this integral into two pieces: the integral over [|t| ≤ θ

√
n/E|X |3]

with θ as in (i), and the integral over [|t| > θ
√
n/E|X |3]. The integral over the

set [|t| > θ
√
n/E|X |3] is o(n−r), for any r > 0 (à la (11.5.6), as before at line

(e)). Finally, the value of the integral over the set [|t| ≤ θ
√
n/E|X |3] is bounded

by a term like the right-hand side of (j) (in which |t|3 and t6 are replaced in those
integrals by t2 and |t|5, to account for division by |t| in the integrand of (r)). This
completes the proof of (17) when X is not distributed on a grid. For (18), the
initial region of integration in (r) must be [|t| ≤ an/EX4], and then an/EX4 will
also appear below the norm term. Moreover, we will now use θ for a, since only
O(1/n) is required.
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Consider theorem 6.2(b). We note that

Dn(·) ≡ Fn(·)−F0(·)+f0(·)
{

1√
n

γ1
3!
H2(·) +

1

n

[
γ2
4!
H3(·) +

γ21
2 · (3!)2H5(·)

]}
(s)

has derivative

D′
n(x) = dn

= fn(x)− f0(x) + f0(x)

[
1√
n

γ1
3!
[2x− xH2(x)]

]
(t)

+ f0(x)
1

n

[
γ2
4!
[3(x2 − 1)− xH3(x)] +

γ21
2(3!)2

[5(x4 − 6x2 − xH5(x)]

]

= fn(x)−f0(x)+f0(x)
{[

1√
n

γ1
3!
H3(x)

]
+

1

n

[
γ2
4!
H4(x) +

γ21
2(3!)2

H6(x)

]}
,(u)

and this is the same dn as in (m) of the previous proof. Thus the final details are
nearly the same as before. 2

Exercise 6.4 Complete the details in the previous proof of theorem 6.2(b).

Exercise 6.5 Consider a non-iid case in which all dfs Fnk have third and/or
fourth moments that are of the same order. Then all of the previous results still
obtain.

Exercise 6.6 (Large deviations) Suppose the moment generating function (or
mgf ) MX(t) ≡ EetX of the rv X is finite for 0 ≤ |t| < ǫ. Let X1, X2, . . . be iid
(0, σ2). Let Fn(·) denote the df of

√
n(X̄n − µ) and let F0(·) denote the N(0, 1) df.

Show that

[1− Fn(xn)]/[1− F0(xn)]→ 1, provided that xn = o(n1/6).(22)



Chapter 12

Brownian Motion and
Empirical Processes

1 Special Spaces

General Metric Spaces

Let (M,d) denote an arbitrary metric space and let Md denote its Borel σ-field
(that is, the σ-field generated by the collection of all d-open subsets of M). Let
MB

d denote the σ-field generated by the collection of all open balls, where a ball is a
subset of M of the form {y : d(y, x) < r} for some x ∈M and some r > 0; call this
the Baire σ-field. [The important concept of weak convergence is best described in
the context of metric spaces.]

Exercise 1.1 Now,MB
d ⊂Md, while

MB
d =Md if (M,d) is a separable metric space.(1)

The Special Spaces (C, C) and (D,D)
For functions x, y on [0, 1], define the uniform metric (or supremum metric) by

‖x− y‖ ≡ sup
0≤t≤1

|x(t) − y(t)| .(2)

Let C denote the set of all continuous functions on [0, 1]. Then

(C, ‖ ‖) is a complete and separable metric space.(3)

Here C‖ ‖ will denote the σ-field of Borel subsets of C; then CB‖ ‖ will denote the

σ-field of subsets of C generated by the open balls, and C will denote the σ-field
generated by the finite-dimensional subsets of C (that is, all π−1

t (Bk) for which
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 and Bk ∈ Bk). It can be shown that

C‖ ‖ = CB‖ ‖ = C .(4)

301
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Let D denote the set of all functions on [0, 1] that are right continuous and possess
left-hand limits at each point. (In some applications below it will be noted that
D is also used to denote the set of all left-continuous functions on [0, 1] that have
right-hand limits at each point. This point will receive no further mention. In some
cases we will admit to D, and/or to C, only functions X having X(0) = 0, etc.
This, too, will receive little, if any, further mention.) In any case

(D, ‖ ‖) is a complete metric space that is not separable.(5)

Here D‖ ‖ will denote the Borel σ-field of subsets of D, then DB‖ ‖ will denote the

σ-field of subsets of D generated by the open balls, and D will denote the σ-field
generated by the finite-dimensional subsets of D. It can be shown that

D = DB‖ ‖ , and both are proper subsets of D‖ ‖ ,(6)

and moreover,

C ∈ D and C = C ∩ D .(7)

We now digress briefly. The proper set inclusion of (6) caused difficulties in the
historical development of the theory of empirical processes (note that the uniform
empirical process Un =

√
n(Gn − I) takes values in D). To circumvent these

difficulties, various authors showed that it is possible to define a metric d on D
that has nice properties (see exercise 1.4 below); thus there is a d(·, ·) for which

(D, d) is a complete and separable metric space(8)

whose Borel σ-field Dd satisfies

Dd = D.(9)

Moreover, for all x, xn in D the metric d satisfies

‖xn − x‖ → 0 implies d(xn, x)→ 0,(10)

while

d(xn, x)→ 0 with x ∈ C implies ‖xn − x‖ → 0.(11)

The metric d will not be important to us. We are able to replace d by ‖ ‖ in our
theorems; however, we include some information on d as an aid to the reader who
wishes to consult the original literature.

Exercise 1.2 Verify (3) and (4).

Exercise 1.3 (i) Verify (5). [Hint. For each 0 ≤ t ≤ 1 define a function xt in D
by letting xt(s) equal 0 or 1 according as 0 ≤ s ≤ t or t ≤ s ≤ 1.] (ii) Verify (6).
[Hint. Consider ∪{Ot : 0 ≤ t ≤ 1} where Ot is the open ball of radius 1

3 centered
at xt.] (iii) Verify (7).
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Exercise 1.4∗ Consult Billingsley (1968, pp. 112–115), and verify (8)–(11) for

d(x, y) ≡ inf{ ‖x− y ◦ λ‖ ∨ ( sups6=t | log λ(t)−λ(s)
t−s | ) : λ ∈ Λ},(12)

where Λ denotes all ↑ continuous maps of [0, 1] onto itself. [Roughly, this metric
measures how closely x and a slightly perturbed (via λ) y line up, where too much
perturbation is penalized. The “log” bounds all λ-slopes away from both 0 and∞.]

Exercise 1.5 Verify that

C is both ‖ ‖-separable and d-separable, viewed as a subset of D.(13)

[We will require the ‖ ‖-separability below.]

Let q ≥ 0 be positive on (0, 1). For functions x, y on [0, 1] we agree that

‖(x− y)/q‖ is the ‖ · /q‖-distance between x and y,(14)

when this is well-defined (that is, when ‖x/q‖ and ‖y/q‖ are finite).

Exercise 1.6 It is useful to be able to view C∞ ≡ C[0,∞) as a metric space;
of course, this denotes the class of all continuous functions on [0,∞). (We may
sometimes require a subclass, such as the one consisting of functions that equal
zero at zero; and we will make no further mention of this.) Let C∞ ≡ C[0,∞) denote
the finite-dimensional σ-field. Consider (C∞, C∞) = (C[0,∞), C[0,∞)).

(a) For functions x and y on [0,∞), define

ρ∞(x, y) ≡
∞∑

k=1

2−k
ρk(x, y)

1 + ρk(x, y)
,(15)

where ρk(x, y) ≡ sup0≤t≤k |x(t)− y(t)|. Show that (C[0,∞), ρ∞) is a metric space.

(b) Show that ρ∞(x, y)→ 0 if and only if ρk(x, y)→ 0 for each 0 < k <∞.

(c) Show that (C[0,∞), ρ∞) is a complete and separable metric space. Moreover, the

σ-field Cρ∞ of Borel subsets is the same as the σ-field C[0,∞) of finite-dimensional
subsets, as is CB∞.

(d) Verify that (D[0,∞), ρ∞) is a complete metric space, and that the Borel σ-field
Dρ∞ satisfies C[0,∞) ∈ Dρ∞ and Cρ∞ = Dρ∞ ∩ C[0,∞). Also, D[0,∞) = DBρ∞ is a

proper subset of Dρ∞ .

(e) Other spaces of continuous and right-continuous functions are analogously treated.
They will receive no specific mention.

Independent Increments and Stationarity

If T is an interval in (−∞,∞), then we will write

X(s, t] ≡ X(t)− X(s) for any s, t ∈ T,(16)

and we will refer to this as an increment of X. If X(t0),X(t0, t1], . . . ,X(tk−1, tk] are
independent rvs for all k ≥ 1 and all t0 ≤ · · · ≤ tk in T , then we say that X has

independent increments. If X(s, t] ∼= X(s+ h, t+ h] for all s, t, s+ h, t+ h in T with
h ≥ 0, then X is said to have stationary increments. If (X(t1+h), . . . ,X(tk+h)) ∼=
(X(t1), . . . ,X(tk)) for all k ≥ 1, h ≥ 0, and all time points in T , then X is said to
be a stationary process.
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2 Existence of Processes on (C, C) and (D,D)
When dealing with processes, we would like to work with the smoothest version
possible. This is the version that best models physical reality. It is important at
this point to recall theorem 5.4.2 on the existence of smoother versions of processes.
Roughly, if all of the sample paths of a process are shown to lie in a (useful) subset
of the current image space, then we can restrict ourselves to that subset.

Theorem 2.1 (Existence of processes on (C, C)) Begin with a process

X : (Ω,A, P )→ (R[0,1],B[0,1], PX) .

Suppose that for some a, b > 0 the increments of X satisfy

E|X(s, t]|b ≤ K · F (s, t]1+a for all 0 ≤ s, t ≤ 1,(1)

where F is a continuous df concentrated on [0, 1] and F (s, t] ≡ F (t) − F (s). Then

there exists an equivalent version Z : (Ω,A, P )→ (R[0,1],B[0,1], PZ) for which

Z : (Ω,A, P )→ (C, C, PZ), with Z(t) = X(t) a.s., for each t in [0, 1].(2)

Corollary 1 (Sample path properties) For any 0 < δ < a/b and any ǫ > 0, there

exists a constant Kǫ ≡ Kǫ,δ,a,b for which the process Z of (2) satisfies

P ( |Z(s, t] | ≤ Kǫ · F (s, t]δ for all 0 ≤ s ≤ t ≤ 1 ) ≥ 1− ǫ.(3)

Proof. Case 1. Suppose that the df F of (1) is F (t) = t on [0, 1]. Let
0 < δ < a/b be fixed. Let λ ≡ (a/b − δ)/2. Define tni ≡ i/2n for 0 ≤ i ≤ 2n and

n ≥ 1. For n ≥ 0 define processes Zn : (Ω,A, P )→ (C, C) by letting

Zn(t) ≡ X(tni) + 2n(t− tni) [X(tn,i+1)− X(tni)] for tni ≤ t ≤ tn,i+1,(a)

for each 0 ≤ i ≤ 2n− 1; thus Zn(·) equals X(·) at each tni and Zn(·) is linear on the
intervals between these points. Define

Uni ≡ |X(tn,i−1, tni] | for 1 ≤ i ≤ 2n.(b)

If we define

∆n(t) ≡ Zn(t)− Zn−1(t) for 0 ≤ t ≤ 1,(c)

then for tn−1,i ≤ t ≤ tn−1,i+1 we have

|∆n(t)| ≤ | [X(tn,2i) + X(tn,2i+2)]/2− X(tn,2i+1) |

= |X(tn,2i, tn,2i+1]− X(tn,2i+1, tn,2i+2]|/2 ≤ [Un,2i+1 + Un,2i+2]/2(d)

≤ [Un,2i+1 ∨ Un,2i+2](e)

for all n ≥ 1. Thus for all n ≥ 1 we have

‖∆n‖ ≤ Vn ≡ [max1≤i≤2n Uni] .(f)



2. EXISTENCE OF PROCESSES ON (C, C) AND (D,D) 305

Let θ > 0 be arbitrary but fixed, and define

pn ≡ P (‖∆n‖δ > 2 θ 2−nλ)

≡ P (|∆n(s, t]|/(t− s)δ > 2 θ 2−nλ for some 0 ≤ s ≤ t ≤ 1).
(g)

Recalling (f) shows that

|∆n(s, t]| ≤ 2Vn for all 0 ≤ s ≤ t ≤ 1.(h)

Thus

|∆n(s, t]|/(t− s)δ ≤ 2Vn 2
nδ for 2−n ≤ t− s,(i)

while

|∆n(s, t]|/(t− s)δ ≤ [|∆n(s, t]|/(t− s)] (t− s)1−δ ≤ [Vn 2
n] 2−n(1−δ)

= Vn 2
nδ for 0 ≤ t− s ≤ 2−n(j)

(to see this, consider |∆n(s, t]/(t − s)| when s and t are both points in some

[tn,i−1, tni]). Thus for all n ≥ 1, we have

pn ≤ P (2Vn 2nδ > 2 θ 2−nλ) ≤ P (Vn > θ 2−n(δ+λ)) by (g)

≤∑2n

i=1 P (Uni > θ 2−n(δ+λ)) by (f)

≤∑2n

i=1 EU
b
ni/[θ 2

−n(δ+λ)]b by Markov’s inequality

≤ 2n[K2−n(1+a)]/[θ 2−n(δ+λ)]b by (1)

= K θ−b 2−n(a−b(δ+λ)) = K θ−b 2−nb(a/b−δ−λ)

= K θ−b 2−nλb since a/b− δ = 2λ > 0.(k)

Since 0 ≤ t− s ≤ 1, we also have

p0 ≡ P ( |Z0(s, t]| > 2 θ (t− s)δ for some 0 ≤ s ≤ t ≤ 1)

≤ P ( |X(0, 1]| > 2 θ) ≤ E|X(0, 1]|b/(2θ)b

≤ K θ−b = K θ−b2−0·λ b.(l)

Now, λb = (a − δb)/2 > 0, and so 2−λ b < 1; hence
∑∞

n=0 pn < ∞. Thus for

arbitrarily small θ, we have for m sufficiently large (recall (g) for ‖ · ‖δ) that
P (maxm≤k<∞ ‖Zk − Zm‖δ > θ) = lim

n→∞
P (maxm≤k≤n ‖Zk − Zm‖δ > θ)

≤ lim
n→∞

P (maxm≤k≤n ‖Zk − Zm‖δ > 2 θ
∑n

m+1 2−kλ)

for
∑∞

m+1 2
−kλ < 1/2

≤ lim
n→∞

P (maxm≤k≤n ‖
∑k

i=m+1 ∆i ‖δ > 2 θ
∑n

i=m+1 2−iλ)

≤ lim
n→∞

∑n
i=m+1 P (‖∆i‖δ > 2 θ 2−iλ)

≤∑∞
i=m+1 pi ≤

∑∞
i=m+1 Kθ

−b2−iλ b → 0 as m→∞,(m)
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so that

Zn(t) ≡ Z0(t) +
∑n
k=1 ∆k(t)(n)

converges uniformly on [0, 1] for a.e. ω; call the limit function Z(t). Since the
uniform limit of continuous functions is continuous,

Z =
∑∞

n=0 ∆n = limZn is a continuous function on [0, 1] for a.e. ω.(o)

Now, Z = limZn, and since Zn equals X at each tni, we have

Z(tni) = X(tni) at each tni = i/2n with 0 ≤ i ≤ 2n and n ≥ 0.(4)

Thus all finite-dimensional distributions with diadic rational coordinates are equal.
For other t, we pick diadic rationals t1, t2, . . . such that tm → t. ThenX(tm)→p X(t)
as m → ∞ by (1) and Markov, while Z(tm) →a.s. Z(t) as m → ∞, since Z has

continuous sample paths. Thus Z(t) = X(t) a.s. by proposition 2.3.4. By redefining
Z ≡ 0 on the null set of (n), we may assume

Z : (Ω,A)→ (C, C)(p)

by theorem 5.4.2. So finite-dimensional distributions agree: In particular, we have
PZ([x ∈ C : xt ∈ B]) = PX([x ∈ R[0,1] : xt ∈ B]) for all sets B ∈ Bk and for all

t ∈ [0, 1]k for any k ≥ 1.

Case 2. General F . Define

Y(t) ≡ X(F−1(t)) for 0 ≤ t ≤ 1,(q)

where F−1(t) ≡ inf{x ∈ [0, 1] : F (x) ≥ t}. Then for 0 ≤ s ≤ t ≤ 1,

E|Y(s, t]|b = E|X(F−1(s), F−1(t)] |b ≤ K [F ◦ F−1(t)− F ◦ F−1(s)]1+a

= K (t− s)1+a,(r)

since F ◦ F−1 = I for continuous F by exercise 6.3.2. Now use case 1 to replace Y
by an equivalent process Ȳ : (Ω,A)→ (C, C). Then define

Z = Ȳ(F ) ∼= X(F−1 ◦ F ) by (q).(s)

Now, F−1 ◦ F (t) = t, unless F (t − ǫ) = F (t) for some ǫ > 0; see exercise 6.3.2.
But in this case equation (1) shows that ∆X is 0 across that same interval. Thus
X(F−1 ◦ F ) ∼= X.

For the corollary, in case 1 we have (using (o) in line 2, (g) and (k) in line 3)

P (|Z(s, t] |/(t− s)δ > 2 θ/(1− 2−λ) for some 0 ≤ s ≤ t ≤ 1)

= P (|∑∞
k=0 ∆k(s, t] |/(t− s)δ > 2 θ

∑∞
n=0 2−nλ for some 0 ≤ s ≤ t ≤ 1)

≤∑∞
n=0 pn ≤

∑∞
n=0 K θ−b/2nλ b = K θ−b/(1− 2−λ b)

→ 0 as θ →∞.(t)

Take Kǫ to be an appropriately large value of θ. Use the transformation F−1 again
in case 2. 2
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Exercise 2.1 Prove (2), by simplifying the proof of theorem 2.1 as much as
possible with this simpler goal in mind.

We merely state an analogous result for the existence of processes on (D,D).

Theorem 2.2 (Existence of processes on (D,D); Chentsov) Let

X : (Ω,A, P )→ (R[0,1],B[0,1], PX)

be a general process. Suppose that for some K > 0, b > 0, and a > 1
2 we have

E|X(r, s]X(s, t] |b ≤ K · F (r, s]aF (s, t]a for all 0 ≤ r ≤ s ≤ t ≤ 1,(5)

where F is any df concentrated on [0, 1]. Then there exists an equivalent version
Z : (Ω,A, P )→ (R[0,1],B[0,1], PZ), which in fact satisfies

Z : (Ω,A, P )→ (D,D, PZ ), with Z(t) = X(t) a.s., for each t ∈ [0, 1] .(6)

[See Billingsley (1968, pp. 130, 134), for example.]

Exercise 2.2 Verify the existence of the Poisson process on (D,D).

Exercise 2.3 Let X : (Ω,A, P ) → (RT ,BT ) on some subinterval T of the line.
Let To denote a countable dense subset of T , and suppose P (ω : X(·, ω) is uniformly
continuous on To ∩ I) = 1 for every finite interval subinterval I of T . Then there
exists a version Z of X such that every sample path Z(·, ω) of Z is continuous.
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3 Brownian Motion and Brownian Bridge

Brownian Motion S on [0, 1] We define {S(t) : 0 ≤ t ≤ 1} to be a Brownian
motion on [0, 1] if S is a normal process having the moment functions

ES(t) = 0 and Cov[S(s), S(t)] = s ∧ t for all 0 ≤ s, t ≤ 1.(1)

This covariance function is nonnegative definite (in the sense of (A.4.12)), and these
distributions are consistent; thus Kolmogorov’s consistency theorem shows that the
process S exists as a random element on (R[0,1],B[0,1]). Modifying this S on a set of
measure zero (as in theorem 12.2.1), we may may create a version of S that satisfies

all sample paths of S are continuous functions on [0, 1] that equal 0 at 0.(2)

Thus (as with the smoother realizations of theorem 5.4.2) there is a nice realization
of S having smoother paths; that is,

S exists as a process on (C, C).(3)

So, Brownian motion exists as the coordinate map St(ω) ≡ ωt for some distribution
P on (Ω,A) = (C, C). This is a more convenient realization of S (than is the one
guaranteed by Kolmogorov’s consistency theorem). For either realization

S has stationary and independent increments.(4)

In fact, its sample paths satisfy

P (|S(s, t]| ≤ Kǫ(t− s)δ for all 0 ≤ s ≤ t ≤ 1) ≥ 1− ǫ(5)

for some Kǫ,δ, for any fixed ǫ > 0 and for any fixed 0 < δ < 1
2 . This follows from

theorem 12.2.1 and its corollary, since for any k ≥ 1,

E S(s, t]2k = [1 · 3 · · · (2k − 1)] (t− s)k for all 0 ≤ s ≤ t ≤ 1,(6)

and since a/b = (k − 1)/(2k)ր 1
2 as k →∞. (Note that (5) would allow a further

application of the smoother realizations theorem using just this smaller subset of
such functions in C.) [No appeal has been made to section 1.]

Brownian Bridge U on [0, 1] Let us now define

V(t) ≡ S(t) − t S(1) and U(t) ≡ −V(t) for 0 ≤ t ≤ 1.(7)

Then both U and V are obviously normal processes on (C, C) and satisfy (5); just
observe that V(t) is a simple linear combination of two normal rvs. Moreover, trivial
calculations give

EU(t) = 0 and Cov[U(s),U(t)] = s ∧ t− st for all 0 ≤ s, t ≤ 1.(8)

Call U a Brownian bridge. And V is also a Brownian bridge.

Brownian Motion S on [0,∞) Similarly, we establish the existence of Brownian
motion on (C∞, C∞). In particular, a Brownian motion on (C∞, C∞) is given by

S(t) = (1 + t)U(t/(1 + t)), 0 ≤ t <∞ .(9)
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Recall the proposition 8.6.1 LIL result. In section 12.8 we will establish the com-
panion LIL result for Brownian motion that

lim sup
t→∞

|S(t)|/[
√
t b(t)] = 1 a.s. (the LIL for S at infinity),(10)

where b(t) ≡
√
2 (1 ∨ log log t). (We will use it in very minor ways in the meantime.)

The next exercise similarly defines some additional normal processes. These may
provide a useful revisualization device that enables calculation.

Exercise 3.1 (Transformations of Brownian motion) Let Z ∼= N(0, 1) and
the Brownian bridges V, U(1), and U(2) be independent. Fix a > 0. Show that:

S(t) = V(t) + tZ, 0 ≤ t ≤ 1, is a Brownian motion.(11)

S(at)/
√
a, 0 ≤ t <∞, is a Brownian motion.(12)

S(a+ t)− S(a), t ≥ 0, is a Brownian motion.(13)

√
1− aU(1) ±√aU(2) is a Brownian bridge, if 0 ≤ a ≤ 1.(14)

Z(t) ≡ [U(1)(t) + U(2)(1− t)]/
√
2, 0 ≤ t ≤ 1

2
, is a Brownian bridge.(15)

U(t) = (1 − t)S(t/(1− t)), 0 ≤ t ≤ 1, is a Brownian bridge;(16)

use the LIL at infinity of (10) to show that this U(·) converges to 0 at t = 1.

t S(1/t), 0 ≤ t <∞, is a Brownian motion;(17)

apply the LIL of (10) to verify that these sample paths converge to 0 at t = 0.

Exercise 3.2 (LIL for S and U at 0) Use (10), (17), and then (7) to show that

lim sup
t→0

|S(t)|/[
√
t b(1/t)] = 1 a.s.; and lim sup

t→0
|U(t)|/[

√
t b(1/t)] = 1 a.s.(18)

Exercise 3.3 (Integrals of normal processes are normal rvs)
(a) Suppose X is a normal process on (C, C). Let X have mean function m(·)
continuous on I ≡ [0, 1] and covariance function Cov(·, ·) continuous on I × I. Let
g(·) ≥ 0 on I and q > 0 on I both be continuous on I. Let K(·) be an ր and left

continuous function for which
∫ 1

0
q |g| dK <∞. Show that the integrated process

∫ 1

0X(t) g(t) dK(t)

∼= N(
∫ 1

0
m(t) g(t) dK(t),

∫ 1

0

∫ 1

0
Cov(s, t) g(s)g(t) dK(s) dK(t)) ,

(19)

provided that both m(s)/q(s) and Cov[s, s]/q2(s) are continuous for s ∈ I.
(b) Determine the distribution of

∫ 1

0 U(t) dt.

(c) Develop results for
∫ 1

0
S g dK, for appropriate functions g and K.

[Hint. (a) The Riemann–Stieltjes sums are normally distributed.]
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Exercise 3.4 Let Z0, Z1, Z2, . . . be iid N(0, 1). Let fj(t) ≡
√
2 sin(jπt), for

j ≥ 1; these are orthogonal functions. Verify that

U(t) ≡∑∞
j=1 Zj fj(t) / jπ, 0 ≤ t ≤ 1, is a Brownian bridge.(20)

Thus the process S(t) ≡ U(t) + t Z0 is a Brownian motion on [0, 1]. Moreover,

W 2 ≡
∫ 1

0U
2(t) dt ∼=

∑∞
j=1 Z

2
j /(j

2 π2).(21)

This rv has a distribution that is well tabled (the asymptotic null distribution of
the Cramér–von Mises statistic).

Exercise 3.5 Show that Z is a Brownian motion on [0, 1], where

Z(t) ≡ U(t) +
∫ t
0
[U(s)/(1 − s)] ds for 0 ≤ t ≤ 1.(22)

Hint. Since the Reimann sums of normal rvs that define the integral are necessarily
normal, the process {Z(t) : 0 ≤ t ≤ 1} will be a normal process. Then, its mean
and covariance function will determine which normal process.

Exercise 3.6 (White noise) (a) Suppose that h and h̃ on [0, 1] are in L2. View
white noise as an operator dS that takes the function h into a rv

∫
[0,1]

h(t) dS(t)

in the sense of →L2 . Define this integral first for step functions, and then use
exercise 4.4.5 to define it in general. Then show that

∫
[0,1] h(t) dS(t) exists as such

an →L2 limit for all h in L2.
(b) In case h has a bounded continuous derivative h′ on [0, 1], show that

∫
[0,1]

h(t) dS(t) ≡ hS|1+0− −
∫
[0,1]

S(t)h′(t) dt .(23)

(c) Determine the joint distribution of
∫
[0,1] h(t) dS(t) and

∫
[0,1] h̃(t) dS(t).

(d) Define
∫
[0,1]

h(t) dU(t) (appeal first to (7) for the definition), and obtain the

marginal and joint distributions of all three of the rvs in (c) and (d).

Exercise 3.7 (Conditional Brownian motion) Let 0 ≤ r < s < t. Determine the
conditional distribution of S(s) given that S(r) = y and S(t) = z. Draw a figure for
this situation, and then put your answer in a format that allows some insight to be
offered as to an interpretation.

Exercise 3.8 Find the solution V (t) of the stochastic differential equation with
V ′(t) = −kV (t) + σS′(t). Determine its covariance function. (Think of a tiny
particle suspended in a liquid whose velocity is impeded by the viscosity of the liquid
and is additionally subjected to random changes from collisions with particles in
the medium.) [Hint. Rewrite the equation first as ekt [V ′(t) + kV (t)] = σ ekt S′(t),
then transform it to

V (t) = V (0)e−t + σ
∫ t
0
e−σ(t−s) dS(s) ,

and then use integration by parts to give meaning to dS(·).]
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Exercise 3.9 Verify Chentsov’s condition (12.2.5) for Brownian bridge, that

E{Un(r, s]2 Un(s, t]2} ≤ (some K)(s−r)(t−s) for all 0 ≤ r ≤ s ≤ t ≤ 1.(24)

Specify a suitable specific K.

Exercise 3.10 The partial sum process {Sn(t) : 0 ≤ t <∞} is defined below in

(12.8.1). Verify Chentsov’s condition for the case of iid (0, σ2) rvs, that

E{Sn(r, s]2 Sn(s, t]2} ≤ (some K)σ4 (s− r)(t − s)(25)

on the grid with r = i/n, s = j/n, t = k/n and 0 ≤ i < j < k < ∞. Specify a
suitable specific K. (Then note theorem 14.1.6.)
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4 Stopping Times
We first paraphrase the main result of this section. If we observe a right-continuous
process at a random time that depends on the process only through its past, then
the result is a rv (that is, it is measurable).

Notation 4.1 Let (Ω,A, P ) denote our basic probability space. We suppose
that our time set is a linearly ordered set such as [0, 1], [0,∞), [0,∞], {0, 1, 2, . . .},
{0, 1, 2, . . . ,∞}. LetX denote a process with such an index set, defined on (Ω,A, P ).
We now suppose that the At’s are an ր collection of sub σ-fields of A, in that
As ⊂ At whenever s < t. Call such a collection of At’s a filtration. If it further
holds that each Xt is an At-measurable rv, then we say that the X-process is
adapted to the At’s. The minimal such collection of ր σ-fields is the histories

σt ≡ σ[X−1
s (B) : s ≤ t]. Roughly, σt denotes all events for the process up to time t.

We let At+ ≡ ∩∞n=1At+1/n; and if At+ = At for all t ≥ 0, then we call the σ-fields

At right continuous. Let At− ≡ σ[As : s < t]. Then let A∞ ≡ σ[∪t<∞At]. 2

Definition 4.1 (Stopping times) An (extended) rv τ ≥ 0 will be called an

(extended ) stopping time with respect to the At’s if [τ ≤ t] ∈ At for all t ≥ 0. (That

is, one can determine whether τ ≤ t using only current knowledge At.)
Roughly, whether τ “stops” or “occurs” by time t or not depends only on those

events At with probabilities within our knowledge base up through time t. We
define the pre-τ σ-field

Aτ ≡ {A ∈ A : A ∩ [τ ≤ t] ∈ At for all t ≥ 0};(1)

roughly, at any instant we can decide whether or not A has occurred yet. Note that
if τ(ω) ≡ t for all ω, then Aτ = At; that is, the fixed time t is a stopping time
whose σ-field is At. We now develop some other technical properties.

Proposition 4.1 (Preservation of stopping times) Suppose the rvs T1, T2, . . . are
stopping times. Then:

T1 ∨ T2 and T1 ∧ T2 are stopping times.(2)

If Tn ր, then T ≡ limTn is a stopping time.(3)

If Tn ց and At’s are right continuous, then T ≡ limTn is a stopping time.(4)

This proposition is also true for extended stopping times.

Proof. Note that these four rvs satisfy

[T1 ∨ T2 ≤ u] = [T1 ≤ u] ∩ [T2 ≤ u] ∈ Au,(a)

[T1 ∧ T2 ≤ u] = [T1 ≤ u] ∪ [T2 ≤ u] ∈ Au,(b)

[T ≤ u] = ∩∞n=1[Tn ≤ u] = ∩∞n=1(events in Au) ∈ Au,(c)

[T ≤ u] = ∩∞m=1∪∞n=1[Tn ≤ u+1/m] = ∩∞m=1(Au+1/m events) ∈ Au+ = Au.(d)

No change is needed for extended stopping times. 2
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Proposition 4.2 (Integral stopping times) Integer-valued T ≥ 0 is a stopping
time if and only if [T = n] ∈ An for all 0 ≤ n < ∞. This result is also true for
extended stopping times.

Proof. If T is a stopping time, then [T = n] = [T ≤ n] ∩ [T ≤ n− 1]c is in An,
since [T ≤ n − 1]c ∈ An−1 ⊂ An. Also, [T = ∞] = (∪∞n=1[T ≤ n])c ∈ A∞. Going

the other way, [T ≤ n] = ∪m≤n[T = m] ∈ An, since [T = m] ∈ Am ⊂ An. Also,
[T ≤ ∞] = Ω ∈ A∞. 2

Exercise 4.1 (Properties of stopping times) Let T1, T2, . . . be (extended)
stopping times; no ordering is assumed. Then (using (9) and/or (10) below is ok):

T1 + T2 is an (extended) stopping time if the At’s are right continuous.(5)

A ∈ AT1 implies A ∩ [T1 ≤ T2] ∈ AT2 . [Hint. [T1 ∧ t ≤ T2 ∧ t] ∈ At .]
[T1 < T2], [T1 = T2], [T1 > T2] are all in both AT1 and AT2 .

(6)

T1 ≤ T2 implies AT1 ⊂ AT2 . Also, AT1 ∩ [T1 ≤ T2] ⊂ AT1∧T2 = AT1 ∩AT2 .(7)

If Tn ց T0 and the At’s are right continuous, then AT0 = ∩∞n=1ATn .(8)

[Hint. [T1+T2 ≤ u] = ∩∞m=1{∪[T1 ≤ a+ 1
m ]∩[T2 ≤ b+ 1

m ] : a+b ≤ u, rational a, b}.]

Proposition 4.3 (Stopping time measurability) Suppose τ is a stopping time
with respect to the At’s. Then:

Aτ is a σ-field.(9)

τ is Aτ -measurable.(10)

Proof. Consider (10). For example, for each real number r we have [τ ≤ r] ∈ Aτ ,
since [τ ≤ r] ∩ [τ ≤ t] = [τ ≤ r ∧ t] ∈ Ar∧t ⊂ At for each t ≥ 0. Thus (10) holds.

Consider (9). Let A1, A2, . . . be in Aτ . Then

(∪Ak)∩ [τ ≤ t] = ∪ (Ak)∩ [τ ≤ t] ) = ∪ (events in At) ∈ At .(a)

Also, Ac1 ∩ [τ ≤ t] = [τ ≤ t] \ (A1 ∩ [τ ≤ t] ) ∈ At. Thus, (9) holds. 2

Definition 4.2 (Progressively measurable) Let {X(t) : t ≥ 0} be a process. Let

Bt denote the Borel subsets of [0, t]. Call X progressively measurable, and denote
this type of measurability by writing

X : ([0, t]× Ω,Bt ×At)→ (R,B) for each t ≥ 0,

provided that for each t in the index set we have

{(s, ω) : 0 ≤ s ≤ t and X(s, ω) ∈ B} is in Bt ×At .(11)
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Proposition 4.4 (Measurability of stopped right-continuous processes) Let τ be
a stopping time with respect to the At’s. Also, let X : (Ω,A, P )→ (D[0,∞),D[0,∞))
be a process adapted to the At’s. Then:

X is progressively measurable.(12)

X(τ) is Aτ -measurable.(13)

We may replace [0,∞) by any [0, θ) or [0, θ] with 0 < θ <∞.
(Essentially, one can work nicely with right-continuous processes.)

Proof. That Aτ is a σ-field and that τ is Aτ -measurable are trivial for any

image space. (For example, for each real number r we have [τ ≤ r] ∈ Aτ , since
[τ ≤ r] ∩ [τ ≤ t] = [τ ≤ r ∧ t] ∈ Ar∧t ⊂ At for each t ≥ 0.)

Fix t > 0. Now, (12) holds, since X = limXn (by right continuity), where

Xn(s, ω) ≡
{
X((k + 1)/2n ∧ t, ω) for k/2n ≤ s < (k + 1)/2n, k ≥ 0, s < t,

X(t, ω) for s = t
(14)

clearly satisfies Xn : ([0, t] × Ω,Bt × At) → (R,B) is measurable. That is, Xn is
progressively measurable. Thus the process X is also, by proposition 2.2.2, since
Xn(ω̃) → X(ω̃) for each ω̃ ≡ (s, ω). That is, X : ([0, t] × Ω,Bt × At) → (R,B) is
measurable (or, X is progressively measurable).

The following type of truncation argument with stopping times is common; learn
it. We must show that [X(τ) ∈ B] ∩ [τ ≤ t] ∈ At, for all Borel sets B ∈ B. But
setting τ∗ ≡ τ ∧ t, we see that

[X(τ) ∈ B] ∩ [τ ≤ t] = [X(τ∗) ∈ B] ∩ [τ ≤ t] for τ∗ ≡ τ ∧ t,(15)

and hence it suffices to show that [X(τ∗) ∈ B] ∈ At. Note that the mapping

ω → (τ∗(ω), ω) is a measurable mapping from (Ω,At) to ([0, t]×Ω,Bt ×At), since
for A ∈ At and the identity function I we have (for sets [0, s]×A generating Bt×At)

[(τ∗, I) ∈ [0, s]×A] = [τ∗ ≤ s] ∩ A = [τ ∧ t ≤ s] ∩ A ∈ At.(a)

Combining this (τ∗, I) : (Ω,At) → ([0, t] × Ω,Bt × At) measurability with the

progressive measurability X : ([0, t] × Ω,Bt × At) → (R,B) shown above, we see

that the composition map ω → X(τ∗(ω), ω) is B-At-measurable. We express this

by writing [X(τ∗) ∈ B] ∈ At. (Both (12) and (13) have been established.) 2

Exercise 4.2 Let T ≥ 0 be a rv and let {At : t ≥ 0} be an increasing sequence
of σ-fields. Establish the following facts.

(a) If T is a stopping time, then [T < t] ∈ At for all t ≥ 0.

(b) If [T < t] ∈ At for all t ≥ 0 and the At’s are right continuous, then T is a
stopping time.

Exercise 4.3 Let T1 be a stopping time, and suppose T2 ≥ T1 where T2 is an
AT1 -measurable rv, then T2 is a stopping time.
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Exercise 4.4 Let 0 < a < b < 1. Let Ta ≡ inf{t : S(t) = a} for a Brownian

motion S on (C, C). Then Ta is a stopping time, but 1
2 Ta is not. Also, A ≡ [ ‖S‖ ≥ a]

is in ATa , but B ≡ [ ‖S‖ ≥ b] is not.

Definition 4.3 (Augmented filtration) Let (Ω, Â, P ) denote the completion of
the probability space (Ω,A, P ). Let N ≡ {N ∈ A : P (N) = 0} denote all null sets.
Let {At : t ≥ 0} be an ր sequence of σ-fields; that is, the At’s form a filtration. If

all At = At+, the At’s are called right-continuous. If all At = σ[At,N ], then they
are said to be a complete filtration. If a filtration {At : t ≥ 0} is both complete and

right-continuous, such a collection of σ-fields is called an augmented filtration.

Proposition 4.5 (Kallenberg) Let {At : t ≥ 0} denote an ր sequence of σ-fields
on the probability space (Ω,A, P ); that is, the At’s form a filtration. Consider the
null sets N ≡ {N ∈ A : P (N) = 0}. Define Ât ≡ σ[At,N ].

(a) Then the ր collection of σ-fields Ât+ necessarily equals the completion Ât+
of the right-continuous filtration At+, and so forms an augmented filtration for
(Ω, Â, P ). Moreover, this is the minimal augmented filtration.

(b) If the At ≡ σt denote the histories of a right-continuous processX : (Ω,A, P )→
(D[0,∞),D[0,∞)), then the completion of the right-continuized histories necessarily

forms the minimal augmented filtration. (That is, complete each σt+≡ ∩∞n=1 σt+1/n.)

(c) If S ≤ T a.s. then AS ⊂ AT relative to the augmented filtration σ̂t+ = σ̂t+.

Proof. It is trivial that Ât+ ⊂ ̂̂At+ = Ât+. To show the converse, consider

a set A ∈ Ât+. Then for each n ≥ 1 we have A ∈ Ât+1/n, so P (A△An) = 0 for

some set An ∈ At+1/n. Note the A∗ ≡ limnAn is in At+, while P (A△A∗) = 0

since A△A∗ ⊂ ∪∞1 (A△An) = ∪{null}n = {null}; thus A ∈ Ât+. Thus the main

claim in (a) is established. Let Ft denote any other augmented filtration for which

all Ft ⊃ At. Then Ât+ = Ât+ ⊂ F̂t+ = Ft+ = Ft, as claimed. Part (b) follows at
once. Part (c) follows from exercise 12.4.1 on properties of stopping times. 2

Example 4.1 (Haeusler) Let both A and Ac be measurable subsets of some
(Ω,A, P ) that have probability exceeding 0. Define Xt(ω) on 0 ≤ t ≤ 1 to be
identically 0 if ω ∈ A and to equal (t− 1/2) · 1[1/2,1](t) if ω ∈ Ac. All paths of this
X-process are continuous. Since Xt is always 0 for 0 ≤ t ≤ 1/2, we have σt = {∅,Ω}
for 0 ≤ t ≤ 1/2. However, σt = {∅, A,Ac,Ω} for 1/2 < t ≤ 1. These histories σt are
not right continuous at t = 1/2. The right continuized histories σt+ equal {∅,Ω}
for 0 ≤ t < 1/2 and equal {∅, A,Ac,Ω} for 1/2 ≤ t ≤ 1. They are already complete,
so σ̂t+ = σ̂t+ = σt+. Now, proposition 4.5(c) could be applied. 2
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5 Strong Markov Property

We now extend the strong Markov property (which was proved for discrete-time
processes in section 8.6) to processes with stationary and independent increments.

Theorem 5.1 (Strong Markov property) Consider the stochastic process
X : (Ω,A, P ) → (D[0,∞),D[0,∞)) adapted to right-continuous At’s. Suppose that

X(0) = 0, X has stationary and independent increments, and suppose that the
increment X(t+ s)−X(t) is independent of At for all s ≥ 0. Let τ be an extended
stopping time for the At’s, and suppose P (τ <∞) > 0. For some t ≥ 0 we define

Y (t) ≡
{
X(τ + t)−X(τ) on [τ <∞] ,
0 on [τ =∞] .

(1)

Then Y :
(
[τ <∞] ∩ Ω, [τ <∞] ∩ A, P ( ·

∣∣∣[τ <∞])
)
→ (D[0,∞),D[0,∞)) and

P
(
Y ∈ F

∣∣∣[τ <∞]
)
= P (X ∈ F ) for all F ∈ D[0,∞).(2)

Moreover, for all F ∈ D[0,∞) and for all A ∈ Aτ , we have

P
(
[Y ∈ F ] ∩ A

∣∣∣[τ <∞]
)
= P ( [X ∈ F ] )× P

(
A
∣∣∣[τ <∞]

)
.(3)

Thus if P (τ < ∞) = 1, then X and Y are equivalent processes and the process Y
is independent of the σ-field Aτ .

Proof. That Y : (Ω ∩ [τ < ∞],A ∩ [τ < ∞], P (·|[τ < ∞]) → (D[0,∞),D[0,∞))

follows from proposition 12.4.3. This proposition and exercise 12.4.1 show that

A′
t ≡ Aτ+t are ր and right continuous, with Y adapted to the A′

t’s.(4)

Case 1. Suppose the finite part of the range of τ is a countable subset {s1, s2, . . .}
of [0,∞). Let t1, . . . , tm ≥ 0, let B1, . . . , Bm be Borel subsets of the real line, and
let A ∈ Aτ . Then

P ([Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm] ∩ A ∩ [τ <∞])

=
∑

k P ([Y (t1) ∈ B1, . . .] ∩ A ∩ [τ = sk])

=
∑

k P ([X(t1 + sk)−X(sk) ∈ B1, . . .] ∩ A ∩ [τ = sk])

=
∑

k P (X(t1 + sk)−X(sk) ∈ B1, . . .)P (A ∩ [τ = sk])

= P (X(t1) ∈ B1, . . .)
∑
k P (A ∩ [τ = sk])

= P (X(t1) ∈ B1, . . . , X(tm) ∈ Bm)P (A ∩ [τ <∞]),(a)

where the third equality holds as A ∩ [τ = sk] = (A ∩ [τ ≤ sk]) ∩ [τ = sk] is in Ask ,
and is thus independent of the other event by the independent increments of X .
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Putting A = [τ <∞] in (a) yields

P (Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm |[τ <∞])

= P (X(t1) ∈ B1, . . . , X(tm) ∈ Bm);(b)

substituting (b) into (a) and dividing by P (τ <∞) yields

P ([Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm] ∩ A|[τ <∞])

= P (Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm|[τ <∞])P (A|[τ <∞]).(c)

Thus (b) and (c) hold for the class G of sets of the form [Y (t1) ∈ B1, . . . , Y (tm) ∈ Bn]
and for all sets A in Aτ . Since G generates Y −1(D[0,∞)), equation (b) implies (2).

Since G is also closed under finite intersections (that is, it is a π̄-system), (c) and
proposition 7.1.1 imply (3).

Case 2. Now consider a general stopping time τ . For n ≥ 1, define

τn ≡
{
k/n for (k − 1)/n < τ ≤ k/n and k ≥ 1,
1/n for τ = 0,
∞ for τ =∞ .

(d)

Note that τn(ω)ց τ(ω) for ω ∈ [τ <∞]. For k/n ≤ t < (k + 1)/n we have

[τn ≤ t] = [τ ≤ k/n] ∈ Ak/n ⊂ At
(so that τn is a stopping time), and also for A in Aτ that

A ∩ [τn ≤ t] = A ∩ [τ ≤ k/n] ∈ Ak/n ⊂ At
(so that Aτ ⊂ Aτn). Define

Yn(t) = X(τn + t)−X(τn) on [τn <∞] = [τ <∞],(e)

and let it equal 0 elsewhere. By case 1 results (b) and (c), both

P (Yn ∈ F |[τ <∞]) = P (X ∈ F ) and(f)

P ([Yn ∈ F ] ∩ A |[τ <∞]) = P (Yn ∈ F |[τ <∞])P (A |[τ <∞])(g)

hold for all F in D[0,∞) and all A in Aτ (recall that Aτ ⊂ Aτn as above, and

[τ < ∞] = [τn < ∞]). Let (r1, . . . , rm) denote any continuity point of the joint df
of the finite dimensional random vector (Y (t1), . . . , Y (tm)), and define

Gn ≡ [Yn(t1) < r1, . . . , Yn(tm) < rm, τ <∞],

G ≡ [Y (t1) < r1, . . . , Y (tm) < rm, τ <∞],

G∗ ≡ [Y (t1) ≤ r1, . . . , Y (tm) ≤ rm, τ <∞],

H ≡ [X(t1) < r1, . . . , X(tm) < rm].

(h)

By the right continuity of the sample paths, Yn(t) → Y (t) for every t and every ω
in [τ <∞]; thus

G ⊂ limGn ⊂ limGn ⊂ G∗.(i)
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Thus

P (G|τ <∞) ≤ P (limGn|[τ <∞]) ≤ limP (Gn|τ <∞) by (i), then DCT

= P (H) = limP (Gn|τ <∞) by using (f) twice

≤ P ( limGn|τ <∞) ≤ P (G∗|τ <∞) by the DCT and (i)

≤ P (G|τ <∞) +
∑m
i=1P (Y (ti) = ri|τ <∞)

= P (G|τ <∞),(j)

since (r1, . . . , rm) is a continuity point. Thus (j) implies

P (G|τ <∞) = P (H),(k)

and this is sufficient to imply (2). Likewise, for A ∈ Aτ ⊂ Aτn ,

P (G ∩ A|[τ <∞]) ≤ P ( limGn ∩ A|τ <∞) by (i)

≤ limP (Gn ∩ A|τ <∞) by the DCT

= limP (Gn|τ <∞)P (A|τ <∞) by (c), with [τ <∞] = [τn <∞]

= P (G|τ <∞)P (A|τ <∞) by (j)

= limP (Gn|τ <∞)P (A|τ <∞) by (j)

= limP (Gn ∩ A|τ <∞) by (c), with [τ <∞] = [τn <∞]

≤ P ( limGn ∩ A|τ <∞) ≤ P (G∗ ∩ A|τ <∞) by the DCT, then (i)

≤ P (G ∩ A|τ <∞) +
∑m

i=1 P (Y (ti) = ri|τ <∞)

= P (G ∩ A|τ <∞),(l)

since (r1, . . . , rm) is a continuity point. Thus (l) implies

P (G ∩ A|τ <∞) = P (G|τ <∞)P (A|τ <∞);(m)

and using proposition 7.1.1 again, we see that this is sufficient to imply (3).

The final statement is immediate, since when P (τ <∞) = 1 we necessarily have
P (A|τ <∞) = P (A) for all A ∈ A. 2
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6 Embedding a RV in Brownian Motion
Let a, b > 0. For a Brownian motion S on (C∞, C∞), we define

τ ≡ τab ≡ inf{t : S(t) ∈ (−a, b)c}(1)

to be the first time S hits either −a or b. Call τ a hitting time. [Show that τ is a
stopping time.] Note figure 6.1.

b

0

–a

(·)

τab

Figure 6.1  The stopping time τab.

Theorem 6.1 (Embedding via τab) Let τ ≡ τab. Then:

ES(τ) = 0 .(2)

P (S(τ) = −a) = b/(a+ b) and P (S(τ) = b) = a/(a+ b) .(3)

Eτ = a b = ES2(τ) and E τ2 ≤ 4ab(a+ b) .(4)

Eτr ≤ r Γ(r) 22r ES2r(τ) ≤ r Γ(r) 22r ab (a+ b)2r−2 for all r ≥ 1 .(5)

Definition 6.1 (Martingale) A process {M(t) : t ≥ 0} is a continuous parameter
martingale (mg) if E|M(t)| <∞ for all t, M is adapted to the At’s, and

E{M(t) |As} =a.s. M(s) for all 0 ≤ s ≤ t.(6)

Definition 6.2 (Stopping time) If τ is a random time (just a rv that is ≥ 0) for
which the event [τ ≤ t] ∈ At for all t, then we call τ a stopping time.
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Future theorem Let τ be a stopping time. With appropriate regularity conditions
on a mg M , we can claim that

EM(τ) = EM(0) .(7)

Our present applications are simple special cases of a result called the optional
sampling theorem for mgs. The general version will be proven in chapter 18. We
will use it for such simple special cases now. 2

Proof. The independent increments of S lead to satisfaction of the mg property
stated in (6). Also, S is suitably integrable (we will see later) for (7) to hold (note
(13.6.9) and (13.6.16)). Thus, with p ≡ P (S(τ) = b), we have

0 = ES(τ) = bp− a(1− p), or p = a/(a+ b) .(a)

Also, the process

{S2(t)− t : t ≥ 0} is a mg adapted to the σ-fields At ≡ σt ,(8)

since

E{S2(t)− t|As} = E{[S(t)− S(s) + S(s)]2 − t|As}

= E{[S(t)− S(s)]2 + 2 S(s)[S(t)− S(s)] + S2(s)− t|As}

= E{[S(t)− S(s)]2}+ 2 S(s)E{S(t)− S(s)} + S2(s)− t

= t− s+ 2 S(s) · 0 + S2(s)− t

= S2(s)− s .(b)

This process is also suitably integrable, so that optional sampling can be used to
imply E[S(τ)2 − τ ] = 0. Thus

Eτ = ES2(τ) = (−a)2 · b/(a+ b) + b2 · a/(a+ b) = ab .(c)

We leave (5) to exercise 12.7.3 below. 2

Theorem 6.2 (Skorokhod embedding of a zero-mean rv) Suppose X is a
rv with df F having mean 0 and variance 0 ≤ σ2 ≤ ∞. Then there is a stopping
time τ such that the stopped rv S(τ) is distributed as X ; that is,

S(τ) ∼= X.(9)

Moreover,

Eτ = Var[X ] and E τ2 ≤ 16EX4.(10)

and for any r ≥ 1 we have

Eτr ≤ Kr E|X |2r with Kr ≡ r Γ(r) 24r−2 .(11)
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Proof. For degenerate F , just let τ ≡ 0. Thus suppose F is nondegenerate. Let
(A,B) be independent of S, with joint df H having

dH(a, b) = (a+ b) dF (−a) dF (b)/EX+ for a ≥ 0, b > 0 .(12)

The procedure is to observe (A,B) = (a, b) according to H , and then to observe
τab, calling the result τ . (Clearly, τab = 0 if a = 0 is chosen.) Note that [τ ≤ t]
can be determined by (A,B) and {S(s) : 0 ≤ s ≤ t}, and hence is an event in
At ≡ σ[A,B, S(s) : 0 ≤ s ≤ t}. For t ≥ 0,

P (S(τ) > t) = E(P{S(τ) > t|A = a,B = b})

=
∫
[0,∞)

∫
(0,t] 0 · dH(a, b) +

∫
[0,∞)

∫
(t,∞) (a/(a+ b)) dH(a, b) by (3)(a)

=
∫
(t,∞)

∫
[0,∞) a dF (−a) dF (b) /EX+ =

∫
(t,∞) dF (b) EX

− /EX+(b)

= 1− F (t) ,(c)

since EX = 0 with X nondegenerate implies EX+ = EX−. Likewise, for t ≥ 0,

P (S(τ) ≤ −t) =
∫
[0,t)

∫
(0,∞) 0 · dH(a, b)+

∫
[t,∞)

∫
(0,∞) (b/(a+ b)) dH(a, b)(d)

=
∫
[t,∞)

∫
(0,∞) b dF (b) dF (−a) /EX+ =

∫
[t,∞) dF (−a)(e)

= F (−t) .(f)

Thus S(τ) ∼= X . Moreover,

Eτ = E(E{τ |A = a,B = b}) = E(E{S2(τ)|A = a,B = b}) = ES2(τ)

= EX2 = Var[X ] .(g)

Note that (a+ b)2r−1 ≤ 22r−2[a2r−1 + b2r−1] by the Cr-inequality. Thus

Eτr = E(E{τr|A = a,B = b})

≤ 22r r Γ(r) E(AB(A +B)2r−2) by (5)(h)

≤ 22r r Γ(r) E(AB(A +B)2r−1/(A+B))

≤ r Γ(r) 24r−2 E

(
B

A+B
A2r +

A

A+B
B2r

)
(i)

= Kr E(E{S2r(τ)|A = a,B = b}) = Kr E(S
2r(τ)) = Kr EX

2r ,(j)

as claimed. 2
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7 Barrier Crossing Probabilities
For −a < 0 < b we defined the hitting time

τab ≡ inf{t : S(t) ∈ (−a, b)c},(1)

where S denotes Brownian motion on (C∞, C∞). We also considered the rv S(τab),
which is called Brownian motion stopped at τab. We saw that it took on the two
values b and −a with the probabilities p ≡ a/(a+ b) and q ≡ 1− p = b/(a+ b).

For a > 0 we define the stopping time (the hitting time of a)

τa ≡ inf{t : S(t) ≥ a} .(2)

[Now, [τa < c] = ∩q<a ∪r<c [S(r) > q] (over rational p and q) shows that τa is a
stopping time.] The LIL of (8.6.1) shows that both τab and τa are finite a.s.

Theorem 7.1 (The reflection principle; Bachelier) Both

P (sup0≤t≤c S(t) > a) = P (τa < c) = 2P (S(c) > a)(3)

= 2P (N(0, 1) ≥ a/√c ) for a > 0 and

P (‖S‖10 > a) = 4
∑∞
k=1 P ((4k − 3) a < N(0, 1) < (4k − 1) a)(4)

= 1− 4

π

∞∑

k=0

(−1)k
2k + 1

exp

(
− (2k + 1)2π2

8 a2

)
for a > 0.(5)

Proof. Define the stopping time τ ′a ≡ τa ∧ c, and note that τa = τ ′a on the
event [S(c) > a]. Now, [τ ′a < c] ∈ Aτ ′

a
is independent of the Brownian motion

{Y(t) ≡ S(τ ′a + t) − S(τ ′a) : t ≥ 0}, by strong Markov, with P (τ ′a < ∞) = 1. In (b)

below we will use that S(τ ′a) = a on [S(c) > a]. We have

P (τa < c) = P (τ ′a < c)

= P ([τ ′a < c] ∩ [S(c) > a]) + P ([τ ′a < c] ∩ [S(c) < a]) + 0(a)

= P ([τ ′a < c] ∩ [S(c) − S(τ ′a) > 0]) + P ([τ ′a < c] ∩ [S(c) − S(τ ′a) < 0])(b)

= 2P ([τ ′a < c]∩ [S(c)−S(τa) > 0]) using the strong Markov property(c)

= 2P (S(c) > a),(d)

since the events in (c) and (d) are identical.
The two-sided boundary of formula (4) follows from a more complicated reflec-

tion principle. Let A+ ≡ [‖S+‖ > a] = [S exceeds a somewhere on [0, 1]] and A− ≡
[ ‖S−‖ > a] = [S falls below −a somewhere on [0, 1]]. Though [ ‖S‖ > a] = A+∪A−,
we have P (‖S‖ > a) < P (A+) + P (A−), since we included paths that go above a
and then below −a (or vice versa) twice. By making the first reflection in figure 7.1,
we see that the probability of the former event equals that of A+− = [ ‖S+‖ > 3a],
while that of the latter equals that of A−+ = [ ‖S−‖ > 3a]. But subtracting out
these probabilities from P (A+) + P (A−) subtracts out too much, since the path
may then have recrossed the other boundary; we compensate for this by adding
back in the probabilities of A+−+ ≡ [ ‖S+‖ > 5a] and A−+− ≡ [ ‖S−‖ > 5a], which
a second reflection shows to be equal to the appropriate probability. But we must
continue this process ad infinitum. Thus



7. BARRIER CROSSING PROBABILITIES 323

P (‖S‖10 > a) =

{
P (A+)− P (A+−) + P (A+−+)− · · ·+
P (A−)− P (A−+) + P (A−+−)− · · ·(e)

= 2 [P (A+)− P (A+−) + P (A+−+)− · · ·] by symmetry(f)

= 2
∑∞
k=1 (−1)k+1 2P (N(0, 1) > (2k − 1) a) by (3)

= 4
∑∞
k=1 P ((4k − 3) a < N(0, 1) < (4k − 1) a)(g)

as claimed. The final expression (5) is left for the reader; it is reputed to converge
more quickly. 2

Exercise 7.1 Prove (5). (See Chung (1974, p. 223).)

–a

0

a

2a

3a

The second reflection

The first reflection

The path

Figure 7.1  The reflection principle for Brownian motion.

(·)

Theorem 7.2 (The reflection principle for linear boundaries; Doob) Consider
the line c t+ d with c ≥ 0, d > 0. Then:

P (S(t) ≥ ct+ d for some t ≥ 0) = exp(−2 c d) .(6)

P (|S(t)| ≥ c t+ d for some t ≥ 0) = 2
∑∞
k=1 (−1)k+1 exp(−2 k2c d) .(7)

Proof. Now, for any θ 6= 0 the process

{V (t) ≡ exp(θ [S(t)− θ t/2]) : t ≥ 0} is a mg (with V (0) ≡ 1).(8)

This holds with σt ≡ σ[S(s) : s ≤ t] (using the mgf of a normal rv), since

E{V (t)|σs} = E{exp(θ[S(s)− θ s/2] + θ [S(s, t]− θ(t− s)/2]) |σs}
= V (s) E{exp(θ N(0, t− s))} exp(−θ2 (t− s)/2)(a)

= V (s).(b)
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Thus if we now redefine τab as τab ≡ inf{t : X(t) ≡ S(t) − θt/2 ∈ (−a, b)c}, where
we have a > 0, b > 0, then V (t) = eθ X(t). Hence the “future theorem” gives

1 = EV (τab) = P (X(τab) = −a) e−θa + P (X(τab) = b) eθb,(c)

so that

P (X(τab) = b) = (1− e−θa)/(eθb − e−θa)(9)

→ e−θb if θ > 0 and a→∞(d)

= e−2cd if θ = 2c and b = d.(e)

But this same quantity also satisfies (by proposition 1.1.2)

P (X(τab) = b)→ P (X(t) ≥ b for some t) as a→∞(f)

= P (S(t)− θt/2 ≥ b for some t) = P (S(t) ≥ θt/2 + b for some t)

= P (S(t) ≥ ct+ d for some t) if c = θ/2 and d = b.(g)

Equating (g) to (e) (via (f) and (9)) gives (6). 2

Exercise 7.2 Prove (7). (See Doob (1949).)

Theorem 7.3 (Kolmogorov–Smirnov distributions) Both

P (‖U±‖ > b) = exp(−2b2) for all b > 0 and(10)

P (‖U‖ > b) = 2
∑∞
k=1 (−1)k+1 exp(−2 k2 b2) for all b > 0 .(11)

Proof. Now, ‖U−‖ ∼= ‖U+‖ and

P (‖U+‖ > b) = P (U(t) > b for some 0 < t < 1)

= P ((1− t)S(t/(1 − t)) > b) for some 0 ≤ t ≤ 1, by (12.3.16)(12)

= P (S(r) > b+ r b for some r ≥ 0) letting r = t/(1− t)

= exp(−2 b2) by theorem 7.2.(a)

Likewise,

P (‖U‖ > b) = P (|S(r)| > b+ r b for some r ≥ 0)(b)

= 2
∑∞
k=1 (−1)k+1 exp(−2 k2 b2)(c)

by theorem 7.2. 2
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Exercise 7.3 (a) Prove (12.6.5) for r = 2.
(b) Prove (12.6.5) for integral r. (This is unimportant.)

[Hint. The Vθ ≡ exp( θ [S(t) − θ t2/2]), t ≥ 0 of (8) are martingales on [0,∞).
Differentiate formally under the integral sign in the martingale equality

∫
A Vθ(t) dP =

∫
A Vθ(s) dP for all A ∈ As .(13)

Then conclude that [∂k/∂θk Vθ(t)]
∣∣
θ=0

is a martingale for each k ≥ 1. For k = 4

this leads to S4(t) − 6t S2(t) + 3t2 = t2H4(S(t)/
√
t ) being a martingale on [0,∞);

here H4(t) = t4 − 6t2 + 3 is the “fourth Hermite polynomial.” The reader needs
to work only with the single specific martingale in part (a); the rest of this hint is
simply an intuitive explanation of how this martingale arises.]
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8 Embedding the Partial Sum Process

The Partial Sum Process

Let Xn1, . . . , Xnn be row-independent rvs having a common F (0, 1) distribution,
and let Xn0 ≡ 0. We define the partial sum process Sn on (D,D) by

Sn(t) ≡
1√
n

[nt]∑

i=0

Xni =
1√
n

k∑

i=0

Xni for
k

n
≤ t < k + 1

n
, 0 ≤ k ≤ n(1)

(or for all k ≥ 0, in case the nth row is Xn1, Xn2, . . .). Note that

Cov[Sn(s), Sn(t)] =
∑[ns]
i=1

∑[nt]
j=1 Cov[Xni, Xnj ]/n

= [n (s ∧ t)]/n for 0 ≤ s, t ≤ 1
(2)

for the greatest integer function [·]. We suspect that Sn “converges” to S. We will
establish this shortly.

Embedding the Partial Sum Process

Notation 8.1 Let {S(t) : t ≥ 0} denote a Brownian motion on (C∞, C∞). Then

Zn(t) ≡
√
n S(t/n) for t ≥ 0 is also such a Brownian motion.(3)

By using the Skorokhod embedding technique of the previous section repeatedly on
the Brownian motion Zn, we may guarantee that for appropriate stopping times
τn1, . . . , τnn (with all τn0 ≡ 0) we obtain that

Xnk ≡ Zn(τn,k−1, τnk], for 1 ≤ k ≤ n, are iid F (0, 1) rvs.(4)

Let Sn denote the partial sum process of these Xnk’s. Then, for t ≥ 0 we have

Sn(t) =
1√
n

∑[nt]
k=1 Xnk = 1√

n
Zn(τn,[nt]) = S

(
τn,[nt]

n

)

= S
(

1
n

∑[nt]
k=1 Tnk

)
= S(In(t))

(5)

with Tnk ≡ (τnk − τn,k−1) and In(t) ≡ 1
nτn,[nt]. Observe that:

Xn1, . . . , Xnn are iid F (0, 1), in each row.(6)

Tn1, . . . , Tnn are iid with means = 1 = Var[X ], in each row.(7)

ET rnk ≤ Kr · E|Xnk|2r, with Kr ≡ rΓ(r) 24r−2 . 2(8)

Theorem 8.1 (Skorokhod’s embedding theorem) The partial sum process
Sn on (D,D) of row-independent F (0, 1) rvs formed as above satisfies

‖Sn − S‖ →p 0 as n→∞.(9)
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Notice: The joint distributions of any Sm, Sn in theorem 8.1 are not the same as
they would be if formed from a single sequence of iid rvs. In fact, we have no idea of
what these joint distributions may be. However, the partial sums of an iid sequence
do not generally converge to their limit in the sense of →p , so we have gained a
great deal via the embedding.

Theorem 8.2 (Embedding at a rate) Suppose that EX4 <∞. Let I denote
the identity function. Then for each 0 ≤ ν < 1

4 , the process Sn of (5) satisfies

nν ‖ (Sn − S)/I1/2−ν ‖11/n = Op(1).(10)

Proof. Consider theorem 8.1. Let I denote the identity function. Suppose we
now show that

‖In − I‖10 = sup0≤t≤1 |τn,[nt]/n− t| →p 0.(a)

Then on any subsequence n′ where →p 0 in (a) may be replaced by →a.s. 0, the
continuity of the paths of S will yield

‖Sn′(·)− S(·)‖ = ‖S(In′)− S‖ →a.s. 0,(b)

and thus (9) will follow. This is a useful argument; learn it. It therefore remains to
prove (a). The WLLN gives

In(t) = τn,[nt]/n→p t for any fixed t.(c)

Using the diagonalization technique, we can extract from any subsequence a further
subsequence n′ on which

In′(t)→a.s. t for all rational t.(d)

But since all functions involved are monotone, and since the limit function is con-
tinuous, this implies that a.s.

In′(t)→ t uniformly on [0, 1] .(e)

Thus (a) follows from (e), since every n has a further n′ with the same limit. Thus
the conclusion (9) holds.

In the proof just given, the conclusion (9) can trivially be replaced by

sup0≤t≤m |Sn(t)− S(t)| →p 0.(f)

Appealing to exercise 12.1.6(b) for the definition of ‖ · ‖∞, we thus obtain

ρ∞(Sn, S)→p 0 on (C∞, C∞) ,(11)

provided that the rvs Xn1, Xn2, . . . are appropriately iid (0, σ2). [We consider the
proof of theorem 8.2 at the end of this section.] 2

Let g : (D,D)→ (R,B) and let ∆g denote the set of all x ∈ D for which g is not
‖ · ‖-continuous at x. If there exists a set ∆ ∈ D having ∆g ⊂ ∆ and P (S ∈ ∆) = 0,
then we say that g is a.s. ‖ · ‖-continuous with respect to the process S.
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Theorem 8.3 (Donsker) Let g : (D,D) → (R,B) denote an a.s. ‖ · ‖-continuous
mapping that is D-measurable. Then g(Sn) : (Ω,A, P )→ (R,B), and both

g(Sn)→p g(S) as n→∞ for the Sn of (5) and(12)

g(Sn)→d g(S) as n→∞ for any Sn having the same distribution.(13)

(D-measurability is typically trivial, and hypothesizing it avoids the measurability
difficulties discussed in section 12.1.) [Theorem 8.2 allows (13) for D-measurable
functionals g that are continuous in other ‖ · /q‖-metrics.]

Proof. Now, ‖Sn−S‖ is a D-measurable rv, and ‖Sn−S‖ →p 0 for the Sn of (5).
Thus any subsequence n′ has a further subsequence n′′ for which ‖Sn′′ −S‖ → 0 for
all ω 6∈ A′′, where P (A′′) = 0. Moreover,

P (A′′ ∪ [S ∈ ∆]) ≤ P (A′′) + P (S ∈ ∆) = 0 ,(a)

and if ω 6∈ A′′∪[S ∈ ∆], then g(Sn′′(ω))→ g(S(ω)) holds, since ‖Sn′′(ω)−S(ω)‖ → 0
and g is ‖ ‖-continuous at S(ω). Thus g(Sn) →p g(S) as n → ∞ for the Sn of (5).
Thus g(Sn) →d g(S) for the Sn of (5), and hence of (13) also. [Note that we
are dealing only with functionals for which the compositions g(Sn) and g(S) are
(Ω,A, P )→ (R,B) measurable.] 2

Example 8.1 Since the functionals ‖ · ‖ and ‖ ·+ ‖ are a.s. ‖ · ‖-continuous,

‖S+n ‖ →d ‖S+‖ and ‖Sn‖ →d ‖S‖ .(14)

The limiting distributions are those given in theorem 7.1. 2

Exercise 8.1 LetX0 ≡ 0 andX1, X2, . . . be iid (0, σ2). Define Sk ≡ X1+· · ·+Xk

for each integer k ≥ 0.
(a) Find the asymptotic distribution of (S1 + · · ·+ Sn)/cn for an appropriate cn.
(b) Determine a representation for the asymptotic distribution of the “absolute
area” under the partial sum process, as given by (|S1|+ · · ·+ |Sn|)/cn.

The LIL

Recall the (8.6.1) LIL for a single sequence of iid F (0, 1) rvs X1, X2, . . . with partial
sums Sn ≡ X1 + · · ·+Xn; that is

limn→∞ |Sn|/
√
2n log logn = 1 a.s.(15)

The two LILs for Brownian motion (recall (12.3.7) and (12.3.18)) are

lim t→∞ |S(t)|/
√
2 t log log t = 1 a.s.,(16)

lim t→0 |S(t)|/
√

2 t log log(1/t) = 1 a.s.(17)
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Notation 8.2 Define stopping times T1, T2, . . . (with T0 = 0) having mean 1 for
which the rvs

Xk ≡ S(τk−1, τk] are iid as F .(18)

Let τk ≡ T0 + T1 + · · ·+ Tk for k ≥ 0, and define the partial sums

Sn ≡
∑n

k=1Xk = S(τn) = S(n) + [S(τn)− S(n)].(19)

[Note that this embedding differs from that in notation 8.1. This one is based on a
single sequence of rvs X1, X2, . . . .] 2

Exercise 8.2 (The LIL) (a) First prove (15), while assuming that (16) is true.
[Hint. By proposition 8.6.1, we want to show (roughly) that

| S(τn)− S(n)|/
√
2n log logn→a.s. 0 or that

| S(τ[t])− S(t)|/
√
2 t log log t→a.s. 0.

(20)

We will now make rigorous this approach to the problem. First apply the SLLN
to τ [t]/t as t → ∞. Then define ∆k ≡ sup{|S(t) − S(tk)| : tk ≤ t ≤ tk+1}, with
tk ≡ (1 + a)k for some suitably tiny a > 0. Use a reflection principle and Mills’
ratio to show that P (∆k ≥ (an appropriate ck)) < ∞. Complete the proof using
Borel– Cantelli.]

(b) Now that you know how to deal with the “blocks” ∆k, model a proof of (16)
on the proof of proposition 8.6.1.

Proof for Embedding at a Rate

Proof. Consider theorem 8.2. Let d2 ≡ Var[T ]. Let Log k ≡ 1 ∨ (log k). Let
M ≡Mǫ be specified below, and define

Acn ≡ [max1≤k≤n |
∑k
i=1 (Tni − 1)|/(d

√
k Log k) ≥ 2M/d].(a)

Then the monotone inequality gives

Acn ⊂ [max1≤k≤n |
∑k
i=1 {(Tni − 1)/(d

√
i Log i)}| ≥M/d]

≡ [max1≤k≤n |
∑k

i=1 Yni| ≥M/d],(b)

where the Yni’s are independent with mean 0 and variance (i Log2i)−1. Thus the
Kolmogorov inequality gives

P (Acn) ≤ (d/M)2 Var[
∑n

1 Yni] = (d/M)2
∑n

1 (i Log
2i)−1

≤ (d/M)2
∑∞

1 (i Log2i)−1 ≡ (d/M)2 v2 < ǫ2 if M > dv/ǫ(21)

< ǫ .(c)

Thus

P (Bn) ≡ P
(

max
1≤k≤n

nν | S(∑k
1Tni/n)− S(k/n)|
(k/n)1/2−ν

≥ 2M√
dv

)
(d)
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≤ P (Bn ∩An) + P (Acn)

≤∑n
k=1P

([
| S(∑k

1 Tni/n)−S(k/n)|
[2M

√
k (Log k)/n]1/2

≥(e)

2M√
dv

k1/2−ν
√
n

1

[2M
√
k (Log k)/n]1/2

]
∩ An

)
+ ǫ

≤∑n
k=1P (sup 0≤|r|≤a | S(r + k/n)− S(k/n)|/√a ≥ b) + ǫ(f)

with a ≡ 2M
√
k (Log k)/n (as in An in (a)),

and with ≥ b as on the right in (e)

≤ 3
∑n
k=1P (sup 0≤r≤a | S(t, t+ r]|/√a ≥ b/3) + ǫ using (k) below(g)

≤ 12
∑n
k=1 P (N(0, 1) ≥ b/3) + ǫ by the reflection principle(h)

≤ 12
∑n
k=1 exp(−(b/3)2/2) + ǫ by Mills’ ratio(i)

≤ 12

n∑

k=1

exp

(
− M

9dv

k1/2−2ν

Log k

)
+ ǫ(22)

< 2ǫ ,(j)

if M ≡ Mǫ is large enough and if 0 ≤ ν < 1
4 (this final step holds, since we have∫∞

0
exp(−c xδ) dx→ 0 as c→∞). The inequality (g) used

sup 0≤|r|≤a |S(r + k/n)− S(k/n)|
≤ sup 0≤r≤a | S(r+k/n)−S(k/n)|+2 sup 0≤r≤a | S(r+k/n−a)−S(k/n−a)|(k)

[with t in (g) equal to k/n or k/n− a, and with a as above (see (f))].

Now, P (Bn) ≤ 2ǫ shows that (10) is true, provided that the sup over all of

[1/n, 1] is replaced by the max over the points k/n with 1 ≤ k ≤ n. We now “fill in

the gaps”. Thus (even a crude argument works here)

P (
√
n max1≤k≤n−1 sup 0≤t≤1/n | S(t+ k/n)− S(k/n)| / k1/2−ν ≥M)

≤∑n−1
k=1 P (‖ S‖

1/n
0 ≥M k1/2−ν/

√
n )

≤ 4
∑n−1
k=1 P (N(0, 1) ≥M k1/2−ν) by the reflection principle

≤ 4
∑n−1
k=1 exp(−M2 k1−2ν/2) by Mills’ ratio(23)

< ǫ ,(l)

if M ≡Mǫ is large enough and if 0 ≤ ν < 1
2 (even). 2

Exercise 8.3 Suppose EX4 <∞. Show that the process Sn of (5) satisfies

(n1/4/ logn) ‖ Sn − S‖ = Op(1) .(24)

[Hint. Replace nν/(k/n)1/2−ν by n1/4/ logn in the definition of Bn in (d). Now
determine the new form of the bounds in (20) and (21).] [While interesting and
often quoted in the literature, this formulation has little value for us.]
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9 Other Properties of Brownian Motion
Here we collect some selected sample path properties of Brownian motion, just to
illustrate a sample of what is known. Some proofs are outlined in the exercises.

Definition 9.1 (Variation) For a sequence of partitions

Pn ≡ {(tn,k−1, tnk] : k = 1, . . . , n} of [0, 1] (with 0 ≡ tn0 < · · · < tnn ≡ 1),

define the rth variation of S corresponding to Pn by

Vn(r) ≡
∑n

k=1 |S(tnk)− S(tn,k−1)|r.(1)

We call these partitions nested if Pn ⊂ Pn+1 for all n ≥ 1. We further define the
mesh of the partitions to be ‖Pn‖ ≡ sup1≤k≤n |tnk − tn,k−1|.

Theorem 9.1 (Nondifferentiability)
(a) Almost every Brownian path is nowhere differentiable.

(b) In fact, Vn(1)→∞ a.s. if ‖Pn‖ → 0.

(c) (Finite squared variation) Vn(2)→L2 1 if ‖Pn‖ → 0.

(d) (Finite squared variation) Vn(2)→a.s. 1

if either (i)
∑∞

n=1 ‖Pn‖ <∞ or (ii) The Pn are nested with mesh approaching 0.

(e) (Dudley) Vn(2)→a.s. 1 if and only if (logn) ‖Pn‖ → 0.

Theorem 9.2 (Lévy) The Hölder condition is true:

lim sup
{0≤s<t≤1 and t−s=aց0}

|S(t)− S(s)|√
2 a log(1/a)

= 1 a.s.(2)

Theorem 9.3 (The zeros of S in [0, 1]) Define

Zeros(ω) ≡ {t ∈ [0, 1] : S(t, ω) = 0}.
For almost all ω, the set Zeros(ω) is a closed and perfect set of Lebesgue measure
zero. [A set A is called dense in itself if every point x of A is such that every
neighborhood of x contains another point of A beyond x. A compact set that is
dense in itself is called perfect.]

Theorem 9.4 (Strassen) Let Zn(t) ≡ S(nt)/
√
2n log log n for 0 ≤ t ≤ 1. Let

K be the set of absolutely continuous functions f on [0, 1] with f(0) = 0 and∫ 1

0
[f ′(t)]2 dt ≤ 1; equivalently,

K ≡
{
f ∈ C[0, 1] : f(0) = 0, f(t) =

∫ t

0

f ′(s) ds,

∫ 1

0

[f ′(s)]2 ds ≤ 1
}
.

For almost all ω the sequence {Zn(·, ω) : n = 3, 4, . . .} visualized within C[0, 1] is
relatively compact with limit set K. That is,

P ( limn ‖Zn −K‖ = 0) = 1 and P (∩f∈K [ limn ‖Zn − f‖ = 0]) = 1.(3)

We will write this conclusion symbolically as Z →֒ K. [This can be used to establish
a LIL for various functionals g of Sn, by determining the extreme values of g(K).]
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Exercise 9.1 Prove theorem 9.1(a).

Exercise 9.2 (α) Let Z ∼= N(0, 1). Let r > 0. Show that:

Cr ≡ E|Z|r = 2r/2 Γ( r+1
2 )/
√
π.(a)

|S(tn,k−1, tnk] |r ∼= (Cr |tnk − tn,k−1|r/2 , (C2r − C2
r ) (tnk − tn,k−1)

r ) .(b)

(β) Now show that E Vn(2) = 1 and Var[Vn(2)] ≤ (C2r − C2
r ) ‖Pn‖, giving

∑∞
1 P ( |Vn(2)− 1| ≥ ǫ) ≤ (C2r − C2

r ) ǫ
−2∑∞

1 ‖Pn‖ <∞.(c)

(γ) Finally, demonstrate the truth of theorem 9.1(d), case (i).

Exercise 9.3 Prove theorem 9.1(b) when all tnk = k/2n.
[Hint. Let 0 < λ < 1. The Paley–Zygmund inequality gives

P (Vn(1) > λE Vn(1)) ≥ (1− λ)2 E2Vn(1)/E(V
2
n (1))→ (1− λ)2,

where EVn(1)→∞.]
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10 Various Empirical Process
Suppose that ξn1, . . . , ξnn are iid Uniform(0, 1). Their empirical df Gn is defined by

Gn(t) ≡
1

n

n∑

k=1

1[0,t](ξnk) for 0 ≤ t ≤ 1(1)

= k/n for ξn:k ≤ t < ξn:k+1 and 0 ≤ k ≤ n ,(2)

where 0 ≡ ξn:0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ ξn:n+1 ≡ 1 are the order statistics; see figure

10.1. Note that nGn(t) ∼= Binomial(n, t) ∼= (t, t(1 − t)). The Glivenko–Cantelli
theorem shows that Gn converges uniformly to the true df I; that is,

‖Gn − I‖ →a.s. 0 (even for the present triangular array of ξnk’s).(3)

(The Cantelli proof of the SLLN based on fourth moments shows that Gn(t)→a.s. t
for each fixed t; even for triangular arrays. The rest of the proof is identical.) The
uniform empirical process Un is defined by

Un(t) ≡
√
n [Gn(t)− t] =

1√
n

n∑

k=1

[1[ξnk≤t] − t] for 0 ≤ t ≤ 1.(4)

This process is also pictured in figure 10.1. The means and covariances of Un are
the same as those of Brownian bridge U, in that

EUn(t) = 0 and Cov[Un(s),Un(t)] = s∧t−st for all 0 ≤ s, t ≤ 1;(5)

this follows easily from

Cov[1[0,s](ξnk), 1[0,t](ξnk)] = s ∧ t− st for 0 ≤ s, t ≤ 1.(6)

{Moreover, for any dk’s and ek’s we have immediately from this that

Cov[
∑n

1 dk 1[0,s](ξnk),
∑n

1 ek 1[0,t](ξnk))] = (
∑n

1 dk ek)× [s ∧ t− st] ;(7)

we would have
∑n

1 E[dk, ek] instead, if these were rvs independent of the ξnk’s.}
We note that G−1

n (t) ≡ inf{x ∈ [0, 1] : Gn(x) ≥ t} is left continuous, with
G−1
n (t) = ξn:k for (k − 1)/n < t ≤ k/n(8)

and G−1
n (0) = 0, as in figure 10.1. The uniform quantile process Vn is defined by

Vn(t) ≡
√
n [G−1

n (t)− t] for 0 ≤ t ≤ 1.(9)

The key identities relating Un and Vn are (with I the identity function) the trivial

Un = −Vn(Gn) +
√
n [G−1

n ◦Gn − I] on [0, 1] ,(10)

Vn = −Un(G−1
n ) +

√
n [Gn ◦G−1

n − I] on [0, 1] .(11)

Note that

‖Gn ◦G−1
n − I‖ = 1/n and ‖G−1

n ◦Gn − I‖ = [max1≤k≤n+1 δnk] ;(12)

here δnk ≡ (ξn:k − ξn:k−1), for 1 ≤ k ≤ n+ 1, denotes the kth of the n+ 1 uniform
spacings.



334 CHAPTER 12. BROWNIAN MOTION AND EMPIRICAL PROCESSES

It is sometimes convenient to use the smoothed versions G̈n and G̈−1
n defined by

G̈n(ξn:k) = k/(n+ 1) and G̈−1
n (k/(n+ 1)) = ξn:k for 0 ≤ k ≤ n+ 1,(13)

connected linearly between points. Upon occasion the smoothed uniform quantile

process V̈n(t) ≡
√
n [G̈−1

n (t)− t] is a useful variation on Vn. The Glivenko–Cantelli
theorem implies that

‖Gn−I‖ →a.s. 0, ‖G−1
n −I‖ →a.s. 0, ‖G̈n−I‖ →a.s. 0, ‖G̈−1

n −I‖ →a.s. 0 ;(14)

see figure 10.1. Coupling these with the identities (10) and (11) shows that

‖Un − U‖ →p 0 if and only if ‖Vn − V‖ →p 0 .(15)

Let cn ≡ (cn1, . . . , cnn)
′ denote a vector of known constants normalized so that

cn· ≡ 1
n

∑n
k=1 cnk = 0 and σ2

c,n ≡ 1
n

∑n
k=1 (cnk − cn·)2 = 1 , and let

c4n· ≡ 1
n

∑n
k=1 [cnk − cn·]4.

(16)

We suppose that these constants also satisfy the uan condition

max
1≤k≤n

|cnk − c̄n|/[
√
n σc,n] =

[
max

1≤k≤n
|cnk|/

√
n
]
→ 0 as n→∞.(17)

The weighted uniform empirical process is defined by

Wn(t) ≡
1√
n

n∑

k=1

cnk [1[ξnk≤t] − t] for 0 ≤ t ≤ 1.(18)

The Wn process is pictured in figure 10.1. It is trivial from (7) that

Cov[Wn(s),Wn(t)] = s ∧ t− st for 0 ≤ s, t ≤ 1.(19)

It is easy to show thatWn →fd W, whereW denotes another Brownian bridge, one
that is independent of U.

Let Rn ≡ (Rn1, . . . Rnn)
′ denote the ranks of ξn1, . . . , ξnn; and then denote the

antiranks by Dn ≡ (Dn1, . . . , Dnn)
′. Then Rn is a random permutation of the vector

(1, . . . , n)′, while Dn is the inverse permutation. These satisfy

ξnDnk
= ξn:k and ξnk = ξn:Rnk

.(20)

As observed in example 7.5.3,

(ξn:1, . . . , ξn:n) and (Rn1, . . . , Rnn) are independent rvs.(21)

The empirical finite sampling process Rn is defined by

Rn(t) ≡
1√
n

[(n+1)t]∑

k=1

cnDnk
for 0 ≤ t ≤ 1.(22)

The Rn process is also pictured in figure 10.1. The key identities are

Wn = Rn(Gn) or Rn =Wn(G̈
−1
n ) on [0, 1].(23)

These identities give

‖Wn −W‖ →p 0 if and only if ‖Rn − R‖ →p 0,(24)

as with (15). Because of (21), we see that

Rn and Vn are independent processes.(25)



10. VARIOUS EMPIRICAL PROCESS 335

Figure 10.1    n,    n ,    n,    n and    n.
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We reiterate that

W and V = −U are independent Brownian bridges;(26)

this is further corroborated, since (7) with
∑n

1 dk ek =
∑n

1 cnk/n = 0 imply that
the cross covariance

Cov[Un(s),Wn(t)] = 0 for all 0 ≤ s, t ≤ 1 .(27)

We will prove only part of theorems 10.1 and 10.3 (namely, that (28) holds). For
the believability of the rest, we will rely on (28), our earlier proof that Sn can be
embedded at a rate, and the proof of theorem 10.2. (Shorack(1991) contains these
proofs, written in the current style and notation.) See section 12.11 for proofs of
theorems 10.2 and 10.4.

Theorem 10.1 (Convergence of the uniform processes) We can define in-
dependent Brownian bridges U = −V and W and row-independent Uniform(0, 1)
rvs ξn1, . . . , ξnn on a common probability space (Ω,A, P ) in such a way that

‖Un − U‖ →p 0 and ‖Vn − V‖ →p 0 ,(28)

‖Wn −W‖ →p 0 and ‖Rn − R‖ →p 0 ,(29)

provided that the cnk’s are uan with c̄n = 0, σ2
c = 1, and c4n <∞.

Theorem 10.2 (Pyke–Shorack) Let q > 0 on (0, 1) be ր on [0, 12 ], ց on [ 12 , 1],

and have
∫ 1

0 [q(t)]−2 dt <∞. Then:

‖ (Un − U)/q ‖ →p 0 and ‖ (Vn − V)/q ‖ →p 0 .(30)

‖ (Wn −W)/q ‖ →p 0 and ‖ (Rn −W)/q ‖ →p 0 .(31)

Corollary 1 (Csörgő–Révész) We may replace 1/q in the previous theorem by
K, for any qf K having Var[K(ξ)] <∞.

Theorem 10.3 (Weighted approximation of the uniform processes) The
embeddings of the previous theorem are such that for any 0 ≤ ν < 1

4 we have
(a) (M. Csörgő, S. Csörgő, Horváth, Mason)

∆νn ≡ ‖nν(Un − U)/[I ∧ (1− I)]1/2−ν ‖1−1/n
1/n = Op(1) ,(32)

∆̄νn ≡ ‖nν(Vn − V)/[I ∧ (1− I)]1/2−ν ‖1−1/2n
1/2n = Op(1) .(33)

(b) (Shorack) Suppose lim c4n <∞. Then

∆̇νn ≡ ‖nν(Wn −W)/[I ∧ (1 − I)]1/2−ν ‖1−1/n
1/n = Op(1) ,(34)

∆̈νn ≡ ‖nν(Rn −W)/[I ∧ (1− I)]1/2−ν ‖1−1/2n
1/2n = Op(1) .(35)

[The supremum limits in (32) and (34) may be changed to c/n and 1− c/n for any
constant c > 0. This relates to exercise 10.3 below.]
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Theorem 10.4 (Weighted approximation of Gn; Mason) For any realization of
Gn, any n ≥ 1, any 0 < ν < 1

2 , and all λ > 0 we have

∆0
νn ≡

∥∥∥∥
nν(Gn − I)

[I ∧ (1− I)]1−ν
∥∥∥∥ = Op(1) .(36)

We may replace Gn by G̈−1
n in (36).

Example 10.1 (R-statistics) Consider the simple linear rank statistics

Tn ≡
1√
n

n∑

k=1

cnk K

(
Rnk
n+ 1

)
=

1√
n

n∑

k=1

K

(
i

n+ 1

)
cnDnk

(37)

=
∫ 1

0 K dRn = −
∫ 1

0 Rn dK ,(38)

where the last step holds if K = K1 −K2 with each Ki ր and left continuous on
(0, 1). As in (12.3.19), this suggests that

Tn →p

∫ 1

0
W dK ∼= N(0,Var[K(ξ)]),(39)

provided that the uan condition holds and provided that Var[Ki(ξ)] <∞ for i = 1, 2.
Indeed, this can be shown to be true. (Writing

Tn = −
∫ 1

0
W dK ⊕ ‖(Rn −W)/q‖

∫ 1

0
[q(t)]−2 d|K|

provides a simple proof in case this integral is finite for some square integrable
function q and for total variation measure d|K|.) We will return to this in chapter
16 below. 2

Proof. Consider Vn. We will represent our uniforms rvs as a normed sum
of Exponential(1) rvs. Thus we really begin with a Skorokhod embedding of iid
Exponential(1) rvs.

Let F (x) = 1− exp(−(x+1)) for x ≥ −1, so that F is a (0, 1) df; and if X ∼= F ,
then X+1 ∼= Exponential(1). According to Skorokhod’s embedding theorem, there
exist row-independent rvs Xn1, . . . , Xnn with df F such that the partial sum process
Sn of the nth row satisfies ‖Sn − S‖ →p 0 for some Brownian motion S. We now
define

ηnk ≡ k+Xn1 + · · ·+Xnk and ξn:k ≡ ηnk/ηn,n+1 for 1 ≤ k ≤ n+1.(40)

It is an elementary exercise below to show that these ξnk’s are distributed as n
row-independent Uniform(0, 1) order statistics. Let Gn denote their empirical df
and Un their uniform empirical process. The key identity relating Vn to Sn is

Vn−1

(
k

n− 1

)
=
√
n− 1

[
ηk
ηn
− k

n− 1

]
(a)

=
n

ηn

√
n− 1

n

[
ηk − k√

n
− k

n

ηn − n√
n

]
−
√
n− 1

[
k

n− 1
− k

n

]
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=
n

ηn

√
n− 1

n
[Sn(k/n)− (k/n)Sn(1) ]−

1√
n− 1

k

n
,(41)

so that for 0 ≤ t ≤ 1,

Vn−1(t) =
n

ηn

√
n− 1

n
[ Sn(In(t))− In(t) Sn(1) ]−

1√
n− 1

In(t),(42)

where In(t) ≡ k/n for (k − 1)/(n − 1) < t ≤ k/(n − 1) and 1 ≤ k ≤ n − 1 with
In(0) ≡ 0 satisfies ‖In − I‖ → 0. Note that ηn/n →p 1 by the WLLN and that
‖Gn − I‖ →p 0. Thus

‖Vn − V‖ →p 0 for V ≡ S− I S(1)(43)

follows from the identity (42), ‖In − I‖ → 0, and the fact that

‖S(In)−S‖ ≤ ‖S(In)−S(In)‖+ ‖S(In)−S‖ ≤ ‖Sn−S‖+ ‖S(I)−S‖ →p 0 ,(b)

by continuity of all sample paths of the S process.
All sample paths of V are continuous, and the maximum jump size of |Vn − V|

is bounded above by [
√
nmax1≤i≤n+1 δni]; so ‖Vn − V‖ →p 0 and (12) imply

[
√
nmax1≤k≤n+1 δni] =

√
n ‖G−1

n ◦Gn − I‖ →p 0 as n→∞.(44)

Thus

‖Un − U‖ = ‖ − Vn(Gn) +
√
n [Gn ◦G−1

n − I ] + V‖
≤ ‖Vn(Gn)− V(Gn)‖ + ‖V(Gn)− V‖+

√
n ‖Gn ◦G−1

n − I‖(c)

≤ ‖Vn − V‖+ ‖V(Gn)− V‖+ op(1)(d)

= ‖V(Gn)− V‖+ op(1)

= op(1),(e)

using ‖Gn − I|| →p 0 and uniform continuity of the sample paths of V.

We will prove Mason’s theorem in the next section. 2

Exercise 10.1 Establish the claim made just below (40).

Example 10.2 (The supremum functionals) Suppose g : (D,D)→ (R,B) is a.s.
‖ · ‖-continuous. Then

g(Un)→p g(U) and g(Vn)→p g(V)(45)

for the special constructions of theorem 10.1. Moreover, convergence in distribution
holds for any versions of these processes. Letting # denote +,−, or | · |, we can
thus claim the convergence in distribution

‖U#
n ‖ →d ‖U#‖ and

∫ 1

0U
2
n(t) dt→d

∫ 1

0U
2(t) dt(46)

for any versions of these processes. These limiting distributions of ‖U±‖ were given
in theorem 12.7.2, while that of

∫ 1

0 U
2(t) dt will be given in (12.12.6). 2
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Exercise 10.2 (The two-sample uniform process) (i) Let Gm and Hn be the
empirical dfs of two independent Uniform(0, 1) special constructions. Let

Um =
√
m (Gm − I) and Vn ≡

√
n (Hn − I)

denote the corresponding empirical process, and let λmn ≡ n/(m+ n). Then

Wmn ≡
√

mn
m+n (Gm −Hn) = (

√
λmn Um −

√
1− λmnVn)

has

‖Wmn −W 0
mn‖ →p 0 as m ∧ n→∞, where

W 0
mn ≡ (

√
λmn U−

√
1− λmn V ) is a Brownian bridge.

(47)

We thus have ‖W#
mn‖ →d ‖W#‖, for Brownian bridge W. Write out the details.

(ii) Now use a discrete reflection principle to compute the exact distribution of

P (‖W+
nn‖ ≥ a), and pass to the limit in the resulting expression to obtain (12.7.9).

(This provides an alternative to the earlier method.) [Hint. Go through the order
statistics of the combined sample from smallest to largest. If it is from sample 1,
step up one unit as you go to the right one unit. If it is from sample 2, step down
one unit as you go to the right one unit. In this way, perform a random walk from
(0, 0) to (2n, 0). What is the chance you ever cross a barrier of height a?]

Example 10.3 (The Kolmogorov–Smirnov and Cramér–vonMises statistics) Let
ξn1, . . . , ξnn be the iid Uniform(0, 1) rvs of the special construction, and let F

denote an arbitrary df. Then Xnk ≡ F−1(ξnk), 1 ≤ k ≤ n, are iid F . Let Fn
denote the empirical df of Xn1, . . . , Xnn and let En denote the empirical process

defined by En(x) ≡
√
n [Fn(x) − F (x)]. Now, En = Un(F ). Thus (28) implies

‖En − U(F )‖ ≤ ‖Un − U‖ →p 0, where equality holds if F is continuous. Thus
√
nD#

n ≡
√
n ‖(Fn−F )#‖ = ‖U#

n ‖ →d ‖U#‖ if F is continuous.(48)

Likewise, a change of variable allows elimination of F , and gives

W 2
n ≡

∫
n(Fn−F )2 dF =

∫ 1

0
U2
n(t) dt→d

∫ 1

0
U2(t) dt if F is continuous.(49)

These statistics are used to test whether F is really the true df, and
√
nD#

n and

W 2
n all measure how far the estimate Fn of the true df differs from the hypothesized

df F . [The percentage points of the asymptotic distributions of
√
nD#

n and W 2
n ,

under the null hypothesis when F is really the true df, are available.]

Consider now the two-sample problem in which the rvs X
(i)
nj ≡ F−1(ξ

(i)
nj ), for

i = 1, 2 and 1 ≤ j ≤ ni, of independent special constructions have empirical dfs

F
(1)
n1 and F

(2)
n2 . Note that for independent uniform empirical processes

√
n1n2

n1+n2
[F (1)
n1
− F (2)

n2
] =

√
n2

n1+n2
U (1)
n1

(F )−
√

n1

n1+n2
U (2)
n2

(F ) ≡Wn1,n2(F )(50)

=aWn1,n2(F ) if F is continuous,(51)

where

Wn1,n2 ≡
√

n1

n1+n2
U (1) −

√
n2

n1+n2
U (2) ∼= U for all n1 and n2.(52)
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This gives the asymptotic null distribution for the various supremum and integral
functionals with which we have dealt, no matter which version of these processes is
considered. 2

Exercise 10.3 Show that n ξn:n →d Exponential(1).

Exercise 10.4 (
∫ 1

0 g dUn) Suppose Var[g(ξ)] and Var[h(ξ)] are finite.

(a) Show that there exist rvs (to be labeled
∫ 1

0
g dU and

∫ 1

0
h dW) for which

∫ 1

0
g dUn →p

∫ 1

0
g dU and

∫ 1

0
h dWn →p

∫ 1

0
h dW .(53)

(b) Show also that

∫ 1

0 g dVn →p −
∫ 1

0 g dU and
∫ 1

0 h dRn →p

∫ 1

0 h dW .(54)

Exercise 10.5 (Mason) Consider the ∆nν of (32). For some a > 0,

supn≥2 E exp(a∆nν) <∞.(55)

[Hint. This is too hard to be an “exercise,” but it is a very nice bound.]
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11 Inequalities for Various Empirical Processes
We wish to apply the Birnbaum–Marshall and Hájek–Rényi inequalities to various
martingales (mgs) associated with the processes of the previous section.

Proposition 11.1 (Various martingales)

{Un(t)/(1− t) : 0 ≤ t < 1} is a mg.(1)

{Wn(t)/(1− t) : 0 ≤ t < 1} is a mg.(2)

{U(t)/(1− t) : 0 ≤ t < 1} is a mg.(3)

{Vn(k/(n+ 1)) : (1 − k/(n+ 1)) : 0 ≤ k ≤ n} is a mg.(4)

{Rn(k/(n+ 1))/(1− k/n) : 0 ≤ k ≤ n− 1} is a mg.(5)

Proof. Let At ≡ σ[1[ξ≤s] : 0 ≤ s ≤ t]. Then

E{1[ξ≤t] − t|As} = 1[ξ≤s] +
t−s
1−s1[ξ>s] − t(a)

= 1[ξ≤s] +
t−s
1−s{1− 1[ξ≤s]} − t

= 1−t
1−s{1[ξ≤s] − s} ,(b)

so that

[1[ξ≤t] − t]/(1− t), 0 ≤ t ≤ 1, is a mg.(6)

Noting (12.10.7), summing (6) shows that (1) and (2) hold.

Let At ≡ σ[U(s) : 0 ≤ s ≤ t]. Letting Σst ≡ Cov[U(s),U(t)] = s ∧ t− st,

E(U(t)|As) = {[s(1− t)]/[s(1− s)]}U(s),(c)

since U(t)|U(s) is normal with mean µt +ΣtsΣ
−1
ss [U(s)− µs]. Thus (3) holds.

Consider (5). Let Znk ≡ Rn(k/(n+1))/(1−k/n), and set ∆Znk ≡ Znk−Zn,k−1

for integers 1 ≤ k ≤ n− 1. Then

∆Znk = n
n−kR

(
k

n+1

)
− n

n−k
n−k
n−k+1 R

(
k−1
n+1

)

= 1√
n

n
n−k

[
cnDnk

+ 1
n−k+1

∑k−1
j=1 cnDnj

]
.(d)

Let Ak ≡ σ[Dn1, . . . , Dnk]. Then

E(∆Znk|Ak−1) =
1√
n

n
n−k [E(cnDnk

|Ak−1) +
1

n−k+1

∑k−1
j=1 cnDnj ]

= 1√
n

n
n−k

[
1

n−k+1

∑n
j=k cnDnj +

1
n−k+1

∑k−1
j=1 cnDnj

]
(e)

= 0, since c̄n = 0.
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Apply the finite sampling results (A.1.8) and (A.1.9) to (d) to conclude that

Var[∆Znk] =
σ2
c,n

n

(
n

n−k

)2{
1− 2

n−k+1
k−1
n−1 + k−1

(n−k+1)2

[
1− (k−1)−1

n−1

]}
(f)

=
σ2
c,n

n− 1

n2

(n− k)(n− k + 1)
.(7)

Thus (5) holds. Consider (4).

Let Ak ≡ σ[ξn:1, . . . ξn:k]. Then

E(ξn:k|Ai)− k
n+1 = ξn:i +

k−i
n−i+1 [1− ξn:i]− k

n+1 = n−k+1
n−i+1

[
ξn:i − i

n+1

]
,(g)

since the conditional distribution of ξn:k given ξn:i is that of the (k − i)th order
statistic in a sample of size n−i from Uniform(ξn:i, 1), and (A.1.32) can be applied.
Thus (4) holds. 2

Inequality 11.1 (Pyke–Shorack) Let X denote one of the processes Un, V̈n,
Wn, Rn, or U. Let q > 0 on [0, θ] be ր and right continuous. Then for all λ > 0
we have the probability bound

P (‖X/q‖θ0 ≥ λ) ≤ (16/λ2)
∫ θ
0
[q(t)]−2 dt .(8)

Proof. Let X denote any one of Un, Wn, or U. Then X(t)/(1 − t) is a mg with
mean 0 and variance ν(t) ≡ t/(1− t). Thus the Birnbaum–Marshall inequality gives

P (‖X(t)/q(t) ‖θ0 ≥ λ) = P (‖ [X(t)/(1− t)]/[q(t)/(1− t)] ‖θ0 ≥ λ)

≤ (4/λ)2
∫ θ
0 [(1− t)/q(t)]2 d [t/(1− t)] = (4/λ)2

∫ θ
0 [q(t)]

2 dt .(a)

Let X denote Rn. Then, with bk ≡ q(k/(n+ 1)) and m ≡ [(n+ 1)θ],

P (‖Rn(t)/q(t) ‖θ0 ≥ λ) = P (max1≤k≤m |Rn(k/(n+ 1)) |/bk ≥ λ)

≤ P
(
max1≤k≤m

|Rn(k/(n+1))/(1−k/n)|
bk/(1−k/n) ≥ λ

)

≤ 4
λ2

∑m
k=1

Var[∆Znk]
[bk/(1−k/n)]2 by (b) and Hájek–Rényi(b)

≤ 4
λ2

∑m
k=1

1
n−1

n2

(n−k)(n−k+1)
(n−k)2
n2 b2k

by (7)

≤ 4
λ2

1
n

∑m
k=1 b

−2
k ≤ 16

λ2

∫ θ
0
[q(t)]−2 dt .(c)

(We can improve (a) and (c) by a factor of 4, as stated in the Hájek–Rényi inequality,
but there is no real point to this.) 2

Exercise 11.1 Verify (8) for V̈n.
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Inequality 11.2 (In probability linear bounds on Gn and G−1
n ) For all

ǫ > 0 there exists λ ≡ λǫ so small that the event Anǫ on which

Gn(t) ≤ t/λ on [0, 1], Gn(t) ≥ λt on [ξn:1, 1],(9)

Gn(1−t) ≤ 1−λ(1−t) on [0, ξn:n), Gn(1−t) ≥ 1−(1−t)/λ on [0, 1] ,(10)

|Gn(t)− t| ≤ 1/(λ
√
n ) on [0, 1](11)

has P (Anǫ) ≥ 1 − ǫ for all n ≥ 1. Let 1nǫ denote the indicator function of Anǫ.
(These conclusions hold for any realization of Gn and G−1

n .) (Note that linear
bounds on G−1

n are also established by this result.)

Proof. Now, (ξn:1, . . . ξn:n) has joint density n! on its domain. Thus

P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n)(a)

=
∫ 1

λ

∫ tn
λ(n−1)/n

· · ·
∫ t3
λ2/n

∫ t2
λ/n

n! dt1 · · · dtn = · · ·

= n!
[
tn

n! − λtn−1

n!

]∣∣∣∣
1

λ

= 1− λ(b)

≥ 1− ǫ/3 for all λ ≤ λǫ ≡ ǫ/3,(c)

and for all n. This gives the upper bound of (9). And (8.3.20) gives

Daniels’ equality

P (‖Gn/I‖ ≤ λ) = P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1)

= P (ξn:k ≥ λk/n for 1 ≤ k ≤ n) = P (G−1
n (t) ≥ λt for all 0 ≤ t ≤ 1)

= 1− λ for all 0 ≤ λ ≤ 1 .

(12)

We now turn to the lower bound of (9). Now,

Sk ≡ n ξn:k+1/k, 1 ≤ k ≤ n− 1, is a reversed mg,(13)

as a rearrangement of E(ξn:k|ξn:k+1) = [k/(k + 1)] ξn:k+1 shows. So, immediately,

S̃k ≡ S(n−1)−k+1 = Sn−k = n ξn:n−k+1/(n−k) is a mg for 1 ≤ k ≤ n−1.(d)

Now calculate

1− P (Gn(t) ≥ λt everywhere on [ξn:1, 1]) [or = P (‖I/Gn‖1ξn:1
> 1/λ)]

= P (ξn:k+1 > (k/n)/λ for some 1 ≤ k ≤ n− 1)(e)

= P (max1≤k≤n−1 Sk > 1/λ) = P (max1≤k≤n−1 S̃k > 1/λ)

= P (max1≤k≤n−1 exp(rS̃k) > exp(r/λ))

≤ infr>0 [e−r/λEerS̃n−1] = infr>0 [e−r/λEern ξn:2 ] by Doob’s (8.9.3)(f)
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= infr>0

∫ 1

0
e−r/λ ernt n(n− 1) t(1− t)n−2 dt(g)

= infr>0 e
−r/λ∫ n

0 e
rs n(n− 1) (s/n) (1− s/n)n−2 ds/n

≤ infr>0 e
−r/λ∫ n

0 se
rs (1− s/n)n−2 ds

≤ infr>0 e
−r/λ∫ n

0 s e
rs e−s e2 ds since 1− s/n ≤ e−s/n

≤ e2 infr>0 e
−r/λ∫∞

0 s exp(−(1− r)s) ds

= e2 infr>0 e
−r/λ/(1− r)2 from the mean of an exponential density(h)

= (e2/4λ2) exp(−1/λ) since differentiation gives r = 1− 2λ(i)

< ǫ/3(j)

for λ ≡ λǫ small enough. Thus the lower bound in (9) holds. Then (10) follows
from (9) by symmetry. Finally, (11) holds since ‖Un‖ = Op(1). In fact, we have

Chang’s inequality

P (‖I/G−1
n ‖1ξn:1

≤ x) = P (Gn(t) ≥ t/x on all of [ξn:1, 1])

≥ 1− 2 x2 e−x for all x ≥ 1. 2

(14)

Proof. Consider Mason’s theorem 12.10.4. Apply the Pyke–Shorack inequality
with divisor q(t) ≡ (a ∨ t)1−ν to obtain

P (nν‖ (Gn(t)− t)/t1−ν ‖ba ≥ λ) = P (‖Un/t1−ν ‖ba ≥ λn(1/2)−ν)

≤ P (‖Un/q‖b0 ≥ λn1/2−ν) ≤ 4
∫ b
0
(a ∨ t)−(2−2ν) dt/(λ2 n1−2ν)(a)

= 4
λ2 (an)1−2ν + 4

λ2 n1−2ν

∫ b
a
t−(2−2ν) dt

= 4
λ2 (an)1−2ν − 4

λ2 n1−2ν · 1
(1−2ν)t1−2ν |ba

≤ 8(1− 2ν)−1/[λ2 (an)1−2ν ] .(b)

Using a = 1/n, b = 1
2 and the symmetry about 1

2 gives

P

(∥∥∥∥
nν [Gn(t)− t]
[t ∧ (1− t)]1−ν

∥∥∥∥
1−1/n

1/n

≥ λ
)
≤
[

16

(1− 2ν)

]
1

λ2
.(15)

But [0, 1/n] is easy (and [1− 1/n, 1] is symmetric), since on [0, 1/n] we have

nν |Gn(t)− t|/t1−ν ≤ (nt)ν [1 +Gn(t)/t] ≤ 1 +Gn(t)/t ;(c)

and thus (9) gives

P

(∥∥∥∥
nν [Gn(t)− t]
[t ∧ (1− t)]1−ν

∥∥∥∥
1/n

0

≥ λ
)
≤ 1

λ− 1
for λ > 1.(16)
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We can repeat this same proof up to (13) with G̈−1
n and V̈n replacing Gn and

Un, because of the Pyke–Shorack inequality. Then (0, 1/n] is trivial for G̈−1
n , as the

values on this whole interval are deterministically related to the value at 1/n. 2

Exercise 11.2 Prove the Pyke–Shorack theorem 12.10.2. [Hint. Model your
proof on (a) of the previous proof, with a = 0 and b sufficiently small, and with
theorem 12.10.1 sufficient on [b, 1− b].]
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12 Applications

Theorem 12.1 (Donsker) Let g : (D,D)→ (R,B) denote an a.s. ‖ ·‖-continuous
mapping that is D-measurable. Then g(Un) : (Ω,A, P )→ (R,B), and

g(Un)→p g(U) as n→∞ for the Un of (12.10.28),(1)

g(Un)→d g(U) as n→∞ for an arbitrary Un.(2)

[These conclusions hold for D-measurable functionals g that are continuous in other
‖ · /q‖-metrics as well.]

Exercise 12.1 Write out the easy details to prove this Donsker theorem.

Example 12.1 (Tests of fit) (i) Call F stochastically larger than F0 whenever
PF (X > x) ≥ PF0(X > x) for all x (with strict inequality for at least one x), and

write F ≥s F0. To test the null hypothesis H0 that F = F0 is true against the
alternative hypothesis Ha that F ≥s F0 it is reasonable to reject the H0 claim that

for large values of Birnbaum’s statistic Zn ≡
∫∞
−∞
√
n [Fn(x)− F0(x) ] dF0(x). Now

suppose that H0 is true, with a continuous df F0. Then

Zn ∼=
∫∞
−∞Un(F0) dF0 =

∫ 1

0
Un(t) dt→d Z ≡

∫ 1

0
U(t) dt ∼= N(0, 1

12 ) .(3)

(ii) Alternatively, one could form the Cramér–von Mises statistic

Wn ≡
∫∞
−∞ {

√
n [Fn(x) − F0(x) ]}2 dF0(x)(4)

∼=
∫∞
−∞U

2
n(F0) dF0 by (6.5.22)

=
∫ 1

0U
2
n(t) dt when F0 is continuous, by (6.3.10)

→d

∫ 1

0
U2(t) dt(5)

=
∫ 1

0
{∑∞

k=1 φk(t)
1
πk Zk}{

∑∞
j=1 φj(t)

1
πj Zj} dt (see below)

for the orthonormal functions φk(t) ≡
√
2 sin(πkt) on [0, 1]

and iid N(0, 1) rvs Zk

=
∑∞

k=1

∑∞
j=1

1
π2 jk ZjZk

∫ 1

0
φk(t)φj(t) dt

=
∑∞

k=1
1

π2 k2 Z
2
k .(6)

This shows that Wn is asymptotically distributed as an infinite weighted sum of
independent χ2

1 rvs. This representation of the limiting distribution has been used
to provide tables. If Wn ≡Wn(F0) is computed but a different df F is true, then

1
n Wn =

∫∞
−∞[Fn − F0 ]

2 dF0 →a.s.

∫∞
−∞ [F − F0 ]

2 dF0 > 0 .(7)
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[In statistical parlance, this shows that the Wn-test is consistent against any df
alternative F 6= F0.]

(iii) A third possibility is the Anderson–Darling statistic

An ≡
∫ ∞

−∞

{√n [Fn − F0 ]}2
F0(1 − F0)

dF0 =

∫ 1

0

U2
n(t)

t(1− t) dt(8)

for F0 continuous

→d

∫ 1

0

U2(t)

t(1− t) dt
∼=

∞∑

k=1

1
k(k+1) Z

2
k . 2(9)

Proof. (i) Consider Birnbaum’s Zn.
Method 1: By (6.5.22) and then the change of variable theorem of (6.3.10)

(with identity function H) one obtains the first two steps of (3). Apply Donsker for
the third step. Appeal to (12.3.19) for the →d to a normal rv Z. Finally, appeal
to Fubini’s theorem for both

EZ = E
∫ 1

0
U(t) dt =

∫ 1

0
E(U(t)) dt =

∫ 1

0
0 dt = 0 and(a)

E(Z2) = E{
∫ 1

0

∫ 1

0
U(s)U(t) ds dt}

=
∫ 1

0

∫ 1

0 E{U(s)U(t)} ds dt =
∫ 1

0

∫ 1

0 [s ∧ t− s t] ds dt

=
∫ 1

0

∫ t
0 s(1− t) ds dt = 1/12 .(b)

Method 2: Apply (12.10.28) for
∫ 1

0

|Un(t)− U(t)| dt ≤
∫ 1

0 1 dt× ‖Un − U‖ →p 0(c)

to replace step three in the above. Thus Zn →d Z.
The rest of the justification of example 12.1 is outlined in exercise 12.2 and

exercise 12.3. 2

Exercise 12.2 Consider the Cramér–von Mises statistic Wn.

(I) Verify step (5). Use (12.10.28).

(II) We now seek to justify the step representing U as an infinite series. To this end
formally write

U(t) =
∑∞

1 φk(t)
1
π k Zk(p)

for iid N(0, 1) rvs Zk and the orthonormal functions φk(·). First recall the group of
trigonometric identities

sin(A+B) = sinA cosB + cosA sinB ,

2 sinA cosB = sin(A+B) + sin(A−B) ,

cos(A+B) = cosA cosB − sinA sinB ,

2 cosA sinB = sin(A+B)− sin(A+B) .

(q)
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Use these to verify that
∫ 1

0
φj(t)φk(t) dt equals 0 or 1 according as j 6= k or j = k.

[Think of this formal U(t) as an odd function on [−1, 1], and thus only these φk(·)
are needed.] Then note that the Fourier coefficients and the Fourier series are

〈U, φk〉 =
∫ 1

0U(t)φk(t) dt =
1
π k Zk ,(r)

U =
∑∞

k=1 〈U, φk〉φk =
∑∞

k=1 φk
1
π k Zk .(s)

So, verify that the series in (p) converges a.s. and then everything so far for the
formal U is rigorous. Then Parseval’s identity (note theorem ??.??) gives

∫ 1

0U
2(t) dt = ‖U ‖2 =∑∞

1 |〈U, φk〉|2 =
∑∞

1
1

π2 k2 Z
2
k .(t)

Finally, one needs to verify the step (u) in the identity

E{∑∞
j=1 φj(s)

1
π j Zj ×

∑∞
k=1 φk(t)

1
π k Zk } =

∑∞
1

1
π2 k2 φk(s)φk(t)

= 2
π2

∑∞
1

1
k2 sin(π k s) sin(π k t)

= s ∧ t− s t ,(u)

and thus the (originally formal) process U is in fact a Brownian bridge. Where did
this idea come from? Verifying that

∫ 1

0 Cov[s, t]φk(s) ds =
1
π k φk(t) on [0, 1](v)

shows that Cov[s, t] ≡ Cov[U(s),U(t)] = s∧t−st has eigenvalues 1
π k with associated

eigenfunctions φk(·) for k = 1, 2, . . . . [Recall the spectral decomposition of matrices

in (A.3.2)–(A.3.4).]

Exercise 12.3 Verify the results claimed for the Anderson–Darling statistic An.
[Verifying→d will be a little trickier this time, since (12.10.30) will now be needed
in place of (12.10.28).] The rest is roughly similar in spirit, but the details are
now a geat deal more complicated. Fundamentally, one must now represent the
covariance function

Cov[s, t] = (s ∧ t− s t)/
√
s(1− s) t(1− t)

as a convergent infinite series of orthonormal functions. (Hopefully, at least the
approach is now clear. Providing the details is hard work.)



Chapter 13

Martingales

1 Basic Technicalities for Martingales
Notation 1.1 We will work with processes on the following time sets I: {0, . . . , n},
{0, 1, . . .}, {0, 1, . . . ,∞}, {. . . ,−1, 0}, {−∞, . . . ,−1, 0} in the discrete case and [0, t],
[0,∞), [0,∞], (−∞, 0], [−∞, 0] in the continuous case. In the continuous cases we
will consider only processes of the type X : (Ω,A, P )→ (DI ,DI) that are adapted
to an ր sequence of sub σ-fields At of A. We will use the notation {an}∞n=0,

{an}∞n=0, {an}0n=−∞, {an}0n=−∞ to denote sequences over {0, 1, . . .}, {0, 1, . . . ,∞},
{. . . ,−1, 0}, {−∞, . . . ,−1, 0}, respectively. 2

Definition 1.1 (Martingale and submartingale) Suppose E|Xt| <∞ for all t.
Call {Xt,At}t∈I a martingale (abbreviated mg) if

E(Xt|As) = Xs a.s. for each pair s ≤ t in I.(1)

Call {Xt,At}t∈I a submartingale (abbreviated submg) if

E(Xt|As) ≥ Xs a.s. for each pair s ≤ t in I.(2)

(If the inequality in (2) is reversed, the process {Xt,At}t∈T is then called a super-
martingale.) When the index set I is a subset of the negative numbers [−∞, 0], we
refer to such a process as a reversed martingale or reversed submartingale.
[Most results in the first seven sections of this chapter are due to Doob.]

Basic Technicalities

Proposition 1.1 (Equivalence) Now, {Xt,At}t∈I is a submg if and only if the
moments E|Xt| <∞ for all t ∈ I and for every pair s ≤ t we have

∫
A
(Xt −Xs) dP ≥ 0 for all A ∈ As.(3)

Similarly, {Xt,At}t∈I is a mg if and only if equality holds in (3).

Notation As in section 8.9, we combine these two statements by writing

{Xt,At}t∈I is a s-mg iff
∫
A
(Xt −Xs) dP

>
= 0 for all A ∈ As.(4)

349
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Proof. As in section 8.9, for each pair s ≤ t,
∫
A
(Xt −Xs) dP =

∫
A
E (Xt −Xs|As) dP >

= 0 for all A ∈ As(a)

if and only if E(Xt|As)−Xs = E(Xt −Xs|As) >= 0 a.s. As. 2

Definition 1.2 (a) Call {Xt,At}t∈I integrable if sup{E|Xt| : t ∈ I} <∞.

(b) If {X2
t ,At}t∈I is integrable, then {Xt,At}t∈I is called square-integrable.

Proposition 1.2 Let φ : (R,B)→ (R,B) have E|φ(Xt)| <∞ for all t ∈ I.
If φ is convex and {Xt,At}t∈I is a mg,

then {φ(Xt),At}t∈I is a submg.
(a)

If φ is convex and ր and {Xt,At}t∈I is a submg,

then {φ(Xt),At}t∈I is a submg.
(b)

Proof. Clearly, φ(Xt) is adapted to At. Let s ≤ t. For the mg case,

E[φ(Xt)|As] ≥ φ(E(Xt|As)) by the conditional Jensen inequality(a)

= φ(Xs) a.s. (since {Xt,At}t∈I is a mg)(b)

For the submg case,

E[φ(Xt)|As] ≥ φ(E(Xt|As)) by the conditional Jensen inequality(c)

≥ φ(Xs) a.s.,(d)

since φ is ր and E(Xt|As) ≥ Xs a.s. 2

Example 1.1 Let {Xt,At}t∈I be a martingale. Then:

{|Xt|r,At}t∈I is a submg, for any r ≥ 1 having E|Xt|r <∞ for all t ∈ I,(5)

{X−
t ,At}t∈I is a submg,(6)

{X+
t ,At}t∈I is a submg (even if {Xt,At}t∈I is only a submg).(7)

[Note that φ(x) = |x|r and φ(x) = x− are convex, while φ(x) = x+ is also ր.] 2

Proposition 1.3 If {Xt,At}t∈I and {Yt,At}t∈I are s-mgs, then (trivially)

{Xt + Yt,At}t∈I is a s-mg.(8)

Exercise 1.1 If {Xc
t ,At}t∈I is a submg for all c in some index set C, then the

maximum {Xc1
t ∨ Xc2

t ,At}t∈I is necessarily a submg for any c1, c2 ∈ C. Likewise,

{supc∈C Xc
t ,At}t∈I is a submg, provided that E|supc∈C Xc

t | <∞ for all t ∈ I.
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Definition 1.3 (Augmented filtration) Let (Ω,A, P ) be a complete probability
space. Let N ≡ {N ∈ A : P (N) = 0}. Let {At : t ≥ 0} be such that the At’s are

an ր sequence of σ-fields with At = Ât = At+ for all t ≥ 0 (here Ât ≡ σ[At,N ]

and At+ ≡ ∩{Ar : r > t}). [That is, they are complete and right continuous.] Such
a collection of σ-fields is called an augmented filtration.

Notation 1.2 (Completeness assumption) In this chapter we will assume
that the σ-fields At form an augmented filtration in that completion has already
been performed on the σ-fields labeled At . Thus, from proposition 12.4.4(c),
we see that S ≤ T a.s. implies AS ⊂ AT . For right-continuous processes on
(D[0,∞),D[0,∞)) this effectively comes for free; see proposition 12.4.4. If {Xt,At}t∈I
is a s-mg, then {Xt, Ât}t∈I is also a s-mg; note exercise 1.2 below. 2

Exercise 1.2 Verify the claim made in the previous assumption.

Exercise 1.3 If X is a process on (D,D) or (D[0,∞),D[0,∞)), then the histories

σt ≡ σ[Xs : s ≤ t] are right continuous, as are the σ̂t ≡ σ[σt ∪N ]. (Recall (12.4.13)
of proposition 12.4.3, proposition 12.4.4, and exercise 1.2.1.)

Remark 1.1 All definitions and results in this section make sense for processes
on the measurable space (RI ,BI). 2

Some Examples

Example 1.2 (Sums of iids) Let X1, X2, . . . be iid with E(Xi) = 0, and let
Sn ≡ X1 + · · · +Xn and An ≡ σ[S1, . . . , Sn]. Then E|Sn| ≤

∑n
i=1E|Xi| < ∞ and

so {Sn,An}∞n=1 is a mg. 2

Example 1.3 As in example 1.2, but now assume that E(X2
k) ≡ σ2 < ∞. Let

Yn ≡ S2
n − nσ2. Then {Yn,An}∞n=1 is a mg. Note also that S2

n is a submg by
proposition 1.2, and that we have written

S2
n = (S2

n − nσ2) + nσ2 = (martingale) + (increasing process).

This is an example of the Doob decomposition of a submartingale, which we will
establish in section 5. 2

Example 1.4 Suppose µ ≡ E(Xi) > 0 in example 1.2. Then the partial sums
{Sn,An}∞n=1 form a submg. 2

Example 1.5 (Wald’s mg) Consider again example 1.2, but now suppose that
theXk’s have a mgf φ(t) = E exp(tX). Let Yn ≡ exp(cSn)/φ(c)

n. Then {Yn,An}∞n=1

is a mg. Note that the mg of example 1.2 is recovered by differentiating once with
respect to c and setting c = 0; the mg of example 1.4 is recovered by differentiating
twice with respect to c and setting c = 0. 2

Example 1.6 (Brownian motion) Let {S(t) : t ≥ 0} be standardized Brownian
motion, and let At ≡ σ[S(s) : s ≤ t]. Then {S(t),At : t ≥ 0} is a mg. 2
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Example 1.7 Let Y (t) ≡ S(t)2 − t in example 1.6. Then the Brownian motion
transform {Y (t),At : t ≥ 0} is a mg. 2

Example 1.8 (The exponential mg for Brownian motion) As in example 1.6, let
S denote standard Brownian motion, and much as in example 1.5, set

Y (t) = exp(c S(t))/ exp(c2t/2) = exp(c S(t) − c2t/2) .
Differentiating once with respect to c and setting c = 0 yields the mg of example 1.6;
differentiating twice with respect to c and setting c = 0 yields the mg that appears in
example 1.7; higher-order derivatives yield mgs based on the Hermite polynomials.
(Recall (12.7.13) and (10.5.15).) 2

Example 1.9 Let X ∈ L1 and An beր σ-fields. Then Yn ≡ E(X |An) is a mg. 2

Example 1.10 (Cumulative hazard Λ(·), and a simple counting process) (a)
Let X have df F on the reals R. Then

Λ(t) ≡
∫
(−∞,t]

[1− F−(r)]
−1 dF (r) for all t ∈ R(9)

is called the cumulative hazard function. Note that

0 ≤ Λ(t) <∞ for all t < τo ≡ F−1(1), while ∆Λ(τo) =
∆F (τo)

1−F−(τo)
<∞.(10)

Moreover, Λ is a generalized df on R that assign measure Λ(a, b] to (a, b] whenever
−∞ ≤ a < b < τo, that assign measure ∆Λ(τo) to {τo}, and that assigns measure

0 to any (a, b] for which τo ≤ a < b ≤ ∞. It is common that Λ(t) ր ∞ as t ր τo.
This holds when X ∼= Uniform(0, 1), and for all dfs for which F−(F−1(t)) = t in

some neighborhood with right endpoint τo. Still, note that when X ∼= Bernoulli(p)
with 0 < p < 1, then Λ(t) = (1 − p) 1[0,∞)(t) + 1[1,∞)(t). Roughly, 1 − F−(t) is

the probability that Y still “lives” just prior to time t. Given this, dF (t) is the
“instantaneous probability” of a failure at time t. Thus dΛ(t) = dF (t)/[1− F−(t)]
represents the instantaneous hazard at time t.

(b) Define the counting process

Nt ≡ N(t) ≡ 1[X≤t] and let At ≡ σ[N(r) : r ≤ t], for all t ∈ R.(11)

Note that N is an ր and right-continuous process on R that is adapted to the
history σ-fields At, and hence is a submg.

(c) The class Cs ≡ {[X > r] : −∞ ≤ r ≤ s} is a π̄-system that generates As. So any

two finite measures that agree on Cs also agree on As by the Dynkin π-λ theorem.

(d) We start with a bit of practice. The reader is to show in exercise 1.4 below that

E {Nt | As} =a.s. 1[X≤s] + 1[X>s]
F (s,t]
1−F (s) for all −∞ < s < t <∞(12)

(where 0
0 is interpreted as 0 and F (s, t] ≡ F (t) − F (s)) by verifying that for every

set A in the π̄-system Cs the relationship
∫
A(Nt −E {Nt | As}) dP = 0 holds for the

candidate for E {Nt | As} that is specified in (12). In like fashion verify that

E {1[X≥u] | As} =a.s. 1[X>s] 1−F−(u)
1−F (s) for all −∞ < s < u ≤ t <∞.(13)
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(e) Next, the process

M t ≡M(t) ≡ N(t)−
∫
(−∞,t]

1[X≥r] dΛ(r) ≡ N(t)− A(t) is a mg on R(14)

adapted to the At’s. Note first that for all t ∈ R,
E|M t| ≤ E|Nt|+

∫ t
−∞ E1[X≥r] dΛ(r) ≤ F (t) +

∫ t
−∞

1−F−

1−F−
dF ≤ 2F (t) ≤ 2.(15)

Then verify that
∫
A
(Nt − Ns) dP is equal to

∫
A
(At − As) dP for all sets A ∈ Cs.

Statement (12) gives the so called “Doob–Meyer decomposition” of the submg N
into the mgM and theր process A. The motivation for the definition of A is found
in (13.5.3) and (13.8.3). 2

Example 1.11 (Another counting process) Suppose that the rvs ξ1, ξ2, . . . are
iid Uniform(0, 1), and let Nn(t) ≡ nGn(t) ≡ (the number of ξi’s ≤ t). Then Nn is a
counting process, since it is ր, and it increases only by jumps upward of size +1.
Hence it is a submartingale. The reader will be asked to show (giving another
Doob–Meyer decomposition) that the uniform empirical process Un satisfies

Mn(t) ≡ Nn(t)−
∫ t
0 {n[1−Gn−(r)]/(1 − r)} dr

=
√
n {Un(t) +

∫ t
0
[Un−(r)/(1 − r)] dr} is a martingale.

(16)

The covariance function of this process is s ∧ t− st for all 0 ≤ s, t ≤ 1. 2

Example 1.12 (Poisson process) Suppose N(t) is a Poisson process with rate
λ > 0. It is a counting process and hence a submartingale. Moreover, the process
M(t) ≡ N(t)−λt is a martingale, and the processM2(t)−λt is also a martingale. 2

Example 1.13 (Likelihood ratios) Let (Ω,A, P ) and (Ω,A, Q) be probability
spaces for Q and P . Suppose that An is an ր sequence of sub σ-fields of A.
Suppose Qn and Pn denote the measures Q and P , respectively, restricted to An,
and suppose that Qn ≪ Pn. Let Xn ≡ dQn/dPn. Then for A ∈ Am and n > m

we have
∫
A
Xn dP = Qn(A) = Qm(A) =

∫
A
Xm dP , so that

∫
A
(Xn−Xm) dP = 0.

This shows that

{Xn,An}∞n=1 is a mg of likelihood ratios. 2(17)

Example 1.14 (Kakutani’s mg) Let X1, X2, . . . be independent rvs with each
Xk ≥ 0 and EXk = 1. Let Mn ≡

∏n
1 Xk, for 1 ≤ k ≤ n, with M0 ≡ 1. Then Mn is

a mg with all EMn = 1. 2

Exercise 1.4 Verify the claims made in example 1.10.

Exercise 1.5 Verify the claims made in example 1.11.

Exercise 1.6 Find the exponential martingale that corresponds to the mg M(t)
in example 1.12. Then differentiate this twice with respect to c, set c = 0 each time,
and obtain the two mgs given in the example.
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2 Simple Optional Sampling Theorem
The following proposition gives a particularly simple special case of the optional
sampling theorem. (What are the implications for gambling?)

Proposition 2.1 (Optional sampling) If {Xn,An}∞n=0 is a s-mg and stopping

times S and T (relative to these An’s) satisfy 0 ≤ S ≤ T ≤ N a.s. for some fixed
integer N , then

E(XT |AS) >= XS a.s. (so E(XT ) ≥ E(XT ) ).(1)

Thus (X0,A0), (XS ,AS), (XT ,AT ), (XN ,AN ) is a s-mg.

Proof. Case 1: 0 ≤ T − S ≤ 1. Let A ∈ AS . Then
∫
A{E(XT | As)−XS} dP =

∫
A(XT −XS) dP

=
∫
A∩[T=S+1] (XT −XS) dP =

∑N
i=0

∫
A∩[T=S+1]∩[S=i](XT −XS) dP

=
∑N

i=0

∫
A∩[S=i]∩[T=i+1]

(Xi+1 −Xi) dP(a)

=
∑N

i=0

∫
Ai

(Xi+1 −Xi) dP where Ai ≡ A ∩ [S = i] ∩ [T = i + 1]

>
= 0(b)

by (13.1.4), provided that we show that Ai ∈ Ai. We have

A ∩ [S = i] ∩ [T = i+ 1] = (A ∩ [S ≤ i]) ∩ ([S = i] ∩ [T ≤ i]c)(c)

= (an event in Ai) ∩ (an event in Ai) ∈ Ai .(d)

Thus (b) holds, and case 1 is completed.

Case 2: 0 ≤ S ≤ T ≤ N a.s. Define the stopping times

Rk ≡ T ∧ (S + k) for k = 0, 1, . . . , N ;(e)

recall that sums and minima of such stopping times are stopping times, as in
eexercise 8.7.1. Note that

0 ≤ S = R0 ≤ · · · ≤ Ri ≤ Ri+1 ≤ · · · ≤ RN = T ≤ N holds a.s.,(f)

where 0 ≤ Ri+1 −Ri ≤ 1 for all i. Thus,

E(XT |AS) = E(XRN |AR0) = E(E(XRN |ARN−1)|AR0 )(g)

>
= E(XRN−1 |AR0) by case 1, and stepwise smoothing

>
= · · · >= E(XR0 |AR0) = XR0

= XS . 2(h)
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3 The Submartingale Convergence Theorem
Theorem 3.1 (S-mg convergence theorem) Let {Xn,An}∞n=0 be a s-mg.

(A) Suppose EX+
n րM <∞ (i.e., the X+

n –submg is integrable). Then

Xn → X∞ a.s. for some X∞ ∈ L1.(1)

(B) For uniformly integrable Xn’s, this X∞ closes the s-mg in that

{Xn,An}∞n=0 is a s-mg with EXn ր EX∞, and with A∞ ≡ σ[∪∞n=1An].(2)

In fact, supposing {Xn,An}∞n=0 is a submg, the conclusions (aa), (bb), and (ee) of

part (C) below are equivalent. If all Xn ≥ 0, then (cc) and (dd) are also equivalent.

(Closing the s-mg means that
∫
A
Xn dP

<
=
∫
A
X∞ dP for all A ∈ An and all n,

with the terminal rv X∞ ∈ L1.)
(C) If the {Xn,An}∞n=0 of (A) is actually a mg, then the following are equivalent.

(aa) Xn’s are uniformly integrable. (bb) Xn →L1 X∞.

(cc) Some rv Y closes the mg. (dd) X∞ closes the mg.

(ee) Xn’s are integrable and limn E|Xn| ≤ E|X∞| <∞.

(3)

(D) In all the above, if {Xt,At}t∈[0,∞) is a process on (D[0,∞),D[0,∞)), then

n,Xn,An, {0, 1, . . .} may be replaced by t,Xt,At, [0,∞).(4)

[Closing an X-martingale on [0,∞) by X∞ is the same as closing an X-martingale
on [0, θ) by the limiting rv Xθ.]

Notation 3.1 If a sequence does not converge to an extended real value, then
it must necessarily be oscillating. If it does so oscillate, then some interval must be
“upcrossed” infinitely often. We seek to take advantage of this. Let X1, X2, . . . be
a sequence of rvs. Let a < b. Then:

U
(n)
[a,b](ω) ≡ (the number of upcrossings of [a, b] in the first n steps)

≡
[

number of integer pairs (i, j) with 0 ≤ i < j ≤ n having
Xi(ω) ≤ a, a < Xk(ω) < b for i < k < j, and Xj(ω) ≥ b

]
,(5)

U
(∞)
[a,b](ω) ≡ lim

n→∞
U

(n)
[a,b](ω) . 2(6)

Inequality 3.1 (Upcrossing inequality; Doob) If {Xk,Ak}nk=0 is a submg, then

EU
(n)
[a,b] ≤

1

b− a {E(Xn − a)+ − E(X0 − a)+} ≤
1

b− a {EX
+
n + |a|}.(7)

If {Xn,An}∞n=0 is a submg, then

EU
(∞)
[a,b] ≤

1

b− a {E(X∞ − a)+ − E(X0 − a)+} ≤
1

b− a {EX
+
∞ + |a|}.(8)
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Proof. The number of upcrossings of [a, b] made by Xk and the number of
upcrossings of [0, b− a] made by (Xk − a)+ are identical; since (Xk − a)+ is also a
submg, we may assume that Xk ≥ 0 and a = 0 in this proof. Define

T0 ≡ 0, T1 ≡ min{n ≥ 0 : Xn = 0}, T2 ≡ min{n > T1 : Xn ≥ b},
T3 ≡ min{n > T2 : Xn = 0}, . . . , Tn+2 ≡ n ;

(a)

here we use the convention that min ∅ ≡ n. Clearly, these are stopping times that
do satisfy 0 = T0 ≤ T1 ≤ · · · ≤ Tn+2 = n. Thus proposition 13.2.1 shows that the

process {XTi ,ATi}n+2
i=0 is a submg. Now,

Xn −X0 =
∑n+2

i=1 (XTi −XTi−1)

=
∑

i odd (same) +
∑

i even (same) ≡ I1 + I2 ,(b)

and since XTi is a submg, we have

EI1 ≥ 0 and EI2 ≥ 0.(c)

Now suppose that U
(n)
[0,b](ω) = k ; then

I2(ω) = [XT2(ω)(ω)−XT1(ω)(ω)] + · · ·+ [XT2k(ω)(ω)−XT2k−1(ω)(ω)] + · · ·

≥ [b] + · · ·+ [b] + 0 = b U
(n)
[0,b](ω).(d)

Thus (recall (2.1.3))

E(Xn −X0) = EI1 + EI2 ≥ EI2 ≥ bEU (n)
[0,b],(e)

and this is (7) in disguise (since Xk really denotes (Xk − a)+). Finally, note the

positive part inequality (Xn − a)+ ≤ X+
n + |a|.

Now, 0 ≤ U (n)
[a,b] ր U

(∞)
[a,b] . Thus,

EU
(∞)
[a,b] = limEU

(n)
[a,b] by the MCT(f)

≤ lim 1
b−a {E(Xn − a)+ − E(X0 − a)+} by (7)(g)

≤ 1
b−a {E(X∞ − a)+ − E(X0 − a)+} ,(h)

since E(Xn− a)+≤E(X∞− a)+ follows from{(Xn− a)+,An}∞n=0 being a submg. 2

Proof. (Proof of theorem 3.1) Now,

[ω : limXn(ω) exists as a number in [−∞,∞] ]c = [ limXn < limXn ]

=
⋃

{r<s rational} [ limXn < r < s < limXn] ≡
⋃

{r<s rational}Ars.(a)
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It suffices to prove that P (Ars) = 0 for all r, s. Now,

Ars ⊂ Brs ≡ [ω : U
(∞)
[r,s] =∞].(b)

It thus suffices to show that P (Brs) = 0 for all r, s. But

EU
(∞)
[r,s] = E limU

(n)
[r,s] = limEU

(n)
[r,s] by the MCT(c)

≤ lim 1
s−r {EX+

n + |r|} by (7)(d)

≤ (M + |r| )/(s− r) <∞, since the X+
n ’s are integrable;(e)

hence we must have P (Brs) = 0. Thus X∞ ≡ limXn exists a.s. with values in
[−∞,∞], and X∞ is A∞-measurable, since all Xn’s are. Now (recall (2.1.3)),

E|Xn| = 2EX+
n − EXn ≤ 2EX+

n − EX0 ≤M <∞.(f)

Thus Fatou’s lemma implies

E|X∞| = E(lim |Xn|) ≤ limE|Xn| ≤M <∞;(g)

thus X∞ ∈ L1 with its values in (−∞,∞) a.s. Thus (A) holds.

Consider (B). NowXn → (some X∞) a.s. by (A) under any of (aa), (bb), or (ee).
Vitali shows that (aa) is equivalent to (ee) and the L1-convergence of (bb) with the
rv X∞. (If Xn →L1 Y in (bb), then this Y must equal X∞ a.s. by going to
subsequences.) Thus for n ≥ m, we have from (13.1.4) and L1-convergence that

∫
AXm dP

<
=
∫
AXn dP →

∫
AX∞ dP for all A ∈ A∞.(h)

Thus {Xn,An}∞n=0 is a s-mg by condition (13.1.4). That is, X∞ closes the s-mg
(and thus (B) holds, except for the equivalence of (cc) and (dd)).

Consider (C). For (aa)–(ee), we lack only that (cc) implies (aa). For a mg
with Xn (or for submg with Xn ≥ 0), the |Xn| form a submg. Thus

E { |Xn| × 1[|Xn|≥λ] } ≤ E { |Y | × 1[|Xn|≥λ] } since |Y | closes the submg(i)

→ 0 by absolute continuity of the integral,(j)

and since the sets satisfy

P (|Xn| ≥ λ) ≤ E|Xn|/λ ≤ E|Y |/λ→ 0 uniformly in n as λ→∞.(k)

This completes the entire proof in the case of discrete time.

Consider (D). (Continuous time) Our preliminaries will not assume the s-mg

structure. Now, limXt(ω) could be +∞ for some ω’s, and this will cause difficulties
with the present approach. Thus (following Doob) define

Yt(ω) = (2/π) tan−1(Xt(ω))(l)

to transform the range space from [−∞,∞] to [−1, 1]. For each m choose rational
numbers tm1, . . . , tmkm

in [m,∞) so that (remember, X : (Ω,A, P )→ (D,D) )

P (supt∈[m,∞) Yt − suptmj∈[m,∞) Ytmj >
1
m ) < 1

2m .(m)
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This is possible, since the sup over all rationals r in [m,∞) equals the sup over all
reals t in [m,∞), and the rationals are the limit of {r1, . . . , rk} for any ordering
{r1, r2, . . .} of the rationals; thus,

0 = P (supt∈[m,∞) Yt − suprj∈[m,∞) Yrj >
1
m )

= limk→∞ P (supt∈[m,∞) Yt − suprj∈[m,∞);j≤k Yrj >
1
m ) .

(n)

We may assume that the tmj’s were chosen so as to simultaneously satisfy

P (inft∈[m,∞)Yt − inftmj∈[m,∞)Ytmj < − 1
m ) < 1

2m .(o)

Thus, if we

let t1 < t2 < · · · denote an ordering of ∪∞m=1 { tm1, . . . , tmkm }(p)

(which does exist, since all tmj ≥ m), then

P (supt∈[m,∞) Yt − supti∈[m,∞) Yti >
1
m ) < 1

2m and

P (inft∈[m,∞) Yt − infti∈[m,∞) Yti < − 1
m ) < 1

2m .
(q)

Letting Am and Bm denote the events in (q) we see that
∑∞

1 P (Am ∪Bm) ≤∑∞
1 2/2m <∞ ,

so that P (Am ∪Bm i.o.) = 0. Thus

lim t→∞Yt = lim i→∞Yti a.s. and lim t→∞Yt = lim i→∞Yti a.s.(r)

Now, transforming back via Xt(ω) = tan((π/2)Yt(ω)), (r) implies the next lemma:

Lemma 3.1 For every X : (Ω,A, P ) → (D[0,∞),D[0,∞) ) there exist rational
numbers t1 < t2 < · · · such that

lim t→∞Xt = lim i→∞Xti a.s. and lim t→∞Xt = lim i→∞Xti a.s.(9)

[Note that ti →∞ in (9) could be replaced by ti ր θ for any finite θ.]

Armed with the (9) “lemma,” it is now easy to use the discrete version of this
theorem to prove the continuous version. We will refer to the continuous versions
of conclusions (1)–(3) as (1′)–(3′). We return to the proof of the theorem. (Now,
we again assume s-mg structure in what follows.)

Let Yi ≡ Xti and Ãi ≡ Ati for the ti’s in (9). Then (Yi, Ãi)∞i=0 is a s-mg to
which the discrete theorems can be applied. Thus,

lim t→∞Xt = lim i→∞Xti a.s. by (9)(s)

= (a.s., some X∞ in L1) by (1) applied to (Yi, Ãi)∞i=1(t)

= lim i→∞Xti by (1)

= lim t→∞Xt by (9),(u)

so that

Xt → X∞ a.s. where X∞ ∈ L1.(v)

That is, (1′) holds. The rest is left to the reader in exercise 3.8. 2
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Exercise 3.1 Complete the proof of the continuous part of theorem 3.1.

Exercise 3.2 Let Yt ≡ E(X |Dt), for X ∈ L1(Ω,A, P ) and for an arbitrary
collection of sub σ-fields Dt. Show that these Yt’s are uniformly integrable.

Exercise 3.3 Let A−∞ ⊂ · · · ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ A∞ be sub σ-fields of

the basic σ-field A. Suppose the rv X ∈ L1(Ω,A, P ). Let Yn ≡ E(X |An). Then
the process (Yn,An)∞n=−∞ is necessarily a uniformly integrable mg.

Exercise 3.4 Let {Xn,An}∞n=0 be a submg for which Xn ≤ 0. Then (1) holds,
and Y ≡ 0 closes the submg.

Exercise 3.5 Let {Xn,An}∞n=0 be a submg. The following are equivalent:
(a): The X+

n ’s are uniformly integrable.

(b): There exists a rv Y that closes the submg.

(c) When these hold, then X∞ (which necessarily exists a.s., and is in L1) closes the
submg. [Hint. Do what you can with X+

n . Then apply it to Y
(a)
n ≡ (Xn ∨ a) + |a|,

and let a→ −∞.]

Exercise 3.6 Let {Xn,An}∞n=0 be a submg with Xn ≥ 0. Let r > 1. Then the
Xr
n’s are uniformly integrable if and only if the Xr

n-process is integrable.

Exercise 3.7 (Martingale Lr-convergence theorem) (i) Let {Xn,An}∞n=0

be a mg sequence. Let r > 1. Then the following are equivalent:

The |Xn|r-process is integrable.(10)

Xn →Lr X∞.(11)

The Xn’s are uniformly integrable

(thus Xn →a.s. (some X∞)) and X∞ ∈ Lr.
(12)

The |Xn|r’s are uniformly integrable.(13)

{|Xn|r,An}∞n=0 is a submg and E|Xn|r ր E|X∞|r <∞.(14)

(∗) M∗ ≡ sup{|Xn| : 0 ≤ n ≤ ∞} ∈ Lr (via Doob’s Lr-inequality).

(ii) This theorem also holds for a submg when all Xn ≥ 0 a.s.

Exercise 3.8 (a) Show that t,Xt,At, [0,∞) may replace n,Xn,An, {0, 1, . . .} in
all of exercise 3.3–exercise 3.7. [Also, [0, θ) may replace [0,∞).]

(b) Prove (D) of theorem 3.2 below.
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Definition 3.1 (Reversed s-mg) LetXn be adapted to An with n ∈ {. . . ,−1, 0},
and define the σ-field A−∞ ≡ ∩0n=−∞An. The process {Xn,An}0n=−∞ is a reversed
s-mg (as defined earlier) if all E|Xn| <∞ and

Xn
<
= E(Xm|An) a.s. for all n ≤ m.(15)

(This is like the second law of thermodynamics run backward in time, since An
brings more stability as nց.)

Theorem 3.2 (Reversed s-mg convergence theorem) Let {Xn,An}0n=−∞
be a s-mg sequence, or a reversed s-mg.
(A) It necessarily holds that

Xn → X−∞ a.s. as n→ −∞
for some X−∞ ∈ [−∞,∞) a.s. that is A−∞-measurable .

(16)

(B)–(C) Furthermore, the following are equivalent (and all yield an X∞ ∈ L1):

EXn ցM > −∞ as n→ −∞. (This is trivial if Xn is a mg.)(17)

Xn’s are uniformly integrable.(18)

Xn →L1 X−∞.(19)

{Xn,An}0n=−∞ is a s-mg, where A−∞ ≡ ∩0n=−∞An.(20)

(D) In all the above, if {Xt,At}t∈(−∞,0] is a process on (D(−∞,0],D(−∞,0]), then

n,Xn,An, {. . . ,− 1, 0} may be replaced by t,Xt,At, (−∞, 0].(21)

Proof. Consider (16). Let U
(n)
[r,s] now denote the upcrossings of [r, s] by the

process X−n, . . . , X−1, X0. Replace line (d) of the proof of theorem 3.1 by

EU
(∞)
[r,s] ≤ 1

s−r (EX
+
0 + |r|) ≤ (some constant) <∞,(a)

and conclude that X−∞ ≡ limXn exists a.s. with values in [−∞,+∞]. Since the
sequence {X+

n ,An}0n=−∞ is necessarily a submg, we obtain from Fatou that

EX+
−∞ = E(limX+

n ) ≤ limEX+
n ≤ limEX+

0 = EX+
0 <∞.(b)

Thus X−∞ takes values in [−∞,+∞) a.s., and is A−∞-measurable. Thus (16) does
hold.
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Suppose that (17) holds. Then (b) and (17) give

E|X−∞| = E[ lim |Xn| ] ≤ limE|Xn| = lim [2 EX+
n − EXn]

≤ 2EX+
0 −M <∞;(c)

thus X−∞ takes values in (−∞,∞) a.s., and X−∞ ∈ L1 (using only Fatou on the
right hand side). Also, from (c),

P (|Xn| ≥ λ) ≤ E|Xn|/λ ≤ [2 EX+
0 −M ]/λ→ 0(d)

uniformly in n ∈ {−∞, . . . ,− 1, 0 } as λ→∞. Thus (an analogous X−
n proof works

only in the case of a mg),

∫
[X+

n ≥λ]X
+
n dP

<
=
∫
[X+

n ≥λ]X
+
0 dP by (13.1.3)(e)

implies that the X+
n ’s are uniformly integrable. Now, for n < m we have

0 ≥ −
∫
[Xn≤−λ]X

−
n dP = E (Xn −Xm) + EXm −

∫
[Xn>−λ]Xn dP

>
= E(Xn −Xm) + EXm −

∫
[Xn>−λ]Xm dP

= E(Xn −Xm) +
∫
[Xn≤−λ]Xm dP

≥ −ǫ +
∫
[Xn≤−λ]Xm dP(f)

for all n ≤ (a fixed m that is large enough), since EXn ցM

≥ −ǫ −
∫
[Xn≤−λ] |Xm| dP

≥ −2 ǫ for λ large enough, as in (d), with m now fixed.(g)

Thus, the X−
n are uniformly integrable. Thus, the Xn are uniformly integrable;

that is, (18) holds.

Then (18) implies (19) by Vitali.

Suppose (19) holds. For any n ≤ m we have from (18.1.4) that

∫
AXm dP

>
=
∫
AXn dP →

∫
AX−∞ dP for all A ∈ A−∞,(h)

since L1-convergence gives
∫
|Xn−X−∞| dP → 0. Thus {Xn,An}0n=−∞ is a s-mg,

so (20) holds.

Note that (20) trivially implies (17).

The extension of this theorem from n to t uses (9) to extend (16), just as in
the case of theorem 3.1. Then the proof that the t versions of (16)–(20) hold adds
nothing new. 2
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Exercise 3.9 (a) Let {Xn,An}0n=−∞ be a mg. If E|X0|r < ∞ for some r ≥ 1,
then necessarily

Xn →Lr X−∞ as n→ −∞.(22)

(b) Let {Xn,An}0n=−∞ be a submg. If Xn ≥ 0 and E|X0|r < ∞ for some r ≥ 1,

then (22) again holds.

Theorem 3.3 Let {An}+∞
n=−∞ be ր sub σ-fields of A. Suppose that the rv X

is integrable, in that X ∈ L1(Ω,A, P ). Then the following hold.

E(X |An)→a.s. and L1
E(X |A∞) as n→∞.(23)

E(X |An)→a.s. and L1
E(X |A−∞) as n→ −∞.(24)

Proof. Now,

{Yn,An}∞n=−∞ is a mg for Yn ≡ E(X |An),(25)

since E(Ym|An) = E{E(X |Am)|An} = E(X |An) = Yn for n ≤ m. Moreover,

these Yn = E(X |An) are uniformly integrable,(26)

since the tails yield (since [±Yn ≥ λ] ∈ An)
0 ≤

∫
[±Yn≥λ] ± Yn dP =

∫
[±Yn≥λ] ± E(X |An) dP(a)

=
∫
[±Yn≥λ] ±X dP ≤

∫
[ |Yn|≥λ] |X | dP(b)

→ 0 as λ→∞ , by absolute continuity of the integral,(c)

using P (|Yn| ≥ λ) ≤ E|Yn|/λ = E|E(X |An)|/λ ≤ E|X |/λ→ 0 as λ→∞. Thus

Y±∞ ≡ limn→±∞ Yn exists a.s., and

{Yn,An}+∞
n=−∞ is a mg, and Yn →L1 Y±∞ as n→ ±∞.

(27)

We just applied the s-mg convergence theorem (theorem 3.1) as n → ∞ and the
reversed s-mg convergence theorem (theorem 3.2) as n→ −∞.

We must now show that Y∞ = E(X |A∞). Now, for A ∈ ∪∞n=1An we have
∫
A Y∞ dP =

∫
A Yno dP by (13.1.4), as A is in some Ano(d)

=
∫
A
X dP by definition of E(·|Ano ).(e)

That is,
∫
A Y∞ dP =

∫
A X dP for all A ∈ ∪∞n=1An, where ∪∞n=1An is a field and

a π̄-system that generates A∞; thus equality also holds for all A ∈ A∞, by the
Carathéodory extension theorem. Thus Y∞ = E(X |A∞), by only the zero function.

We must also show that Y−∞ = E(X |A−∞). Now, if A ∈ A−∞, then
∫
A Y−∞ dP =

∫
A Yn dP by (13.1.4), as A is in An(f)

=
∫
A
X dP by definition of E(·|An), since A ∈ An

=
∫
A E(X |A−∞) dP by definition of E(·|A−∞);(g)

and thus Y−∞ = E(X |A−∞). 2
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4 Applications of the S-mg Convergence Theorem
The following examples give just a few selected applications to show the power of
the various s-mg convergence theorems.

Example 4.1 (SLLN) Let X1, X2, . . . be iid µ. Then the partial sum process
Sn ≡ X1 + · · ·+Xn satisfies

X̄n ≡ Sn/n→ µ a.s. and L1 as n→∞.(1)

2

Proof. Let

A−n ≡ σ[Sn, Sn+1, . . .] = σ[Sn, Xn+1, Xn+2, . . .].(a)

Now, Y−n ≡ E(X1|A−n) is a reversed mg on . . . ,−2,−1 and

E(X1|A−n)→ E(X1|A−∞) a.s. and L1(b)

as n→ −∞, by theorem 13.3.3. Now,

E(X1|A−n) = E(X1|Sn, Xn+1, · · ·)

= E(X1|Sn) by (7.4.23)

=
∑n

k=1 E(Xk|Sn)/n by symmetry

= E(Sn|Sn)/n

= Sn/n.(c)

Combining (b) and (c) gives

Sn/n = E(X1|A−n)→ E(X1|A−∞) a.s. and L1 as n→∞.(d)

But lim(Sn/n) is measurable with respect to the symmetric σ-field, and so it is a.s.
a constant by the Hewitt–Savage 0-1 law of exercise 7.2.1; hence E(X1|A−∞) is a.s.
a constant, by (d). But E[E(X |A−∞)] = µ, so that the constant must be µ ; that is
E(X1|A−∞) = µ a.s. Thus (d) implies Sn/n→ µ a.s. and L1. 2

Exercise 4.1 (SLLN for U -statistics) Let Y−n ≡ Un be a U -statistic based

on X1, X2, . . . , with a symmetric kernel H for which EH(X1, X2) is finite. (Thus,
H(x, y) = H(y, x) for all x, y.) Consider the σ-fieldA−n ≡ σ[Xn:n, Xn+1, Xn+2, . . .],

for the vector ~Xn:n of the first n order statistics of the sequence. [Hint. As with
the SLLN above, the proof will again be based of the Hewitt–Savage 0-1 law for the
symmetric σ-field.].
(a) Show that {Yn,An}−2

n=−∞ is a reversed mg.

(b) Use this to show that Un →a.s. and L1
EH(X1, X2).

(c) Extend this to higher-dimensional kernels.
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Example 4.2 (Kolmogorov’s 0-1 law) Suppose that Y1, Y2, . . . are iid rvs and let
An ≡ σ[Y1, . . . , Yn]. Suppose that A ∈ T ≡ (tail σ-field) = ∩∞n=1 σ[Yn+1, Yn+2, . . .].
Since An is independent of T ,

P (A) =a.s. P (A|An) = E(1A|An) for every n.

But by theorem 13.3.3 we have

E(1A|An)→a.s. E(1A|A∞) =a.s. 1A .

Thus P (A) must equal 0 or 1 (as P (A) =a.s. 1A implies). 2

Example 4.3 (Approximation of L1 and L2 functions) Fix the function

f ∈ L1([0, 1],B,Lebesgue); thus
∫ 1

0
|f(u)| du <∞. Let

An ≡ σ[((i − 1)/2n, i/2n] : i = 1, . . . , 2n} ր B[0, 1] .

Define X ≡ f(ξ), where ξ ∼= Uniform(0, 1). Now let

Xn ≡ E(X |An) = E(f(ξ)|An) =
∑2n

k=1 Cnk(f) 1[(k−1)/2n<ξ≤k/2n] ,

with Cnk(f) ≡ 2n
∫ k/2n
(k−1)/2n

f(u) du. Since E|X | <∞, theorem 13.3.3 gives

Xn → E(X |A∞) = E(X |B) = X a.s. and L1 .

Summary Let f ∈ L1 and define the step function f sn(·) by

f sn(t) ≡ 2n
∫ k/2n

(k−1)/2n
f(u) du for (k−1)

2n < t ≤ k
2n and 1 ≤ k ≤ 2n .(2)

Then for every f ∈ L1,

f sn(·)→ f(·) a.s. Lebesgue and
∫ 1

0 |f sn(t)− f(t)| dt→ 0 .(3)

Now suppose that f ∈ L2. Then f ∈ L1 also, and so (3) still holds; and this implies
(13.3.12). Thus (the equivalent) (13.3.11) gives

f sn →L2 f for every f ∈ L2 .(4)

[So in both cases f sn(·) can be thought of as approximating the derivative of the
indefinite integral F (x) ≡

∫ x
0
f(t) dt.] 2

Example 4.4 (Kakutani’s mg) Let X1, X2, . . . be independent with each Xk ≥ 0
and EXk = 1. Define

Mn ≡
∏n

1 Xk, for 1 ≤ k ≤ n,(5)

with M0 ≡ 1. Then {Mn,An}∞1 is a mg for which all EMn = 1, where An is an
appropriate ր sequence of σ-fields (such as the histories). Since Mn is bounded in
the space L1, the sm-g convergence theorem of (13.3.1) shows that

Mn →a.s. M∞ ∈ L1 is always true,(6)
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for the appropriate rv M∞. We now show that the following are equivalent:

c∞ ≡ EM∞ = 1,(7)

Mn’s are uniformly integrable,(8)

Mn →L1 M∞ ,(9)

∏∞
1 an > 0, where an ≡ E(X1/2

n ) ≤ 1,(10)

∑∞
1 (1− an) <∞, where an ≡ E(X1/2

n ) ≤ 1.(11)

Whenever one (hence all) of these equivalent statements fails, then necessarily

P (M∞ = 0) = 1 and c∞ = 0. 2(12)

Proof. Because of (6), equivalence of (7)–(9) follows from Vitali’s theorem
(or from the submartingale convergence theorem). Equivalence of (10) and (11)
is called for in the easy exercise 4.2 below. We first show that (10) implies (8).
Suppose (10) holds. Define the normalized product

Nn ≡
∏n

1 X
1/2
k /

∏n
1 ak , with all ENn = 1 and with

E(N2
n) = 1/(

∏n
1 ak)

2 ≤ 1/(
∏∞

1 ak)
2 <∞ for all n.

(13)

Thus {Nn,An}∞1 is a mean-1 mg that is bounded in L2. Since all
∏n

1 ak ≤ 1,
Doob’s L2-inequality (inequality 8.10.5) and the MCT give

E(supnMn) = lim
n

E( sup1≤k≤nMk) by the MCT(a)

≤ lim
n

E( sup1≤k≤nN
2
k )× 1(b)

≤ ( 2
2−1 )

2 E(N2
n) <∞ by Doob’s Lr-inequality.(c)

Thus M∗ ≡ supnMn is a rv in L1 for which 0 ≤ Mn ≤ M∗. Hence the rvs
{Mn : 1 ≤ n ≤ ∞} are uniformly integrable. That is, (8) holds.

We next show that when (10) fails (that is, when
∏∞

1 an = 0), then (7) fails (and
that, in fact, (12) holds). Now (13) notes that the Nn all have mean 1, and hence
they form an integrable mg. Thus Nn →a.s. (some N∞) ∈ L1 by the submartingale
convergence theorem. Hence,

M1/2
n = (

∏n
1 ak)Nn → 0 a.s.,(d)

impling that M∞ = 0 a.s. and thus that c∞ = 0. This contradicts (7), and implies
the truth of (12). 2

Exercise 4.2 Show the equivalence of (10) and (11). (Recall lemma 8.1.4.)

Exercise 4.3 (Borel–Cantelli) Let An be an ր sequence of σ-fields in A. Show

that [An i.o.] = [ω :
∑∞

n=1 P (An|An−1) =∞] a.s.
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A Branching Process Model

Example 4.5 (Branching Processes) Let X denote the number of offspring of a
particular type of individual, and let pk ≡ P (X = k) for k = 0, 1, . . . . We start at
generation zero with a single individual Z0 = 1, and it produces the individuals in
a first generation of size Z1. These in turn produce a second generation of size Z2,
and so forth. Thus,

Zn+1 ≡
Zn∑

j=1

Xnj for n ≥ 0, with Z0 ≡ 1,(14)

where Xnj denotes the number of offspring of the jth individual present in the nth
generation. We assume that all Xnj ’s are iid as the X above. Also, we suppose

m ≡ EX =
∑∞

k=0 k pk <∞, with p0 > 0, and p0 + p1 < 1.(15)

We call this a simple branching process model. Let

Wn ≡ Zn/mn and An ≡ σ[W1, . . . ,Wn].(16)

Proposition 4.1 The process

{Wn,An}∞n=0 is a mg with mean EWn = 1 ,(17)

and

Var[Wn] =

{
nσ2 if m = 1,

σ2 1−m−n

m(m−1) if m 6= 1,
(18)

provided that σ2 ≡ Var[X ] <∞.

Proof. We note that

EZn+1 = E[E(Zn+1|Zn)] =
∑∞
k=0 E(Zn+1|Zn = k)P (Zn = k)(a)

=
∑∞

k=0 E(
∑k

j=1Xnj)P (Zn = k) =
∑∞

k=0mk P (Zn = k)

= mE(Zn) = · · · = mn+1,(b)

while the mg property follows from

E(Wn+1|An) = m−(n+1) E(Zn+1|Zn) = m−(n+1)mZn =Wn.(c)

We leave (18) to the following exercise. 2

Exercise 4.4 Verify the variance formula (18). Verify (20) below.

Notation 4.1 We define the generating functions f and fn of X and Zn by

f(s) ≡∑∞
k=0 s

k pk and fn(s) ≡
∑∞
k=0 s

k P (Zn = k).(19)

It is easy to verify that

fn+1(s) = fn(f(s)) = f(fn(s)) for |s| ≤ 1. 2(20)
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Theorem 4.1 (Branching process) (i) Suppose that m = EX > 1 and also
σ2 ≡ Var[X ] <∞. Then

Wn →a.s. and L2 W∞ ∼= (1, σ2/[m(m− 1)]),(21)

where (W∞,A∞) closes the mg. Also,

P (W∞ = 0) = (the probability of ultimate extinction) = π,(22)

where

π ∈ (0, 1) is the unique solution of f(π) = π.(23)

Moreover, the chf φ of W∞ is characterized as the unique solution of

φ(mt) = f(φ(t)) for t ∈ R subject φ(0) = 1 and φ′(0) = im.(24)

(ii) If m ≤ 1, then Wn →a.s. 0 as n→∞.

Proof. (i) Now, EW 2
n ≤ 1+σ2/[m(m−1)] for all n, so that the mg {Wn,An}∞n=1

is square-integrable. Thus the mg Lr convergence of exercise 13.3.7 gives (21).

We let π∗ ≡ P (W∞ = 0). Then

π∗ =
∑∞

k=0 P (W∞ = 0|Z1 = k)P (Z1 = k) =
∑∞

k=0 P (W∞ = 0)k pk(a)

=
∑∞

k=0 π
∗k pk = f(π∗).(b)

Now, f(0) = p0 > 0, f(1) = 1, f ′(1−) = m > 1, and f ′(s) is ր in s for 0 < s < 1;
draw a figure. Thus f(π) = π has a unique solution in (0, 1). The solution π = 1 is
ruled out by Var[W∞] > 0, since π = 1 would imply W∞ ≡ 0. (Note that (22) also
follows from (20).)

We now turn to (24). Now,

φn+1(t) ≡ E eitWn+1 =
∑∞
j=0 E(exp(itZn+1/m

n+1)|Z1 = j)P (Z1 = j)(c)

=
∑∞

j=0 φn(t/m)j pj

= f(φn(t/m)).(d)

Since Wn →a.s. W∞ implies Wn →d W∞, we have φn → φ on R. Applying this to
the identity (b) gives

φ(t) = limφn+1(t) = lim f(φn(t/m))

= f(limφn(t/m)) since f is continuous on |r| ≤ 1

= f(φ(t/m)).(e)

Suppose now that ψ is any chf that satisfies ψ(t) = f(ψ(t/m)). Then

γ(t) ≡ [ψ(t)− φ(t)]/t = [(ψ(t)− 1)− (φ(t) − 1)]/t

→ ψ′(0)− φ′(0) if ψ(0) = 1 and ψ′(0) exists

= 0 if ψ′(0) = im(f)



368 CHAPTER 13. MARTINGALES

as t→ 0. Also,

|tm| × |γ(tm)| = |ψ(tm)− φ(tm)| = |f(ψ(t))− f(φ(t))|

≤ |f ′(t∗)| × |ψ(t)− φ(t)| for t∗ ∈ (0, 1) by the mean value theorem

≤ m |ψ(t)− φ(t)|

= |tm| × |γ(t)|,(g)

and iterating (e) gives

|γ(t)| ≤ |γ(t/m)| ≤ · · · ≤ |γ(t/mn)| → 0,(h)

so that γ(t) = 0 for all t 6= 0. Trivially, γ(t) = 0 for t = 0. Thus, (24) holds.

(ii) Set s = 0 in (20) to get P (Zn+1 = 0) = f(P (Zn = 0)), here P (Zn = 0) is

necessarily ր. Passing to the limit gives π = limP (Zn = 0) = f(π). But if m ≤ 1,
then π = 1 is the only solution of π = f(π). 2



5. DECOMPOSITION OF A SUBMARTINGALE SEQUENCE 369

5 Decomposition of a Submartingale Sequence
Definition 5.1 (Predictable process) A predictable process {An,An}∞n=0 is
one in which each An is An−1-measurable for each n ≥ 0; here A0 is a constant
(or A0 is {∅,Ω}-measurable). [Especially interesting are processes that are both ր
and predictable, since any submg can be decomposed as the sum of a mg and such
a predictable process.]

Theorem 5.1 (Decomposition of a submg) Let {Xn,An}∞n=0 be a submg.
Then Xn can be decomposed as

Xn = Yn +An = [a mg] + [ an ր and predictable process],(1)

where {Yn,An}∞n=0 is a 0-mean mg and An is a predictable process satisfying

A0 ≡ EX0 ≤ A1 ≤ · · · ≤ An ≤ · · · a.s.(2)

This decomposition is a.s. unique. Conversely, if Xn = Yn + An as above, then
{Xn,An}∞n=0 is a submg. [Call An the compensator.]

Proof. (Doob) Suppose that {Xn,An}∞n=0 is a submg. Let A0 ≡ EX0, and for
n ≥ 1 define (the compensator candidate)

An ≡
n∑

i=1

[E(Xk|Ak−1)−Xk−1] + EX0 =

n∑

i=1

E(∆Xk | Ak−1) + EX0,(3)

with ∆Xk ≡ Xk − Xk−1. Clearly, An is an ր process and each of the An is
An−1-measurable. So, it remains only to show that Yn ≡ Xn −An is a mg. Now,

E(Yn|An−1) = E(Xn|An−1)− E(An|An−1) = E(Xn|An−1)−An
= E(Xn|An−1)− [E(Xn|An−1)−Xn−1]−An−1(a)

= Xn−1 −An−1 = Yn−1,(b)

so {Yn,An}∞n=0 is indeed a mg. Consider the uniqueness. Suppose Xn = Yn + An
is one such decomposition that works. Elementary computations give

E(Xn|An−1) = E(Yn|An−1) +An = Yn−1 +An a.s.;(c)

but the specification of the decomposition also states that

Xn−1 = Yn−1 +An−1 a.s.(d)

Subtracting (d) from (c) gives uniqueness via

An −An−1 = E(Xn|An−1)−Xn−1 a.s.(e)

The converse holds, since

E(Yn +An|An−1) = Yn−1 +An ≥ Yn−1 +An−1 a.s., for n ≥ 1(f)

as required. 2



370 CHAPTER 13. MARTINGALES

Exercise 5.1 If the X-process is integrable, then the A-process is uniformly
integrable (in either theorem 5.1 above or theorem 5.2 below).

Theorem 5.2 (Decomposition of a reversed submg) Let {Xn,An}0n=−∞ be

a submg such that E(Xn) ց M > −∞ as n ց −∞ (thus, the Xn-process is

uniformly integrable with Xn → (some X−∞) a.s. and L1 where EX−∞ = M).

Then Xn can be decomposed as

Xn = Yn +An = [a mg] + [an ր and predictable process that is ≥ 0],(4)

where {Yn,An}0n=−∞ is a mean-M mg and An is an An−1-measurable function with

0 = A−∞ ≡ lim
n→−∞

An ≤ · · · ≤ An ≤ · · · ≤ A0 a.s.(5)

This decomposition is a.s. unique. Conversely, if Xn = Yn + An as above, then

{Xn,An}0n=−∞ is a submg. [Call An the compensator.]

Proof. (Doob) We define

An ≡
n∑

k=−∞
[E(Xk|Ak−1)−Xk−1] for n ≤ 0;(6)

then An is clearly ≥ 0, ր, and An−1-measurable, provided that it can be shown to

be well-defined (that is, provided the sum converges a.s.). Now, with n ≤ m,

E(Am −An) =
∑m

n+1 E(Xk −Xk−1) = EXn − EXm ≤ EX0 − EXm(a)

≤ (EX0 −M) <∞,(b)

by hypothesis. Also,

Ãm ≡ lim
n→−∞

(Am −An) = lim
n→−∞

∑m
n+1 [E(Xk|Ak−1)−Xk−1](c)

is ≥ 0 and ր, so that the MCT gives

EÃm = lim
n→−∞

E(Am −An) = EXm − lim
n→−∞

EXn = EXm −M <∞(d)

with a well-defined finite limit. Since Ãm ≥ 0 and EÃm <∞, we know that Ãm is

finite a.s.; so (6) is well-defined The Ãm’s are ր and bounded below by 0. Thus

A−∞ ≡ limm→−∞ Ãm exists a.s., and it is ≥ 0. Moreover, the equalities in (d)

show that EÃm → 0 as m→ −∞; just use the MCT via

EA−∞ = lim
m→−∞

EÃm = lim
m

EXm −M =M −M = 0.(e)

Thus A−∞ = 0 a.s., and each Ãm = Am a.s.

Let Yn ≡ Xn−An. Lines (a)–(f) of the previous proof complete this proof, using

(13.3.20) about mgs for the existence of Y−∞. 2
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Example 5.1 (Predictable variation, or conditional variance of a mg) Let
{Xn,An}∞n=0 be a mg with each EX2

n < ∞. Then {X2
n,An}∞n=0 is a submg by

proposition 13.1.2. By theorem 5.1, there is a decomposition for which

Zn ≡ X2
n −An is a 0-mean mg adapted to the An’s for n ≥ 0.(7)

Here An is the predictable process (with A0 ≡ EX2
0 ≥ 0) defined by

An ≡
∑n

k=1 {E(X2
k |Ak−1)−X2

k−1}+ EX2
0

=
∑n

k=1 E{X2
k −X2

k−1|Ak−1}+ EX2
0(8)

=
∑n

i=1 E{(∆Xk)
2|Ak−1}+ EX2

0 , for n ≥ 1,(9)

where ∆Xk ≡ Xk −Xk−1 and ∆X0 = X0. The compensator term An (of the X2
n-

process) given in (9) is called the conditional variance or the predictable variation
of the Xn-process. Note that (for 〈X〉n ≡ An),

EX2
n = E〈X〉n = EAn =

∑n
k=1 Var[∆Xk] + EX2

0 ,(10)

since we agree to also use the notation 〈X〉n to denote the predictable variation
process An that corresponds to the mg {Xn,An}∞n=0.

Summary For any mg {Xn,An}∞n=0 having all EX2
n finite,

〈X〉n ≡ An =

n∑

k=1

E{(∆Xk)
2|Ak−1}+ EX2

0(11)

is always the predictable variation (or conditional variance, or compensator), and
the conditionally centered process

Zn ≡ X2
n− 〈X〉n is a 0-mean mg with respect to the An’s, for n ≥ 0.2(12)

Martingale Transforms

Definition 5.2 (H-transforms) Let {Hn}∞n=0 be a predictable process with

respect to the filtration {An}∞n=0. [Think of Hn being the amount a gambler will
wager at stage n, based only on complete knowledge of the outcomes of the game
up through time n−1 (but not, of course, through time n).] For some other process

{Xn}∞n=0, define the H-transform of X (to be denoted by {(H ·X)n}∞n=0 ) by

(H ·X)n ≡
n∑

k=1

Hk (Xk −Xk−1) +H0X0 =

n∑

k=0

Hk∆Xk .(13)

(We agree that ∆X0 ≡ X0, and that H0 is a constant.)

Theorem 5.3 (S-mg transforms) (i) Let {Xn,An}∞n=0 be a s-mg (or supermg).

If {Hn}∞n=0 is predictable with each Hn ≥ 0 and bounded, then {(H ·X)n,An}∞n=0

is a s-mg (or supermg). (The supermartingale case shows that there is no system
for beating the house in an unfavorable game.)

(ii) If {Xn,An}∞n=0 is a mg and {Hn}∞n=0 is predictable and bounded, then the

process {(H ·X)n,An}∞n=0 is a mg with mean H0 EX0.
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Proof. We compute

E[(H ·X)n+1|An] = (H ·X)n + E[Hn+1 (Xn+1 −Xn)|An](a)

= (H ·X)n +Hn+1 E[∆Xn+1|An](b)

>
= (H ·X)n ,(c)

since Hn+1 ≥ 0 and E(∆Xn+1|An) >
= 0. Note that E∆X0 = EX0 in the mg case.

(The supermg case just reverses the inequality.) 2

Corollary 1 If {Xn,An}∞n=0 is a s-mg and T is a stopping time, then:

Hn ≡ 1[T≥n] is ≥ 0, bounded, and predictable.(a)

(H ·X)n = XT∧n = (the stopped process) is a s-mg.(b)

Proof. Now, Hn is predictable, since [T ≥ n] = [T ≤ n − 1]c ∈ An−1 for a
stopping time T . Furthermore,

(H ·X)n =
∑n
k=0 1[T≥k] (Xk −Xk−1) =

∑n
k=0 1[T≥k] ∆Xk = XT∧n(a)

(the sum ends at m if T (ω) = m ∈ [0, n]; else, at n). Then, apply theorem 5.3. 2

Notation 5.1 Suppose {Xn,An}∞n=0 is a mg with EX2
n < ∞, so that {X2

n}∞n=0

is a submg with predictable variation process {〈X〉n}∞n=0. Let {Hn}∞n=0 denote a

predictable, bounded, and ≥ 0 process. Then we know that {(H ·X)2n} is a submg.
We will now give the form taken by its predictable variation process 〈H ·X〉n. Also,
we will summarize everything so far in one place. 2

Theorem 5.4 (Martingale transforms) Suppose {Xn,An}∞n=0 is a mg with
EX2

n < ∞ for each n, and let {Hn}∞n=0 be bounded, predictable, and ≥ 0. Then

the predictable variation process 〈X〉n is given by

〈X〉n ≡ An =
n∑

k=1

E{(∆Xk)
2|Ak−1}+ EX2

0 .(14)

Then the conditionally centered process

Zn ≡ X2
n − 〈X〉n is a 0-mean mg with respect to the An’s,(15)

for n ≥ 0. The martingale transform

Wn ≡ (H ·X)n ≡
∑n

k=0 Hk∆Xk

is a mg with mean H0 EX0 with respect to the An’s,
(16)

for n ≥ 0. Its predictable variation process 〈W 〉n is

〈W 〉n ≡ 〈H ·X〉n =

n∑

k=1

H2
k E{ (∆Xk)

2 |Ak−1}+H2
0 EX2

0 .(17)

Moreover, for n ≥ 0, the sequence

Ln ≡W 2
n − 〈W 〉n ≡ {(H ·X)n}2 − 〈(H ·X)〉n

is a 0-mean mg with respect to the An’s (with L0 = H2
0 (X

2
0 − EX2

0 )).
(18)
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Proof. Recall example 5.1 and theorem 5.3 for the first parts. Then by
straightforward calculation from (13), we have

〈H ·X〉n =
∑n
k=1 E{[∆(H ·X)k]

2|Ak−1}+H2
0 EX

2
0(a)

since (H ·X)0 = H0X0

=
∑n

k=1 E{[Hk (Xk −Xk−1)]
2|Ak−1}+H2

0 EX
2
0

=
∑n

k=1H
2
k × E{(∆Xk)

2|Ak−1}+H2
0 EX

2
0

since Hk is Ak−1-measurable

=
∑n

k=0H
2
k ∆〈X〉k .(b)

Note that L0 =W 2
0 −〈W0〉 = [H0 ∆X0]

2−H2
0 E(X

2
0 ) = H2

0 (X
2
0−EX2

0 ) has mean 0,
while Ln is a mg by example 5.1. 2

Exercise 5.2 Let (Xn,An)∞n=0 be a submg. Let Mn ≡ sup{|Xn| : n ≥ 1}. Use the
Doob-Meyer decomposition and Doob’s inequality 8.10.2 to show that

P (Mn ≥ λ) ≤ 3
λ supn E|Xn| for all λ > 0.(19)
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6 Optional Sampling
We now extend the simple optional sampling theorem of section 13.2. Our aim
will be to relax the restrictive assumption used there, that the stopping times are
bounded.

Discrete Time

Notation 6.1 Suppose that

{Xn,An}∞n=0 is a s-mg(1)

and that

0 ≤a.s. T0 ≤a.s. T1 ≤a.s. · · · <a.s. ∞ for stopping times T0, T1, . . . .(2)

We define

X̃n ≡ XTn and Ãn ≡ ATn ,(3)

so that the X̃n’s are adapted to the Ãn’s. We would like to prove that {X̃n, Ãn}∞n=0

is a s-mg, but this requires hypotheses. The weakest such hypotheses presented are

E|X̃n| <∞ for all n,(4)

lim inf
k→∞

∫

[Tn>k]

X+
k dP = 0 for each n.(5)

(But these conditions (4) and (5) need to be replaced by useful conditions that are
more easily verifiable.) 2

Theorem 6.1 (Optional sampling theorem) Let (1)–(3) define the sequence

{X̃n, Ãn}∞n=0 with respect to the s-mg {Xn,An}∞n=0. Suppose (4) and (5) hold.

Then the optionally sampled process

{X̃n, Ãn}∞n=0 is a s-mg(6)

for which

EX0
<
= EX̃0

<
= · · · <= EX̃n

<
= · · · <= supk EXk ≤ ∞.(7)

Corollary 1 (A) Condition (4) holds if {Xn,An}∞n=0 is integrable.

(B) Conditions (4) and (5) both hold if any of the following conditions holds:

Each Tn is a.s. bounded by some fixed integer Nn.(8)

The Xn’s are uniformly integrable.(9)

Xn ≤a.s. (some M) <∞ for all n.(10)

ETj <∞ for all j, and there exists a constant K such that for all j,(11)

E(|Xn −Xn−1|
∣∣∣An−1)(ω) ≤ K for all n ≤ Tj(ω) holds a.s.



6. OPTIONAL SAMPLING 375

Notation 6.2 The theorem becomes much cleaner if our s-mg includes an entry
at ∞ that closes the s-mg. Suppose

{Xn,An}∞̄n=0 is a s-mg(12)

and

0 ≤a.s. T0 ≤a.s. T1 ≤a.s. · · · ≤ T∞ ≤a.s. ∞(13)

for extended stopping times T0, T1, . . . , T∞. We again define

X̃n ≡ XTn and Ãn ≡ ATn ,(14)

so that the X̃n’s are adapted to the Ãn’s (for 0 ≤ n ≤ ∞). 2

Theorem 6.2 (Optional sampling theorem) Suppose (12)–(14) hold. Then

{X̃n, Ãn}∞n=0 is a s-mg(15)

with EX0
<
= EXT0

<
= EXT1

<
= · · · <= EXT∞

<
= EX∞ <∞ .

Continuous Time

Theorem 6.3 (Optional sampling theorem) Suppose that the X-process is
integrable and satisfies X : (Ω,A, P )→ (D[0,∞),D[0,∞)), and that it is adapted to

some filtration {At}t∈[0,∞). Then

n,Xn,An, {0, 1, . . .}, { 0, 1, . . . ,∞}, k may be replaced by

t,Xt,At, [0,∞), [0,∞], s
(16)

in theorem 6.1, corollary 1 (only (11) must be omitted from the list of things that
carry over with no change), and theorem 6.2.

Proofs

Proof. Consider theorem 6.1. Let A ∈ ATn−1 . It suffices to show that

∫
A
XTn−1dP

<
=
∫
A
XTn dP.(a)

Basically, we wish to use proposition 13.2.1 and the DCT. To this end we define

T (k)
n ≡ Tn ∧ k = (a bounded stopping time)ր Tn.(b)

Now A ∩ [Tn−1 ≤ k] ∈ AT (k)
n−1

, since for each m ≥ 0 we have

A ∩ [Tn−1 ≤ k] ∩ [T
(k)
n−1 ≤ m] = A ∩ [Tn−1 ≤ k] ∩ [Tn−1 ∧ k ≤ m ∧ k]

= A ∩ [Tn−1 ≤ m ∧ k] ∈ Am∧k ⊂ Am.

Thus, for n fixed we have
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∫
A∩[Tn−1≤k]XTn−1 dP(c)

=
∫
A∩[Tn−1≤k]XT

(k)
n−1

dP as the integrands are equal on the set

<
=
∫
A∩[Tn−1≤k]XT

(k)
n
dP by proposition 13.2.1(d)

<
=
∫
A∩[Tn−1≤k]∩[Tn≤k]XTn dP +

∫
A∩[Tn−1≤k]∩[Tn>k]

Xk dP ,(e)

since X
T

(k)
n

= Xk on [Tn > k]. Let k → ∞ in (c) and (e); and since Tn < ∞ a.s.

and since E|XTn−1 | and E|XTn | are finite, the DCT implies (recall that a = b ⊕ c
means that |a− b| ≤ c)

∫
AXTn−1 dP(f)

<
=
∫
AXTn dP ⊕ lim

∫
[Tn>k]

X+
k dP(g)

≡
∫
A
XTn dP ⊕ lim ak, where lim k→∞ ak = 0 by (5).(h)

Equate the terms in (f) and (h) on a subsequence k′ having ak′ → 0 to obtain

∫
A
XTn−1 dP

<
=
∫
A
XTn dP for all A ∈ ATn−1 .(i)

This is equivalent to (6) by (13.1.4).

Letting A = Ω in (i) shows that EXTn isր. Introducing the new stopping time

τ ≡ 0 ≤ T0 and applying this result shows that EX0 ≡ EXτ
<
= EXTn .

It remains to show that EXTn

<
= supk EXk. Now,

EXTn =
∫
[Tn≤k]XTn dP +

∫
[Tn>k]

XTn dP(j)

=
∫
[Tn≤k]XT

(k)
n

dP +
∫
[Tn>k]

XTn dP

<
=
∫
[Tn≤k]Xk dP +

∫
[Tn>k]

XTn dP ±
∫
[Tn>k]

Xk dP(k)

by proposition 13.2.1, since [Tn ≤ k] ∈ AT (k)
n

as [Tn ≤ k] ∩ [Tn ∧ k ≤ m] = [Tn ≤ m ∧ k] ∈ Ak∧m ∈ Am, for m ≥ 0

<
= EXk ⊕

∫
[Tn>k]

X+
k dP ⊕

∫
[Tn>k]

XTn dP.(l)

For the second term in (l) we recall (5). For the third term in (l) we note that
E|XTn | <∞ and that Tn <∞ a.s. We thus conclude from (l) that

EXTn

<
= lim k→∞ EXk + 0 + 0(m)

<
= supk EXk .(n)

This gives (7). 2
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Proof. Consider the first claim made in the corollary. That is, we verify

that (4) holds if supk E|Xk| < ∞. Let T
(k)
n ≡ Tn∧k. Now, both {Xn,An}∞n=0 and

{X+
n ,An}∞n=0 are submgs. Since 0 ≤ T (k)

n ≤ k, proposition 13.2.1 implies that both

X0, XT
(k)
n
, Xk and X+

0 , X
+

T
(k)
n

, X+
k are submgs.(a)

Thus,

E|X
T

(k)
n
| = E[2X+

T
(k)
n

−X
T

(k)
n

] since |x| = 2 x+ − x(b)

≤ 2EX+
k − EX0 using (a)(c)

≤ 2E|Xk| − EX0

≤ 2 supk E|Xk| − EX0

≤ (some M) <∞ by hypothesis.(d)

Thus, Fatou’s lemma and then (d) gives

E |X̃n| = E |XTn | = E | lim X
T

(k)
n
| ≤ lim EXTn∧k

(e)

≤ lim E |Xk|

= supE |Xk| <∞ 2(f)

Proof. Consider (8). Now, E |X̃n| ≤
∑Nn

0 E |Xj | implies (4), and (5) is trivial,
since the integral equals 0 for k ≥ Nn. 2

Proof. Consider (9). Uniformly integrable Xn’s are uniformly bounded in
L1 and are uniformly absolutely continuous, by theorem 3.5.4. Uniformly bounded
in L1 means supk≥1 E |Xk| < ∞; hence by part (A) of the corollary, we have (4).
Since Tn <∞ a.s., we have P (Tn > k)→ 0 as k →∞, and hence uniform absolute
continuity implies (5). 2

Proof. Consider (10). Now, (5) is trivial, since X+
k ≤M , and (4) holds, since

0 ≤ E(M −XTn) = E [ lim(M −X
T

(k)
n

)](a)

≤ lim E(M −X
T

(k)
n

) by Fatou, since all M −Xn ≥ 0(b)

≤ lim E(M −X0) by proposition 13.2.1(c)

=M − E(X0) <∞,(d)

giving EX0 ≤ EXTn ≤M . 2
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Proof. Consider (11). Let Y0 ≡ |X0| and Yj ≡ |Xj −Xj−1| for j ≥ 1. Define

the sums Zn ≡
∑n

0 Yj and Z̃n ≡
∑Tn

0 Yj . Then (4) holds since

E|X̃n| ≤ E|Z̃n| =
∑∞
k=0

∫
[Tn=k]

Zk dP =
∑∞
k=0

∫
[Tn=k]

∑k
j=0 Yj dP(a)

=
∑∞

j=0

∫
[Tn≥j] Yj dP by Fubini(b)

=
∑∞

j=0

∫
[Tn≥j] E(Yj |Aj−1) dP(c)

since [Tn ≥ j] = [Tn ≤ j − 1]c ∈ Aj−1

≤ K ∑∞
j=0 P (Tn ≥ j) = K (1 + ETn) using (11) and then (8.2.1)(d)

<∞.(e)

Also, (5) holds, since ETn <∞ implies P (Tn > k)→ 0 as k →∞; hence EZ̃n <∞
(as follows from (e)) gives

∫
[Tn>k]

|Xk| dP ≤
∫
[Tn>k]

Z̃n dP → 0 as k →∞ . 2(f)

Proof. Consider theorem 6.2. Since {Xn,An}∞n=0 is a s-mg, we see from the
s-mg convergence theorem that the Xn’s are uniformly integrable and Xn → X∞
a.s. and L1, for some X∞ ∈ L1. Now, for any n ∈ {0, 1, . . . ,∞} we have

E|XTn | ≤ E( lim
k→∞

|X
T

(k)
n
|+ |X∞|) since T (k)

n ≡ Tn ∧ k ր Tn

≤ limE|X
T

(k)
n
|+ E|X∞| by Fatou

≤ limE|Xk|+ E|X∞| by proposition 13.2.1

<∞, since the process is integrable and X∞ ∈ L1.(a)

Let A ∈ ATn−1 ; recall that Tn−1 could now equal +∞. Even so, we do have

A ∩ [Tn−1 ≤ k] ∈ AT (k)
n−1

, as shown at the start of the proof of theorem 6.1 . Thus,

∫
A∩[Tn−1≤k]XTn−1 dP(b)

=
∫
A∩[Tn−1≤k]XT

(k)
n−1

dP since T
(k)
n−1 = Tn−1 on [Tn−1 ≤ k]

<
=
∫
A∩[Tn−1≤k]XT

(k)
n
dP by proposition 13.2.1

=
∫
A∩[Tn−1≤k]∩[Tn>k]

Xk dP +
∫
A∩[Tn−1≤k]∩[Tn≤k]XTn dP ,(c)

since X
T

(k)
n

= Xk on [Tn > k]. Let k → ∞ in (b) and (c); since (a) shows that

E|XTn−1 | and E|XTn | are finite, the DCT gives
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∫
A∩[Tn−1<∞]XTn−1 dP(d)

<
= lim k→∞

∫
A∩[Tn−1≤k]∩[Tn>k]

Xk dP +
∫
A∩[Tn<∞]

XTn dP

=
∫
A∩[Tn−1<∞]∩[Tn=+∞]

X∞ dP +
∫
A∩[Tn<∞]∩[Tn−1<∞]

XTn dP(e)

using Xk →L1 X∞

=
∫
A∩[Tn−1<∞]XTn dP.(f)

We add to each of (d) and (f) the equal terms of the equation

∫
A∩[Tn−1=∞]XTn−1 dP =

∫
A∩[Tn−1=∞]XTn dP,(g)

and obtain

∫
AXTn−1 dP

<
=
∫
AXTn dP for all A ∈ ATn−1 .(h)

Replace Tn by T∞ in the previous paragraph to see that

∫
AXTn−1 dP

<
=
∫
AXT∞ dP for all A ∈ ATn−1 .(i)

Finally, (h), (i), and (13.1.4) show that {XTn ,ATn}∞n=0 is a s-mg. Add in Ta ≡ 0

and Tb ≡ ∞ for the expectation claim, with A = Ω in (h) and (i). 2

Proof. Consider theorem 6.3. We must consider the extension of theorem 6.2.
It suffices to consider the stopping times a pair at a time; we will do so, relabeling
them so that S ≤ T a.s. Let Dn ≡ {k/2n : k = 0, 1, . . . , }, and note that

{Xt,At}t∈Dn is a s-mg.(a)

Define extended stopping times T (n) by

T (n)(ω) =

{
k/2n whenever (k − 1)/2n < T (ω) ≤ k/2n and k ≥ 0,

∞ whenever T (ω) =∞,
(b)

and make an analogous definition for S(n); it is trivial that these rvs are extended
stopping times. Note that a.s.

S(n) ≤ T (n), S ≤ S(n), T ≤ T (n) S(n) ց S, T (n) ց T.(c)

We can apply theorem 6.2 to S(n) and T (n) to conclude (as in (h), just above) that

∫
AXS(n) dP

<
=
∫
AXT (n) dP for all A ∈ AS ⊂ AS(n) .(d)

Now, by right continuity of the paths,

XS(n) →a.s. XS and XT (n) →a.s. XT as n→∞.(e)
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Thus Vitali’s theorem allows us to pass to the limit in (d) and obtain

∫
AXS dP

<
=
∫
AXT dP for all A ∈ AS ,(f)

provided that we show that

the XT (n) ’s (and analogously the XS(n) ’s) are uniformly integrable.(g)

Since 0 ≤ T (n) ≤ T (n−1) with both taking values in Dn, theorem 6.2 gives

XT (n)
<
= E(XT (n−1) |AT (n)) a.s.(h)

Thus

{Yn,Bn}0n=−∞ is a reversed s-mg, where Yn ≡ XT (−n) and Bn ≡ AT (−n) .(17)

From this we need only the rather minor fact (since EX0
<
= EXT (n) for this s-mg

pair) that

lim
n→−∞

EYn = lim
n→−∞

E(XT (−n))
>
= EX0 > −∞.(i)

Thus the reversed s-mg theorem implies (g). Let A = Ω in (f) for

−∞ < EX0
<
= EXS

<
= EXT

<
= EX∞ <∞(j)

(we also apply (f) to T0 ≡ 0 and T∞ ≡ ∞). Then (f) and (j) finish the proof. 2

Exercise 6.1 Prove theorem 6.3 (for the case of integrable Xt in theorem 6.1).

Exercise 6.2 Prove theorem 6.3 (for the corollary to theorem 6.1 case).

Exercise 6.3 Write out all the details of step (h), in the context ot theorem 6.2.
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7 Applications of Optional Sampling
Example 7.1 (Gambler’s ruin) Suppose Y1, Y2, . . . are iid with p ≡ P (Y1 = 1)
and with q ≡ P (Y1 = −1). Let Sn ≡ Y1 + · · · + Yn. Let −a < 0 < b be integers,
and define the stopping time

τ ≡ inf{n : Sn = −a or b}.(1)

Define An ≡ σ[X1, . . . , Xn]. Let φ(t) = pet + qe−t denote the mgf of Y . Let
c0 ≡ log(q/p), and note that φ(c0) = 1. We now apply the examples of section 13.1.

When p = q = 1
2 :

Sn is a mean-0 mg,(2)

Z(1)
n ≡ S2

n − n is a mean-0 mg.(3)

For general p and q with p ∈ (0, 1):

Z(2)
n ≡ Sn − n(p− q) is a mean-0 mg,(4)

Zn ≡ (q/p)Sn = exp(c0 Sn) = exp(c0 Sn)/φ
n(c0) is a mean-1 mg.(5)

We now make the claim (see exercise 7.1 below)

ESτ = 0, EZ(1)
τ = 0, EZ(2)

τ = 0, EZτ = 1.(6)

With probability 1, the rv Sτ takes on one of the values −a or b. Now, τ ∧mր τ
a.s. and Sτ∧m → Sτ a.s., while (τ ∧ m) is a bounded stopping time to which
proposition 13.2.1 or theorem 6.1 necessarily applies. Thus, for p = q = 1

2 we can
conclude that

0 = limm 0 = limm ESτ∧m = ESτ = −aP (Sτ = −a) + b[1− P (Sτ = −a)]
by proposition 13.2.1 and the DCT with dominating function a+ b; and

Eτ = lim E(τ ∧m) = ES2
τ∧m → ES2

τ = a2P (Sτ = −a) + b2P (Sτ = b)

by the MCT, proposition 13.2.1, and the DCT. Solving these gives

P (Sτ = −a) = b/(a+ b) and Eτ = ab when p = q = 1
2 .(7)

Justifying the other two equations in (6) (Z
(2)
n is analogous to Z

(1)
n , while Zn uses

condition (13.6.11)),

P (Sτ = −a) = 1− (p/q)b

1− (p/q)a+b
if p 6= q(8)

and, with µ ≡ p− q,

E τ =
b

µ
− b+ a

µ

1− (p/q)b

1− (p/q)a+b
if p 6= q.(9)

Note that if µ ≡ p− q < 0, then [max 0≤n<∞ Sn] ∼= Geometric(p/q). That is,

P (max 0≤n<∞ Sn ≥ b) = (p/q)b for all integers b, when p < q.(10)

(Just let a → ∞ in the formula for P (Sτ = −a) to obtain the complementary
probability.) 2



382 CHAPTER 13. MARTINGALES

Example 7.2 (Gambler’s ruin for Brownian motion) Suppose that Sµ is
Brownian motion with drift: Sµ(t) = S(t) + µt for t ≥ 0. Define the stopping time
τab ≡ τ ≡ inf{t ≥ 0 : Sµ(t) = −a or b}, where −a < 0 < b. An easy argument will

show that Eτ <∞. Observe first that

S0(t), S20(t)− t, Sµ(t)− µt are 0-mean mgs.(11)

Then set θ = −2µ, and recall (12.7.8) to conclude that

exp(θ[Sµ(t)− µt]− θ2t/2) = exp(−2µ[S(t) + µt]) is a mean-1 mg.(12)

Applying the optional sampling theorem to (11) and (12), we obtain

P (S(τ) = −a) = b/(a+ b) if µ = 0 ,(13)

Eτ = ab if µ = 0 ,(14)

P (Sµ(τ) = −a) =
1− e2µb

1− e2µ(a+b) if µ 6= 0 ,(15)

E τ =
b

µ
− a+ b

µ

1− e2µb
1− e2µ(a+b) if µ 6= 0 .(16)

Note that if µ < 0, then ‖Sµ‖∞0 ∼= Exponential(2|µ|). Let a→∞ in (14) to obtain

P (‖Sµ‖∞0 ≥ b) = exp(−2 |µ| b) = exp(−θ b) for all b > 0.(17)

Note the complete analogy with example 7.1. 2

Exercise 7.1 Give all details in justifying the final two equalities in (6).

Exercise 7.2 Verify completely the claims of example 7.2. (recall theorem 12.7.1
and theorem 12.7.2.)

Exercise 7.3 Derive an analogue of the previous example 7.2 that is based on
the Poisson process {N(t) : t ≥ 0}.
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8 Introduction to Counting Process Martingales

Heuristic Treatment of Counting Process Martingales

Suppose now that the process {M(x),Ax}x∈R is a martingale. Then for every

increment M(x + h) −M(x) we have E{M(x + h) −M(x)|Ax} = 0. Operating
heuristically, this suggests that

E{dM(x)|Ax−} = 0 a.s. for any martingale {M(x),Ax}x∈R ,(1)

where Ax− is the σ-field generated by everything up to (but not including) time x.
With this background, we now turn to our problem.

Suppose now that

N(x) is a counting process;(2)

a counting process is (informally) an ր process that can increase only by taking
jumps of size +1. Incremental change is modeled via

E{dN(x)|Ax−} = dA(x) a.s.; here dA(x) is Ax−-measurable.(3)

It then seems that

M(x) ≡ N(x)−A(x) for x ∈ R is a martingale;(4)

we call A(·) =
∫ x
−∞ dA(y) ≡

∫
(−∞,x] dA(y) the compensator of N . Note that A(·)

is an ր and Ax−-measurable process.

We compute the predictable variation process 〈M〉 of the martingale M (as
suggested by (13.5.3) or (13.5.8), and using integration by parts) via

d〈M〉(x) ≡ E{dM2(x)|Ax−} = E{M−(x) dM(x) +M(x) dM(x)|Ax−}(5)

= E{2M−(x) dM(x) + [dM(x)]2|Ax−}

= 2M−(x) E{dM(x)|Ax−}+ E{[dM(x)]2|Ax−}

= 2M−(x) · 0 + E{[dM(x)]2|Ax−} by (1)

= E{[dM(x)]2|Ax−} as is also suggested immediately by (13.5.11)(6)

(so, the heuristics of both (13.5.8) and (13.5.11) give the same thing)

= E{[dN(x)− dA(x)]2|Ax−}

= E{[dN(x)]2 − 2[dA(x)] [dN(x)] + [dA(x)]2|Ax−}

= E{[dN(x)]2|Ax−} − 2 dA(x) E{dN(x)|Ax−}+ E{[dA(x)]2|Ax−}

= E{dN(x)|Ax−} − 2 [dA(x)]2 + [dA(x)]2 by (3) and [dN(x)]2 = dN(x)

= dA(x) − [dA(x)]2 by (3)(7)

= [1−∆A(x)] dA(x) where ∆A(x) ≡ A(x)−A−(x) ≡ A(x)−A(x−);(8)
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note that [dN(x)]2 = dN(x), since dN(x) takes on only the values 0 and 1. When
we combine (5) = (8), it suggests that

〈M〉(x) =
∫ x
−∞ [1−∆A(y)] dA(y).(9)

Thus (note (13.5.12) and (5)), the process

M2(x) − 〈M〉(x) has E{d[M2(x) − 〈M〉(x)]|Ax−} = 0,

which suggests that, provided that each EM2(x) <∞,

M2(x) − 〈M〉(x) for x ∈ R is a 0-mean mg with respect to the Ax .(10)

Summary Starting with a martingaleM(·) having all EM2(x) <∞, it seems that

〈M〉(·) is the predictable variation of the submartingale {M2(x),Ax}t∈R.(11)

That is, 〈M〉(·) is theր, ≥ 0, and Ax−-measurable process whose existence is guar-
anteed by the Doob–Meyer decomposition theorem (theorem 13.?? below). [Note
that we “discovered” this without using said Doob–Meyer theorem; that theorem
will merely guarantee that our heuristic guess-and-verify approach (assuming that
we can make it rigorous) gives us the “right answer.” This is typical.]

Consider the martingale transform

W (x) ≡
∫ x
−∞H(y) dM(y), where H(x, ·) is Ax−-measurable for all x.(12)

Then E{dW (x)|Ax} = E{H(x)dM(x)|Ax−} = H(x)E{dM(x)|Ax−} = 0 by (1), so

{W (x),Ax}x∈R is a martingale, provided that each E|W (x)| <∞.(13)

Moreover, its predictable variation is given by

d〈W 〉(x) = E{[dW (x)]2|Ax−) appealing directly to (6) this time

= E{[H(x) dM(x)]2|Ax−}

= H2(x) E{[dM(x)]2|Ax−} since H(x) is Ax−-measurable

= H2(x) d〈M〉(x) by (6),

suggesting that

〈W 〉(x) =
∫ x
−∞H2 d〈M〉 =

∫ x
−∞H2(y) [1−∆A(y)] dA(y).(14)

This also suggests, provided that each EW 2(x) <∞, that

{L(x) ≡W 2(x) − 〈W 〉(x),Ax}x∈R, is a 0-mean mg.(15)

Processes H(·) that are Ax−-measurable satisfy H(x) = E{H(x)|Ax−}, and so
H(x) can be determined by averaging H(·) over the past; such an H is thus called
predictable. The martingale transform statement (12) can be summarized as

∫ x
−∞ [predictable] d [martingale] = [martingale],(16)

provided that expectations exist.
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Suppose now that we have a sequence of martingales Mn whose increments
satisfy a type of Lindeberg condition; this suggests that any limiting process M(·)
ought to be a normal process. From the martingale condition we hope that

Cov[M(y)−M(x),M(x)] = lim
n

E{[Mn(y)−Mn(x)]Mn(x)}

= lim
n

E{Mn(x) E{Mn(x, y]|Ax}} = lim
n

E{Mn(x) · 0} = 0;

and for a normal process M(·), uncorrelated increments also mean independent
increments. The variance process of M(·) should be EM2(x) = limn EM

2
n(x) =

limn E〈Mn〉(x) by (6). So it seems reasonable to hope that [recall (12.1.15)]

Mn →d M ∼= S(V ) on (DR,DR, ρ∞) as n→∞(17)

for a Brownian motion S, provided that

the increments of Mn satisfy a type of Lindeberg condition,(18)

and provided that (note (9))

〈Mn〉(x)→p [some V (x)] as n→∞, for each x ∈ R,(19)

where

V is ր and right continuous with V (−∞) = 0.(20)

As noted above,

it often holds that V (x) = lim
n

E〈Mn〉(x) = lim
n

EM2
n(x) = EM2(x).(21)

Of course, the original martingales Mn need to be square integrable. This “quasi
theorem” is roughly Rebolledo’s CLT.

One other bit of heuristics seems in order. Suppose now that we have several
counting processes Ni(x) and that we perform the above calculations and determine
martingales Mi(x) = Ni(x) − Ai(x) with 〈Mi〉(x) =

∫ x
−∞ [1 − ∆Ai] dAi. Now, for

Ax−-measurable functions ci(·),
Mn(x) ≡

∑n
i=1 ci(x)Mi(x) is also a martingale.(22)

We note from (6) that

d〈Mn〉(x) = E{[dMn(x)]
2|Ax−}

=
∑n

i=1 c
2
i (x) E{[dMi(x)]

2|Ax−}

+
∑∑

i6=j ci(x) cj(x) E{[dMi(x)] [dMj(x)]|Ax−}

=
∑n

i=1 c
2
i (x) 〈Mi〉(x),(23)

provided that the

Mi(x, y] and Mj(x, y] are uncorrelated, given Ax−.(24)

In fact, conditions under which all of the previous heuristics are actually true
are given below. Even without these, we can use these heuristics as the first step in
a guess-and-verify approach.
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The Guess-and-Verify Approach in a Single Sample IID as F

Example 8.1 (Single-sample martingale) Let τo ≡ F−1(1). Suppose that

Ni(x) ≡ 1[Xi≤x] for all real x,(25)

for X1, . . . , Xn iid F on R. Let

Ax ≡ σ[1[Xi≤y] : y ≤ x, 1 ≤ i ≤ n] = σ[1[Xi>y] : −∞ ≤ y ≤ x, 1 ≤ i ≤ n].
Then Ni is a counting process with

E{dNi(x)|Ax−} = P (dNi(x) = 1|Ni(x−) = 0)

= dAi(x) ≡ 1[Xi≥x] dΛ(x),

where dΛ(x) ≡ [1− F−(x)]−1 dF (x) with ∆Λ(x) = [∆F (x)]/[1 − F−(x)] ≤ 1, so

Mi(x) ≡ Ni(x)−Ai(x) = Ni(x)−
∫ x
−∞ 1[Xi≥y] dΛ(y) for all real x(26)

satisfies (as verified in exercise 13.1.4)

{Mi(x), Ax}x∈R is a 0-mean mg.(27)

The predictable variation process is (letting
∫ x
−∞ ≡

∫
(−∞,x] )

〈Mi〉(x) =
∫ x
−∞ [1−∆Ai(y)] dAi(y)

=
∫ x
−∞ [1− 1[Xi≥y] ×∆Λ(y)]× 1[Xi≥y] dΛ(y)

=
∫ x
−∞ 1[Xi≥y] × [1−∆Λ(y)] dΛ(y) for all real x.(28)

Thus,

Cov[Mi(x),Mi(y)] = EM2
i (x ∧ y) since Mi is a mg

= E 〈Mi〉(x ∧ y) = E
∫ x∧y
−∞ 1[Xi≥t] × [1−∆Λ(t)] dΛ(t)

=
∫ x∧y
−∞ E(1[Xi≥t] × [1−∆Λ(t)] dΛ(t)

=
∫ x∧y
−∞ [1−∆Λ] dF for all real x

= V (x ∧ y),(29)

where

V (x) ≡
∫ x
−∞ [1−∆Λ] dF =

∫ x
−∞ [(1 − F )/(1− F−)] dF .(30)

Since the sum of martingales is also a martingale, we have

Mn(x) ≡ 1√
n

∑n
i=1Mi(x) is a 0-mean mg on R with respect to the Ax(31)

=
√
nFn(x)−

∫ x
−∞
√
n [1− Fn−] dΛ(32)

= Un(F (x)) +
∫ x
−∞Un(F−) dΛ.(33)
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Moreover, (23) tells us that

〈Mn〉(x) =
∫ x
−∞ [1− Fn−]× [1−∆Λ] dΛ

→p

∫ x
−∞ [1− F−]× [1−∆Λ]× [1− F−]

−1 dF

=
∫ x
−∞ [1−∆Λ] dF = V (x) for V as in (30) for all real x.(34)

Our heuristic Rebolledo CLT thus suggests that for a Brownian motion S,

Mn →d S(V ) on D[0,∞),D[0,∞), ρ∞);(35)

see (12.1.15) for ρ∞.

It is clear from theorem 12.10.1 that a Skorokhod embedding version M̃n of the
original process Mn should (and will) satisfy

‖M̃n −M || →p 0 as n→∞,(36)

where (note exercise 8.1 below)

M ≡ U(F ) +
∫ ·
−∞U(F−) dΛ ∼= S(V ) for all real x.2(37)

Exercise 8.1 (a) Computing means and covariances to suggest that M ∼= S(V ).

(b) Verify that (Zn ≡M2
n−〈Mn〉,Ax)x∈R̄ is a u.i. 0-mean mg, and identify Zn(∞).

The Random Censorship Model

Example 8.2 (Random Censorship) Suppose now that X1, . . . , Xn are iid
nondegenerate survival times with df F on [0,∞). However, we are not able to
observe the Xi’s due to the following random censoring. Let Y1, . . . , Yn be iid
censoring times whose df G is an arbitrary df on [0,∞]. Suppose also that the Yi’s
are independent of the Xi’s. All that is observable is

Zi ≡ Xi ∧ Yi and δi ≡ 1[Xi≤Yi] for i = 1, . . . , n.(38)

Let Ax ≡ σ[{1[Zi≤y]∩[δ=1], 1[Zi≤y]∩[δ=0] : y ≤ x, 1 ≤ i ≤ n}]. Let the ordered values

be denoted by Zn:1 ≤ · · · ≤ Zn:n (we agree that in a tied group of Zn:i’s, those
with a δ of 1 are given smaller subscripts than those with a δ of 0), and let δn:i
correspond to Zn:i. Now, Z1, . . . , Zn are iid H , where 1−H = (1−F )(1−G), and
we let Hn denote the empirical df of the Zi’s. Thus,

Hn(t) ≡
1

n

n∑

i=1

1[Zi≤t] and 1−H = (1− F ) (1−G) .(39)

Let Hucn and Huc denote the empirical df and the true df of the uncensored rvs; so

Hucn (t) ≡ 1
n

∑n
i=1 1[Zi≤t, δi=1] and

Huc(t) ≡ E1[Zi≤t, δi=1] =
∫
[0,t] (1 −G−) dF .

(40)

The basic counting process here is

Ni(t) ≡ 1[Zi≤t] δi on [0,∞).(41)
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In analogy with exercise 13.1.4, it can be shown (see exercise 8.2 below) that, for
the cumulative hazard function defined by

Λ(t) ≡
∫ t
0

1
1−F−

dF =
∫ t
0

1−G−
1−H−

dF on [0,∞),(42)

the compensator must satisfy

dAi(t) ≡ E{dNi(t)|At−} = 1[Zi≥t]
1−G−(t)

1−H−(t)
dF (t) = 1[Zi≥t] dΛ(t).(43)

This defines the basic martingale on [0,∞) to be

M1i(t) ≡ Ni(t)−Ai(t) = 1[Zi≤t] δi −
∫ t
0
1[Zi≥s] dΛ(s)

= 1[Zi≤t] δi − Λ(Zi ∧ t).
(44)

The predictable variation process should be

〈M1i〉(t) =
∫
[0,t]

1[Zi≥s] × [1−∆Λ(s)] dΛ(s) on [0,∞).(45)

Now, observe (with
∫ t
0 ≡

∫
[0,t] ) that

Mn(t) ≡ 1√
n

∑n
i=1M1i(t) =

√
n [Hucn (t)−

∫ t
0
(1−Hn−) dΛ](46)

=
√
n [Hucn (t)−Huc(t) ] +

∫ t
0

√
n [Hn−−H−]

1−H−
dHuc

= Eucn (t) +
∫ t
0
En−
1−H−

dHuc , on [0,∞),(47)

where we have defined

Eucn ≡
√
n [Hucn −Huc] and En ≡

√
n [Hn −H ] on [0,∞).(48)

We would expect that a Skorokhod version M̃n of Mn would satisfy

‖M̃n −M ‖ →p 0 as n→∞,(49)

where for appropriately defined Euc and E ,

M ≡ Euc +
∫ ·

0

E

1−H−
dHuc on [0,∞).(50)

Also,

〈Mn〉(t) =
∫ t
0 [1−Hn−(s)]× [1−∆Λ(s)] dΛ(s) on [0,∞),(51)

and

V (t) ≡ E〈Mn〉(t) =
∫ t
0 (1−G−) (1−∆Λ) dF =

∫ t
0 (1−H−)× [1−∆Λ] dΛ.(52)

As would now be expected, it can be shown (see (12.1.15) for ρ∞) that

M ∼= S(V ) on (D [0,∞),D [0,∞), ρ∞) .(53)

The cumulative hazard function Λ(·) and the Aalen–Nelson cumulative hazard
function estimator Λ̂n(·) are defined by

Λ(t) ≡
∫ ∞

0

1

1− F−
dF =

∫ t

0

1−G−
1−H−

dF and Λ̂n(t) ≡
∫ t

0

1

1−Hn−
dHucn(54)

for all t ∈ [0,∞). This is motivated by the deterministic halves of (39) and (40). We
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use this to form an estimator of the df F , that is, a type of instantaneous life table.
The Kaplan–Meier product-limit estimator of the survival function 1−F is defined by

1− F̂n(t) ≡
∏
s≤t [1−∆Λ̂n(s)] =

∏
Zn:i≤t [1− 1/(n− i+ 1)]δn:i on [0,∞).(55)

Fundamental Processes We define

Xn ≡
√
n [F̂n − F ], Bn ≡

√
n [Λ̂n − Λ], Zn ≡

√
n
[F̂n − F ]
1− F(56)

on [0,∞); and, with

T ≡ Zn:n and Jn(·) ≡ 1[0,T ](·) = 1[0,Zn:n](·) = 1[Hn−(·)<1](57)

(where Jn(·) is predictable), we further define τo ≡ H−1(1) and

XTn ≡ Xn(T ∧ ·), BTn ≡ Bn(T ∧ ·), ZTn ≡ Zn(T ∧ ·) on [0,∞).(58)

Note that for t ∈ [0,∞), (54) and (46) give

BTn (t) =
√
n [
∫ T∧t
0

1
1−Hn−

dHucn −
∫ t
0 dΛ]

=
√
n
∫ T∧t
0

1
1−Hn−

d [Hucn −
∫ t
0
(1−Hn−) dΛ]

=
∫ t
0

Jn
1−Hn− dMn =

∫ t
0 [predictable] d[martingale] = [martingale](t) .2(59)

Exercise 8.2 Suggest that on [0,∞) we have

〈BTn 〉 =
∫ t
0

Jn
[1−HN−]

[1−∆Λ] dΛ→ C(t) ≡
∫ t
0

1
1−H−

[1−∆Λ] dΛ.(60)

Exercise 8.3 (a) Verify (43).

(b) For 0 ≤ s, t <∞, evaluate Cov [Eucn (s),En(t)].

Exercise 8.4 Use integration by parts to show that

ZTn (t) =
Xn(T∧t)
1−F (T∧t) =

∫ t
0 1[0,Zn:n]

1−F̂n−
1−F

1
1−Hn− dMn on [0,∞)(61)

=
∫ t
0 [predictable] d[martingale] = [martingale](t) .(62)

Use the above heuristics to suggest (it can be proved by either mg or empirical
process methods) that

〈Zn〉T (t) =
∫ t
0 1[0,Zn:n] [

1−F̂n−
1−F ]2 1

(1−Hn−)2 d〈M〉n on [0,∞)(63)

=
∫ t
0 1[0,Zn:n] [

1−F̂n−
1−F ]2 1

1−Hn− × [1−∆Λ] dΛ

→ D(t) ≡
∫ t
0

1
1−H−

1
1−∆Λ dΛ on [0,∞)(64)

(which is a ≥ 0, right continuous, and ր function), since

[(1 − F−)/(1− F )]2 = [1/(1−∆Λ)]2.(65)
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These facts suggest that (for the D(·) of (64))

ZTn →d S(D) and XTn →d (1− F )S(D) on (D [0,∞),D [0,∞), ρ[∞)).(66)

We now prove the corresponding result for BTn .

Theorem 8.1 Let F denote an arbitrary df F on [0,∞). Then for C as in (60),

BTn →d S(C) on (D [0,∞),D [0,∞), ρ[∞)).(67)

Proof. We will show that for all 0 ≤ r ≤ s ≤ t < τo, we have

E{BTn (r, s]3/2 BTn (s, t]3/2 } ≤ 35 C(r, s]3/4 C(s, t]3/4 for C as in (60),(68)

so Chentsov’s theorem gives relative compactness. We leave convergence of the
finite-dimensional distributions to an exercise below. Define Yt ≡ BTn , and note
that Yt is of the form

Yt =
∫
[0,t]H dM for H predictable and M a mg;(a)

in fact,

H ≡ Jn/(1−Hn−) and M ≡Mn .(b)

We will require two basic results. It holds that

E{Y (s, t]2 |As} ≤ 2 βn C(s, t] for all 0 ≤ s ≤ t <∞,(c)

where C(·) as defined in (60) is ≥ 0, right continuous, and ր, and where

βn ≡ ‖ (1−H−)/(1−Hn−) ‖Zn:n
0 has Eβkn ≤ 1 + 2 k Γ(k + 2).(d)

These will be established below. However, we first use them to give a proof of (67).

Now, for all 0 ≤ r ≤ s ≤ t < τo we have

E{ |Y (r, s] |3/2 |Y (s, t] |3/2 } = E{ |Y (r, s] |3/2 E{|Y (s, t] |3/2 |As} }

≤ E{ |Y (r, s] |3/2 E{Y (s, t]2 |As}3/4 } by conditional Liapunov(e)

≤ E{ |Y (r, s] |3/2 (2 βn C(s, t])3/4} by (c)(f)

≤ 23/4 C(s, t]3/4 E { (Y (r, s]2)3/4 β3/4
n }(g)

≤ 23/4 (Eβ3
n)

1/4 C(s, t]3/4 (E{Y (r, s]2})3/4 by Hölder’s inequality

≤ 23/4 (Eβ3
n)

1/4 C(s, t]3/4 (E{E{Y (r, s]2 |Ar}})3/4

≤ 23/4 (Eβ3
n )

1/4 C(s, t] 3/4 (E{ 2 βnC(r, s]})3/4 by (c)(h)
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= 23/2 (Eβ3
n )

1/4 (Eβn)
3/4 C(r, s]3/4 C(s, t]3/4

≤ 23/2 (Eβ3
n )

1/2 C(r, s]3/4 C(s, t]3/4 by Liapunov’s inequality(i)

≤ 35C(r, s]3/4 C(s, t]3/4 by (d),(j)

as claimed in (66).

We now establish (c). Now,

E{ Y (s, t]2 |As } = E{ Y 2
t − 2YsYt + Y 2

s |As }

= E{ Y 2
t − Y 2

s |As } since {Yt,At}[t≥0] is a mg(k)

= E{ Y 2
t − 〈Y 〉t |As } − (Y 2

s − 〈Y 〉s) + E{〈Y 〉t − 〈Y 〉s|As}

= E{ 〈Y 〉t − 〈Y 〉s|As} since {Y 2
t − 〈Y 〉t,At}[t≥0] is a mg

= E{
∫
(s,t]H

2 d〈Mn〉 |As} so far, holding very generally(l)

= E{
∫
(s.t]

Jn

(1−Hn−)2 (1−Hn−)× [1−∆Λ] dΛ|As} using (58) and (50)(m)

=
∫
(s,t]

E{ n Jn(v)
n [1−Hn−(v)] |As } × [1−∆Λ(v)] dΛ(v) by Fubini(n)

= Jn(s)
∫
(s,t] nE{

1[Z(v)>0]

Z(v) } × [1−∆Λ(v)] dΛ(v)(o)

where Z(v) ∼= Binomial(n[1−Hn−(s)], [(1 −H−(v)]/[1−H−(s)])

≤ Jn(s)
∫

(s,t]

2n

n[1−Hn−(s)]
1−H−(s)

1−H−(v)
× [1−∆Λ(v)] dΛ(v)(p)

by (68) below

= 2Jn(s)
1−H−(s)

1−Hn−(s)

∫

(s,t]

1

1−H−
× [1−∆Λ] dΛ

≤ 2 βn C(s, t],(q)

as claimed in (c). Step (o) used the fact that

E{Z−1 1[Z>0]} ≤ 2/(mp) when Z ∼= Binomial(m, p).(69)

This is true, since Z−11[Z>0] ≤ 2/(Z + 1) and

E(Z + 1)−1 =
∑m
k=0

1
k+1

m!
k!(m−k)!p

kqm−k

= 1
(m+1)p

∑m+1
k+1=1

(m+1)!
(k+1)!((m+1)−(k+1))! p

k+1q(m+1)−(k+1)

≤ 1/((m+ 1)p) ≤ 1/(mp).(r)
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We now turn to (d). Now, by (6.4.13) and (12.11.14) we have

Eβkn =
∫∞
0 P (βn ≥ x)kxk−1 dx ≤ 1 +

∫∞
1 2x2e−xkxk−1 dx

≤ 1 + 2k Γ(k + 2) for general k(s)

≤ 145 for k = 3,(t)

as claimed in (d). 2

Exercise 8.5 Complete the proof of theorem 8.1, by showing convergence of the
finite-dimensional distributions.

Exercise 8.6 Show that (69) may be extended to give

E{ 1
Zk 1[Z>0]} ≤ k(k+1)/(mp)k when Z ∼= Binomial(m, p), and k ≥ 1.(70)

Remark 8.1 At this point, three sections of the 1st Edition have been entirely
omitted. The first two contained a general form of the Doob–Meyer decomposition
for continuous parameter martingales followed by a treatment of martingales of the
form

∫
H dM =

∫
[ predictable ] d[martingale ]. The final omitted section treated

the basic censored data martingale. Together, these form the continuous analog to
the current section 13.5 and section 13.8. 2
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9 CLTs for Dependent RVs
Let {Xnk : k = 1, 2, . . . and n = 1, 2, . . .} be an array of rvs on a basic probability
space (Ω,A, P ). For each n we suppose that Xn1, Xn2, . . . are adapted to an ր
sequence of σ-fields An0 ⊂ An1 ⊂ An2 ⊂ · · · ⊂ A. For each n we suppose that κn in
an integer-valued stopping time with respect to these (Ank)∞k=0 . We now introduce

Pk−1(·) ≡ P (· |An,k−1) ,

Ek−1 (·) ≡ E (· |An,k−1) , and Vark−1[·] ≡ Var[· |An,k−1] .
(1)

Our interest is in the sum

Sn ≡
∑κn

k=1Xnk .(2)

We will have reason to consider

X ′
nk ≡ Xnk 1[ |Xnk|≤1] and X ′′

nk ≡ Xnk 1[ |Xnk|>1] .(3)

What follows is the most basic CLT in this monograph. For row-independent rvs
and κn ≡ n it reduces to the asymptotic normality condition of theorem ??.??,
with c = 1. The second theorem implies the first, and is very much in the spirit of
the Lindeberg theorem.

Theorem 9.1 (Basic dependent CLT) Conclude that Sn →d N(0, 1) if
∑κn

k=1Pk−1(|Xnk| ≥ ǫ)→p 0 for all ǫ > 0

(equivalently, max1≤k≤κn |Xnk| →p 0) ,
(4)

∑κn

k=1Ek−1(X
′
nk)→p 0 (i.e., partial sums of the Xnk are nearly a mg),(5)

∑κn

k=1Vark−1[X
′
nk]→p 1 .(6)

Theorem 9.2 Conclude that Sn →d N(0, 1) if
∑κn

k=1Ek−1(X
2
nk 1[ |Xnk|≥ǫ])→p 0 for all ǫ > 0,(7)

∑κn

k=1Ek−1(Xnk)→p 0 ,(8)

∑κn

k=1Vark−1[Xnk]→p 1 .(9)

Comments If one replaces (5) by
∑κn

k=1|Ek−1(X
′
nk)|2 →p 1 ,(10)

then (6) may be replaced by

∑κn

k=1Ek−1(X
′
nk

2
)→p 1 .(11)

If (4) holds, then (11) is equivalent to
∑κn

k=1X
2
nk →p 1 .(12)
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If Xn1, Xn2, . . . are mg differences, then (10) and (5) are implied by
∑κn

k=1|Ek−1(Xnk 1[ |Xnk|>1])| →p 0 .(13)

Moreover, (13) is implied by either (7) or

E(max1≤k≤κn |Xnk|)→p 0 .(14)

We now summarize these last claims.

Theorem 9.3 (MG CLT) Suppose the Xn1, Xn2, . . . are mg differences, for
each n. Then Sn →d N(0, 1), provided that any of the following occurs:

Conditions (7) and (9) hold,(15)

Conditions (12) and (14) hold,(16)

Conditions (4) , (12), and (13) hold.(17)



Chapter 14

Convergence in Law on
Metric Spaces

1 Convergence in Distribution on Metric Spaces

Many results for convergence in distribution generalize to probability measures on
a general metric space (M, d) equipped with its Borel σ-field Md. We call such
measures Borel measures. Instead of using convergence of dfs to define convergence
in distribution (or law), we use directly the Helly–Bray idea embodied in the →d

equivalences of theorem 9.1.4, and that theorem is here extended to general metric
spaces. Skorokhod’s construction is also generalized to complete and separable
metric spaces. Section 12.1 gave specific information on the two very important
metric spaces that gave rise to (C, C) and (D,D). In section 14.2 the dual bounded
Lipschitz metric is introduced, along with Hellinger, Prohorov, and total variation
metrics. These are useful on function spaces.

Definition 1.1 (Convergence in distribution) If {Pn : n ≥ 1} and P are
probability measures on (M,d,Md) satisfying

∫
g dPn →

∫
g dP for all g ∈ Cb(M)(1)

[where Cb(M) ≡ {all bounded and d-continuous functions g from M to R}, and
Cbu(M) denotes those functions that are additionally d-uniformly continuous], then
we say that Pn converges in distribution (or law) to P , or that Pn converges weakly
to P ; and we write Pn →d P or Pn →L P . Similarly, if Xn, X are random elements
in M for which

E g(Xn)→ E g(X) for all g ∈ Cb(M),(2)

then we write Xn →d X , Xn →L X or L(Xn)→ L(X).

395
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Theorem 1.1 (Portmanteau theorem; Billingsley) For probability measures

{Pn : n ≥ 1} and P on any metric space (M,d,Md) the following are equivalent:

Pn →d P [i.e.,
∫
g dPn →

∫
g dP for all g ∈ Cb(M)].(3)

∫
g dPn →

∫
g dP for all g ∈ Cbu(M).(4)

limPn(B) ≤ P (B) for all closed sets B ∈Md.(5)

limPn(B) ≥ P (B) for all open sets B ∈ Md.(6)

limPn(B) = P (B) for all P -continuity sets B ∈ Md.(7)

Proof. Clearly, (3) implies (4).

Consider (4) implies (5): Suppose that (4) holds and that B is closed. Let ǫ > 0.
Then for integral m large enough, the set Bm ≡ {x : d(x,B) < 1/m} satisfies

P (Bm) ≤ P (B) + ǫ,(a)

since Bm ց B as m → ∞. Let gm(x) ≡ ψ(md(x,B)) = max{0, (1 −md(x,B))},
where ψ(t) is equal to 1, 1− t, 0 according as t has t ≤ 0, 0 ≤ t ≤ 1, 1 ≤ t. Then

1B ≤ gm ≤ 1Bm ,(b)

and for each m ≥ 1, gm is Lipschitz and uniformly continuous. Hence, by (4) and
also (a) and (b),

limn Pn(B) ≤ limn

∫
gm dPn =

∫
gm dP ≤ P (Bm) ≤ P (B) + ǫ.(c)

Since ǫ > 0 was arbitrary, (5) follows.

Equivalence of (5) and (6) follows easily by taking complements.

Consider (5) implies (3): Suppose that g ∈ Cb(M) and that (5) holds. Now,

transform g linearly so that 0 ≤ g(x) ≤ 1. Fix k ≥ 1, and define the closed set

Bj ≡ {x ∈M : j/k ≤ g(x)} for j = 0, . . . , k + 1.(d)

Then it follows that

∑k+1
j=1

j−1
k P (x : j−1

k ≤ g(x) <
j
k )

≤
∫
g dP <

∑k+1
j=1

j
k P (x : j−1

k ≤ g(x) <
j
k ).(e)

Rewriting the sum on the right side and summing by parts gives

∑k
j=1 (j/k) [P (Bj−1)− P (Bj)] = (1/k) + (1/k)

∑k
j=1 P (Bj),(f)

which together with a similar summation by parts on the left side yields

(1/k)
∑k
j=1 P (Bj) ≤

∫
g dP ≤ (1/k) + (1/k)

∑k
j=1 P (Bj).(g)
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Applying the right side of (g) to Pn, and then using (5) for the closed sets Bj , and
then applying the left side of (g) to P gives

limn

∫
g dPn ≤ limn

[
1
k + 1

k

∑k
j=1 Pn(Bj)

]

≤
[
1
k + 1

k

∑k
1 P (Bj)

]
≤ 1

k +
∫
g dP .(h)

Letting k →∞ in (h) yields

limn

∫
g dPn ≤

∫
g dP.(i)

Applying (i) to (the nontransformed) −g yields

limn

∫
g dPn ≥

∫
g dP.(j)

Combining (i) and (j) gives (3).

Consider (5) implies (7): With B0 the interior of any set B ∈ M and B̄ its
closure, (5) and (6) give

P (B0) ≤ limPn(B
0) ≤ limPn(B) ≤ limPn(B) ≤ limPn(B̄) ≤ P (B̄).(k)

If B is a P -continuity set, then P (∂B) = 0 and P (B̄) = P (B0), so the extreme
terms in (k) are equal; thus limPn(B) = P (B), as required by (7).

Consider (7) implies (5): Since ∂{x : d(x,B) ≤ δ} ⊂ {x : d(x,B) = δ}, the
boundaries are disjoint for different δ > 0, and hence at most countably many of
them can have positive P -measure. Therefore, for some sequence δk → 0, the sets
Bk ≡ {x : d(x,B) < δk} are P -continuity sets and Bk ց B if B is closed. It follows

from B ⊂ Bk and then (7)

limPn(B) ≤ limPn(Bk) = P (Bk).(l)

Then (5) follows from the monotone property of P , since Bk ց B as k →∞. 2

Proposition 1.1 Pn →d P if and only if each subsequence {Pn′} contains a
further subsequence {Pn′′} such that Pn′′ →d P .

Proof. This is easy from definition 1.1 (and the fact that a sequence of real
numbers has xn → x if and only if each {xn′} contains a further subsequence {xn′′}
such that xn′′ → x), as in the corollary to Helly’s selection in theorem 9.1.3. 2

Theorem 1.2 (Slutsky’s theorem) Suppose that Xn, Yn are random elements
taking values in a separable metric space (M,d,Md), both defined on some Ωn.

(a) Show that d(Xn, Yn) is a rv whenever (M,d) is separable.

(b) If Xn →d X and d(Xn, Yn)→p 0, then Yn →d X .
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Proof. For a closed set B and δ > 0 let Bδ ≡ {x : d(x,B) < δ}. Then
P (Yn ∈ B) = P (Yn ∈ B, d(Xn, Yn) < δ) + P (Yn ∈ B, d(Xn, Yn) ≥ δ)(a)

≤ P (Xn ∈ B̄δ) + P (d(Xn, Yn) ≥ δ).(b)

The second term on the right side of (a) goes to zero, since d(Xn, Yn) →p 0 (note
the following exercise). Then Xn →d X gives

limP (Yn ∈ B) ≤ limP (Xn ∈ B̄δ) ≤ P (X ∈ B̄δ), for every δ > 0,(c)

via the portmanteau theorem (5) applied to the Xn’s. Then B̄δ ց B as δ ց 0,

since B is closed, so P (X ∈ B̄δ) ց P (X ∈ B). Thus limP (Yn ∈ B) ≤ P (X ∈ B);
thus Yn →d X follows from applying the portmanteau theorem to the Yn’s. 2

Exercise 1.1 Prove theorem 1.2(a). (Recall proposition 2.2.4.)

Theorem 1.3 (Continuous mapping theorem) LetXn →d X on (M,d,Md),
and suppose g : M → M̄ (where (M̄, d̄) is another metric space) is continuous a.s.
with respect to P ≡ PX (that is, P (X ∈ Cg) = 1 for the continuity set Cg of g).
Then, necessarily, g(Xn)→d g(X).

Proof. We simply note that this is essentially no different from the proof of
the Mann–Wald theorem. (Only now we apply the general Skorokhod construction
of the following theorem, instead of the elementary Skorokhod theorem.) [This
proof, however, requires that the metric space be complete and separable. The next
exercise asks the reader to provide a general proof.] 2

Exercise 1.2 Prove the continuous mapping theorem above by appeal to (5)
and then proposition 2.2.4 (that the discontinuity set of a transformation between
metric spaces is always measurable). This proof requires neither completeness nor
separability! (And this is actually a much more elementary proof.)

Skorokhod’s Construction

We earlier established the elementary form of Skorokhod’s theorem: If random
variables Xn →d X0, then there exist random variables {Yn : n ≥ 0} defined on a
common probability space satisfying Yn ∼= Xn for all n ≥ 0 and Yn →a.s. Y0. That
proof relied on the inverse transformation. We now turn to the extension of the
elementary Skorokhod theorem from R to a complete and separable metric space
(M,d), whose open sets generate the Borel σ-field. [The first step in the proof will
be to establish a preliminary result for just one P on (M,d,Md).]

Theorem 1.4 (Skorokhod construction) Suppose (M,d,Md) is a complete
and separable metric space and the measures {Pn : n ≥ 0} satisfy Pn →d P0.
Then there exist random elements {Xn : n ≥ 0} taking values in the space M
(thus Xn(ω) ∈ M for all ω ∈ Ω) and all defined on the common probability space

(Ω,A, P ) ≡ ([0, 1],B([0, 1]),Lebesgue), with Xn
∼= Pn and satisfying

d(Xn(ω), X0(ω))→ 0 for each ω ∈ Ω.(8)
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Proposition 1.2 Suppose P is a probability measure on (M,d,Md). Then there
is a random element X defined on (Ω,A, P ) = ([0, 1],B[0, 1],Lebesgue) and taking
values in M that has distribution P .

Proof. For each k, decompose M into a countable number of disjoint sets
Ak1, Ak2, . . . whose diameter is less than 1/k. Then arrange it so that Ak+1 refines
Ak ≡ {Ak1, Ak2, . . .}. Make a corresponding decomposition of the unit interval as
Ik ≡ {Ik1, Ik2, . . .} where the subintervals Ikj satisfy P (Akj) = λ(Ikj) and where
the decomposition Ik+1 refines Ik.

Let xkj be a point in Akj , and define

Xk(ω) = xkj if ω ∈ Ikj ⊂ [0, 1].(a)

Since {Xk(ω), Xk+1(ω), . . .} ⊂ (some one Akj), its diameter is bounded by 1/k.

Thus, {Xk(ω)} is Cauchy for each ω, limkXk(ω) ≡ X(ω) exists, and

d(X(ω), Xk(ω)) ≤ 1/k→ 0 as k→∞.(9)

For a given set B, write
∑∗ ≡∑{j:Ajk∩B 6=∅}, and similarly for unions of sets. Then

P (Xk ∈ B) ≤ P (Xk ∈
⋃∗
Akj) =

∑∗
P (Xk ∈ Akj)

=
∑∗

λ(Ikj) =
∑∗

P (Akj)

≤ P (B1/k),(b)

where Bδ ≡ {x : d(x,B) ≡ infy∈B d(x, y) < δ}. For a closed set B we have⋂∞
k=1 B

1/k = B, and so

limk P (Xk ∈ B) ≤ limk P (Xk ∈ B1/k ) ≤ P (B) for closed sets B,(c)

and hence the distribution of Xk converges to P by (5) of the portmanteau theorem.
It follows from Slutsky’s theorem (with Yk = X for all k) that X ∼= P . 2

Proof. Consider Skorokhod’s theorem. First construct the decompositionsAk of
the proof of the previous proposition, but now do it in a way that makes each Akj a
P -continuity set. Because ∂{y : d(x, y) < δ} ⊂ {y : d(y, x) = δ}, the spheres about
x are P -continuity sets for all but countably many radii; hence M can be covered
by countably many P -continuity sets all with diameter at most 1/k. The usual
disjointification procedure preserves P -continuity because ∂(B∩C) ⊂ (∂B)∪ (∂C).

Consider the decompositions Ik as before, and, for each n, construct successively
finer partitions I(n)k = {I(n)k1 , I

(n)
k2 , . . .} with λ(I

(n)
kj ) = Pn(Akj). Inductively arrange

the indexing so that I
(n)
ki < I

(n)
kj if and only if Iki < Ikj ; here I < J for intervals I

and J means that the right endpoint of I does not exceed the left endpoint of J .

In other words, we ensure that for each k the families Ik, I(1)k , I(2)k , . . . are ordered
similarly.
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Define Xk as before, where xkj ∈ Akj , and define

X
(n)
k (ω) = xkj if ω ∈ I(n)kj .(a)

Again Xk(ω) converges to an X(ω) satisfying (9), and X
(n)
k (ω) converges to an

X(n)(ω) satisfying

d(X(n)(ω), X
(n)
k (ω)) ≤ 1/k→ 0 as k →∞.(b)

And again X has distribution P and X(n) has distribution Pn.

Since
∑

j [P (Akj)− Pn(Akj)] = 0, it follows that

∑
j |λ(Ikj)− λ(I

(n)
kj )| =∑j |P (Akj)− Pn(Akj)|(c)

= 2
∑′′

j [P (Akj)− Pn(Akj)]

= 2
∑
j [P (Akj)− Pn(Akj)]+,(d)

where the next to the last sum extends over those j for which the summand is
positive. Each summand goes to 0 as n → ∞ because the Akj are P -continuity
sets, and it follows by the DCT (with dominating function identically equal to the
constant function with value 1) that

lim
n

∑
j |λ(Ikj)− λ(I

(n)
kj )| = 0.(e)

Fix k and j0, let α and αn be the left endpoints of Ikj0 and I
(n)
kj0

, respectively,

and let
∑′

indicate summation over the set for which Ikj < Ikj0 , which is the same

as the set for which I
(n)
kj < I

(n)
kj0

. Then (d) implies

α =
∑′

j λ(Ikj) = lim
n

∑′
j λ(I

(n)
kj ) = lim

n
αn .(f)

Similarly, the right endpoint of the interval I
(n)
kj converges as n → ∞ to the right

endpoint of the interval Ikj .

Hence, if ω is interior to Ikj (which now fixes k and j), then ω lies in I
(n)
kj for all

n large enough, so that Xk(n)(ω) = xkj = Xk(ω) for all n ≥ (some nk,j,ω), andthe
conclusions (9) and (b) give

d(X(ω), X(n)(ω)) ≤ 2/k for all m ≥ nk,j,ω .(g)

Thus, if ω is not an endpoint of any Ikj , then for each k we have that (g) holds for
all sufficiently large n. In other words, limnX

(n)(ω) = X(ω) if ω is not in the set of
endpoints of the Ikj . This last set, being countable, has Lebesgue measure 0; thus
if X(n)(ω) is redefined as X(ω) on this set, X(n) still has distribution Pn and there
is now convergence for all ω. This completes the proof, with X(n) denoting Xn and
with X denoting X0. 2

Exercise 1.3 Recall the partial sum process Sn = {Sn(t) : t ≥ 0} defined earlier.
Now, Sn →d S by Donsker’s theorem (theorem 12.8.3), where S is a Brownian
motion process in M = C[0, 1]. Consider the following four functions:
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(a) g(x) = sup0≤t≤1 x(t),

(b) g(x) =
∫ 1

0 x(t) dt,

(c) g(x) = λ({t ∈ [0, 1] : x(t) > 0}), where λ denotes Lebesgue measure,

(d) g(x) = inf{t > 0 : x(t) = b}, with b > 0 fixed.

For each of these real-valued functionals g of x ∈ C[0, 1], find the discontinuity set
Dg of g. [If we can show that the P measure of these discontinuity sets is zero,
where P denotes the measure of S on C[0, 1], then it follows immediately from the
continuous mapping theorem that g(Sn)→d g(S).]

Exercise 1.4 Let S0 ≡ 0, S1 ≡ X1, Sk ≡ X1 + · · · + Xk for k ≥ 1 be the
partial sums of the iid (0, 1) rvs that go into the definition of Sn. Represent

n−3/2
∑n

k=1 |Sk| as a functional g(Sn). Is the resulting g continuous?

Tightness and Relative Compactness

The notion of tightness comes into play in a crucial way in the general theory of
convergence in distribution on a metric space (M,d), since there now are more ways
to “leave” the space than simply for mass to drift off to infinity.

Definition 1.2 (Tightness) Let P0 denote a collection of probability measures
on (M,d,Md). Then P0 is tight (or uniformly tight) if and only if for every ǫ > 0
there is a compact set Kǫ ⊂M with

P (Kǫ) > 1− ǫ for all P ∈ P0.(10)

Definition 1.3 (Sequential compactness, or relative compactness) Let P0 be a
family of probability measures on (M,d,Md). We call P0 relatively compact (or
sequentially compact) if every sequence {Pn} ⊂ P0 contains a weakly convergent
subsequence. That is, every sequence {Pn} ⊂ P0 contains a subsequence {Pn′}
with Pn′ →d (some probability Q) (not necessarily in P0).

Proposition 1.3 Let (M,d,Md) be a separable metric space.

(a) If {Pn}∞n=1 is relatively compact with limit set {P}, then Pn →d P .

(b) If Pn →d P , then {Pn}∞n=1 is relatively compact.

(c) We have thus related convergence in distribution to relative compactness.

Proof. See proposition 1.1 for both(a) and (b). (That is, we have merely
rephrased things we already know.) 2

Theorem 1.5 (Prohorov) Let P0 denote a collection of probability measures on
the metric space (M,d,Md).

(a) If P0 is tight, then it is relatively compact.

(b) Suppose that (M,d,Md) is separable and complete. If the collection P0 is
relatively compact, then it is tight.

(c) We have thus related relative compactness to tightness, at least on complete
and separable metric spaces.
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Proof. A full proof progresses from M = Rk to R∞, to sigma compact M ,
and finally to general M , at each step using the next simpler case. We present only
the proof of (a) for the case M = Rk.

If {Pn} is any sequence in P0, then Helly’s selection theorem implies that the
corresponding sequence of dfs {Fn} defined by Fn(x ) ≡ Pn(−∞, x ] contains a
subsequence {Fn′} satisfying

Fn′(x )→ F (x ) for all x ∈ CF ,(p)

where the sub df F is continuous from above. Now, there is a measure P on Rk such
that P (a, b ] equals F differenced around the vertices of the k-dimensional rectangle
(a, b ]. Now Pn′ →d P will follow if we can show that P (Rk) = 1.

Given ǫ > 0, choose K ⊂ Rk compact with Pn′(K) > 1 − ǫ for all n′; this is
possible by tightness of P0. Now choose a, b in Rk such that K ⊂ (a, b ] and all
2k vertices of (a, b ] are continuity points of F (we can do this because at most
a countable number of parallel (k − 1)-dimensional hyperplanes can possibly have
positive P -measure. Since Pn′(a, b ] equals Fn′ differenced around (a, b ], (a) yields

Pn′(a, b ] ≥ Pn′(K) ≥ 1 − ǫ, so P (a, b ] ≥ 1 − ǫ. Since ǫ was arbitrary, P (Rk) = 1.

Hence P is a probability measure, Pn′ →d P , and P0 is relatively compact. 2

Convergence in Distribution on (D,D)
We phrase results carefully in this subsection, so as to mention primarily the familiar
metric ‖ ·‖ on D (while limiting mention of the contrived metric d of exercise 12.1.4
for which (D, d) is both complete and separable with Dd = D). Recall that D
denotes the finite-dimensional σ-field.

Theorem 1.6 (Criterion for →d on (D,D); Chentsov) Let eachXn denote
a process on (D,D). Suppose that for some a > 1

2 and b > 0 the increments of the
Xn processes satisfy

E |Xn(r, s]Xn(s, t] |b ≤ [µn(r, s]× µn(s, t] ]a for all 0 ≤ r ≤ s ≤ t ≤ 1(11)

for some finite measure µn on the Borel subsets of [0, 1]. (Often, a = 1 and b = 2,
and note the relaxation of this condition in the remark below.) Suppose that µ is
a continuous measure on the Borel subsets of [0, 1], and that either

µn(s, t] ≤ µ(s, t] for all 0 ≤ s ≤ t ≤ 1 and for all n ≥ 1 or(12)

µn/µn([0, 1])→d µ/µ([0, 1]) as n→∞.(13)

(a) Then for the metric d of exercise 12.1.4 we have that

{Xn : n ≥ 1} is relatively compact on (D, d).(14)

(b) Especially, if we further have Xn →f.d. (some X) and if P (X ∈ C) = 1), then

g(Xn)→d g(X) for all D-measurable and a.s. ‖ · ‖-continuous g : D → R.(15)
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Remark 1.1 For processes like the partial sum process Sn the condition (11) is
troublesome; but since Sn is constant on the intervals [(i − 1)/n, i/n), it should be
enough to verify (11) for r, s, t restricted to be of the form i/n. We now make this
rough idea precise.

For m ≥ 1 we let Tm ≡ {0 ≡ tm0 < tm1 < · · · < tmkm ≡ 1}, and measure the

coarseness of this partition by defining mesh(Tm) ≡ max{tmi−tm,i−1 : 1 ≤ i ≤ km}.
Let x ∈ D and let Am(x) denote the function in D that equals x(tmi) at tmi for
each 0 ≤ i ≤ km and that is constant in between these points. We agree to call

Am(x) the Tm-approximation of x. Suppose now that one of the two conditions (12)
or (13) holds, that Xn = An(Xn) with mesh(Tn) → 0 as n → ∞, and that (11)

holds for all r, s, t in Tn. Then both (14) and (15) hold. [That Xn = An(Xn) means
that Xn is equal to its own Tn-approximation; and this clearly holds for Sn when
all tni = i/n.] 2

“Proof.” By analogy with Helly’s selection theorem, it should suffice to show the
tightness. Thus, for each ǫ > 0 we must exhibit a compact set Kǫ of functions on
[0, 1] for which P (Xn ∈ Kǫ) > 1 − ǫ for all n. According to Arzelà’s theorem (see
exercise ??.??), a compact set of functions consists of a uniformly bounded set of
functions that have a uniform bound on their “wiggliness.” A complex and delicate
argument (slightly in the spirit of Kolmogorov’s inequality) based on (6) can be
given to bound this “wiggliness.” Since the details are long and hard and are only
used for the present theorem, they will be skipped. See Billingsley (1968). 2

Exercise 1.5 (Prohorov) For any real-valued function on [0, 1] we now define
the modulus of continuity ωδ(x) of x by ωδ(x) ≡ max{|xt−xs| : |t−s| ≤ δ} for each
δ > 0. Let X,X1, X2, . . . denote processes on (C, C). Then Xn →d X on (C, ‖ · ‖)
if and only if both Xn →f.d. X and limδ→0 lim supn→∞ P (ωδ(Xn) > ǫ) = 0 for all

ǫ > 0. (The modulus of continuity also measures the “wiggliness” of the process,
and Prohorov’s condition implies that the processes are “not too wiggly.”)

Exercise 1.6 (Doob) Use theorem 1.6 to establish that g(Un) →d g(U) for all
D-measurable and a.s. ‖ · ‖-continuous functionals g on D.

Exercise 1.7 (Donsker) Use theorem 1.6 to establish that g(Sn)→d g(S) for all
D-measurable and a.s. ‖ · ‖-continuous functionals g on D.

Exercise 1.8 (Prohorov) Linearize Sn between the i/n-points so as to make it a
process on (C, ‖ · ‖), and then use exercise 1.3 to show that this linearized process
converges in distribution to Brownian motion.
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2 Metrics for Convergence in Distribution
Definition 2.1 (Prohorov metric) [The Lévy metric of exercise ??.1.5 extends
in a nice way to give a metric for →d more generally.] For any Borel set B ∈ Md

and ǫ > 0, define

Bǫ ≡ {y ∈M : d(x, y) < ǫ for some x ∈ B}.
Let P,Q be two probability measures on (M,d,Md). If we set

ρ(P,Q) ≡ inf{ǫ : Q(B) ≤ P (Bǫ) + ǫ for all B ∈ Md},(1)

then ρ is the Prohorov metric (see exercise 2.1). (We note that this definition is not
formed in a symmetric fashion.)

Definition 2.2 (Dudley metric) (i) Label as BL(M,d) the set of all real-valued
functions g on the metric space (M,d) that are bounded and Lipschitz (in the sense
that both of the quantities

‖g‖∞ ≡ sup
x∈M
|g(x)| and ‖g‖L ≡ sup

x 6=y
[|f(x)− f(y)|/d(x, y)](2)

are finite). For functions g in BL(M,d) we define

‖g‖BL ≡ ‖g‖L + ‖g‖∞,(3)

and so BL(M,d) = {g : ‖g‖BL <∞}.
(ii) Now let P,Q be two probability measures on (M,Md), and set

β(P,Q) ≡ sup{|
∫
g dP −

∫
g dQ| : ‖g‖BL ≤ 1}.(4)

Then β is called the dual bounded Lipschitz distance (or Dudley distance) between
the probability distributions P and Q.

Proposition 2.1 Let P ≡ {all probability distributions P on (M,M) }. Then
both ρ and β are metrics on P . (Equation (12) below will show that Mρ =Mβ ,
which we abbreviate here asM.)

Exercise 2.1 Prove the previous proposition.

The following theorem says that both ρ and β metrize →d on (M,d,Md) just
as the Lévy distance L metrized the convergence in distribution →d of dfs on R1.

Theorem 2.1 (Metrizing →d; Dudley) For any separable metric space (M,d)
and probability measures {Pn : n ≥ 1} and P on the Borel σ-fieldMd, the following
are equivalent conditions:

Pn →d P,(5)
∫
g dPn →

∫
g dP for all g ∈ BL(M,d),(6)

β(Pn, P )→ 0,(7)

ρ(Pn, P )→ 0.(8)
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Theorem 2.2 (Ulam) For (M,d) complete and separable, each single P on
(M,Md) is tight.

Proof. Let ǫ > 0. By the separability of M , for each m ≥ 1 there is a
sequence Am1, Am2, . . . of open 1/m spheres covering M . Choose im such that

P (
⋃
i≤im Ami) > 1− ǫ/2m. Now, the set B ≡ ⋂∞

m=1

⋃
i≤im Ami is totally bounded

in M , meaning that for each ǫ > 0 it has a finite ǫ-net (that is, a set of points xk
with d(x, xk) < ǫ for some xk, for each x ∈ B). [Nice trick!] By completeness of

M , K ≡ B̄ is complete and is also compact; see exercises ??.??(c) and ??.??(e).
Since

P (Kc) = P (B̄c) ≤ P (Bc) ≤∑∞
m=1P ([

⋃
i≤imAmi]

c) <
∑∞

1 ǫ/2
m = ǫ,(a)

the conclusion follows. 2

Proof. We now prove theorem 2.1, since Ulam’s theorem is in hand, but only
under the additional assumption that M is complete. Clearly, (5) implies (6). We
will now show that (6) implies (7). By Ulam’s theorem, for any ǫ > 0 we can choose

K compact so that P (K) > 1 − ǫ. Let f |K denote f restricted to K. Now, the

set of functions F ≡ {f |K : ‖f‖BL ≤ 1} forms a ‖ · ‖-totally bounded subset of

the functions Cb(K) (by the Arzelà theorem of exercise ??.??(a)). Thus, for every
ǫ > 0 there is some finite k ≡ kǫ and functions f1, . . . , fk ∈ F such that for any
f ∈ F there is an fj with

sup
x∈K

|f(x)− fj(x)| ≤ ǫ; moreover, sup
x∈Kǫ

|f(x)− fj(x)| ≤ 3ǫ,(a)

since f and fj are in F (note the second half of (2)). Let

g(x) ≡ max{0, (1− d(x,K)/ǫ)} ;

then g ∈ BL(M,d) and 1K ≤ g ≤ 1Kǫ . Thus,
∫
g dPn →

∫
g dP , so that for n large

enough we have

Pn(K
ǫ) ≥

∫
g dPn >

∫
g dP − ǫ ≥

∫
1K dP − ǫ = P (K)− ǫ > 1− 2ǫ.(b)

Hence, for any f ∈ F we have from (a), (2), (b), and P (K) > 1− ǫ that

|
∫
f d(Pn − P )| = |

∫
(f − fj) d(Pn − P ) +

∫
fj d(Pn − P )|

≤ |
∫
(f − fj) dPn|+ |

∫
(f − fj) dP |+ |

∫
fj d(Pn − P )|

≤ (3ǫ+ 2× 2ǫ) + (ǫ+ 2× ǫ) + |
∫
fj d(Pn − P )| ≤ 11ǫ(c)

for n chosen large enough. Hence (7) holds.
We next show that (7) implies (8). Suppose a Borel set B and an ǫ > 0 are given.

We let fǫ(x) ≡ max{0, (1 − d(x,B)/ǫ)}. Then fǫ ∈ BL(M,d), ‖fǫ‖BL ≤ 1 + ǫ−1,

and 1B ≤ fǫ ≤ 1Bǫ . Therefore, for any P and Q on M we have from (4) that

Q(B) ≤
∫
fǫ dQ ≤

∫
fǫ dP + (1 + ǫ−1)β(P,Q) ≤ P (Bǫ) + (1 + ǫ−1)β(P,Q),(d)
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and it follows that

ρ(P,Q) ≤ max{ǫ, (1 + ǫ−1)β(P,Q)}.(e)

Hence, if β(P,Q) < ǫ2, then ρ(P,Q) < ǫ + ǫ2 < 2ǫ. Hence, for all P,Q we have

ρ(P,Q) ≤ 2
√
β(P,Q). Thus, (7) implies (8). [It is also possible to establish the

inequality β(P,Q)/2 ≤ ρ(P,Q). This would give

β(P,Q)/2 ≤ ρ(P,Q) ≤ 2
√
β(P,Q),(f)

showing that ρ and β are equivalent metrics (see (12) and exercise 2.3 below).]

Finally, we will show that (8) implies (5). Suppose (8) holds. Let B denote a
P -continuity set, and let ǫ > 0. Then for 0 < δ < ǫ with δ small enough, we have
P (Bδ \B) < ǫ and P ((Bc)δ \Bc) < ǫ. Then for n large enough we have

Pn(B) ≤ P (Bδ) + δ ≤ P (B) + 2ǫ(g)

and also

Pn(B
c) ≤ P ((Bc)δ) + δ ≤ P (Bc) + 2ǫ.(h)

Combining these yields

|Pn(B)− P (B)| ≤ 2ǫ,(i)

and hence Pn(B)→ P (B). By the portmanteau theorem, this yields (5). 2

Strassen’s Coupling Theorem

Suppose Pn →d P0 on a separable metric space (M,d). Then theorem 2.1 gives

ρ(Pn, P0)→ 0, for Prohorov’s metric ρ, while Skorokhod’s theorem gives existence of

random elementsXn on a common (Ω,A, P ) satisfying d(Xn, X0)→a.s. 0. Claiming

less than is true, d(Xn, X0) →p 0, or P (d(Xn, X0) ≥ ǫ) → 0 as n → ∞. We are

then naturally led to ask how rapidly this convergence occurs. It turns out that
this is essentially determined by ρ(Pn, P ). Alternatively, the following theorem can
be used to bound ρ(Pn, P ), provided that a rate is available regarding Skorokhod.

Theorem 2.3 (Strassen) Suppose that P and Q are measures on the Borel sets
of a separable metric space (M,d). Then ρ(P,Q) < ǫ if and only if there exist X
and Y defined on a common probability space with X ∼= P and Y ∼= Q and coupled
closely enough that P (d(X,Y ) ≥ ǫ) ≤ ǫ.

Proof. See Dudley (1976, section 18). 2
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Some Additional Metrics

As shown in theorem 2.1, both the Prohorov metric ρ and also the dual-bounded
Lipschitz metric β metrize weak convergence (→d). Other stronger metrics are also
available and often useful.

Definition 2.3 (Total variation metric) For probability measures P and Q on

the measurable space (M,Md), let

dTV (P,Q) ≡ 2 sup{|P (A)−Q(A)| : A ∈Md};(9)

dTV is called the total variation metric.

Proposition 2.2 The total variation metric dTV is equal to

dTV (P,Q) =
∫
|f − g| dµ = 2[1−

∫
f ∧ g dµ],(10)

where f = dP/dµ, g = dQ/dµ, and µ is any measure dominating both P and Q

(for example, P +Q).

Proof. Note that |f − g| = (f ∨ g)− (f ∧ g) = (f + g)− 2(f ∧ g). 2

Definition 2.4 (Hellinger metric) For probabilities P and Q on (M,Md), let

d2H(P,Q) ≡
∫
[f1/2 − g1/2]2 dµ = 2[1−

∫√
f g dµ],(11)

where f = dP/dµ, g = dQ/dµ, and µ is any measure dominating both P and Q

(for example, P +Q); then dH is called the Hellinger metric.

Exercise 2.2 dH does not depend on the choice of µ.

Here is a theorem relating these metrics and the Prohorov and bounded Lipschitz
metrics. The inequalities in (12) show that ρ and β induce identical topologies.
The inequalities in (13) show that the total variation metric dTV and the Hellinger
metric dH induce identical topologies. Moreover, (14) shows that the β and ρ
topology is the finer topology (with more open sets and admitting more continuous
functions). [Recall exercise ??.?? dealing with equivalent metrics.]

Theorem 2.4 (Inequalities among the metrics) (a) For P and Q probability
measures on (M,Md), the following inequalities necessarily hold:

β(P,Q)/2 ≤ ρ(P,Q) ≤ 2
√
β(P,Q),(12)

d2H(P,Q) ≤ dTV (P,Q) ≤ dH(P,Q) {4− d2H(P,Q)}1/2,(13)

ρ(P,Q) ≤ dTV (P,Q).(14)

(b) For dfs F,G on R (or Rk) we have the following:

L(F,G) ≤ ρ(F,G) ≤ dTV (F,G),(15)

L(F,G) ≤ dK(F,G) ≤ dTV (F,G),(16)

where dK(F,G) ≡ ‖F −G‖∞ ≡ supx |F (x)−G(x)| is the Kolmogorov distance.
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Exercise 2.3 Prove the first inequality in (12).

Exercise 2.4 Prove (13). [Hint. To prove the left inequality, establish the

inequality
∫ √

f g dµ ≥
∫
f ∧ g dµ and use the second equality in (11). To show

the right inequality, write |f − g| = |√f −√g | |√f +
√
g |.

Exercise 2.5 Prove (14).

Exercise 2.6 (Statistical interpretation of the dTV metric) Consider testing P
versus Q. Find the test that minimizes the sum of the error probabilities, and show
that the minimum sum of errors is ‖P ∧ Q‖ ≡

∫
f ∧ g dµ. Note that P and Q are

orthogonal if and only if ‖P − Q‖ ≡ dTV (P,Q) = 2 if and only if ‖P ∧ Q‖ = 0 if

and only if
∫ √

f g dµ ≡
∫ √

dP dQ = 0.



Chapter 15

Asymptotics via Empirical
Processes

0 Introduction
In section 15.1 we rederive the usual CLT for iid samples from any distribution
in the domain of attraction of the normal distribution, but now using empirical
process methods. We then obtain a corresponding result for the trimmed mean
that is valid for samples from any df in any domain of attraction, provided only
that the number of observations trimmed from each tail grows to infinity so slowly
that the fraction of observations trimmed from each tail goes to zero. When the qfs
of all distributions in a class are bounded by an appropriate envelope qf, then all of
these convergence results are uniform across the class of qfs. This uniformity allows
random trimming. In section 15.3 complete analogs are presented for L-statistics.
In section 15.2 similar results are derived for linear rank tests and permutation tests,
and a uniform studentized CLT is given for sampling from a finite population. Also,
two very interesting ways of creating normality are discussed in this section.

All of the results are based on the empirical process construction of section 12.10
combined with the quantile method inequalities from sections C.5–C.6. We will
frequently obtain conclusions of the form Tn →p Z for a special construction version
of an interesting statistic Tn and its limiting normal rv Z. Or, we may even obtain
supK |Tn − Z(K)| →p 0 for a family of normal rvs Z(K) indexed by the qf K in
a class K. These strong →p conclusions are only true for the special construction
versions of the statistic Tn. However, Tn →p Z for the special construction Tn
implies that Tn →d Z for any version of Tn. In like fashion, supK |Tn−Z(K)| →p 0
for a special construction version of Tn implies that the rate at which Tn →d Z is
uniform across the entire class of qfs in K for any version of the statistic Tn.

409
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1 Ťrimmed and W̃insorized Means

Notation 1.1 Let Xn1, . . . , Xnn be iid with df F . Let Xn:1 ≤ · · · ≤ Xn:n denote

their order statistics, with empirical qf Kn. Define µ ≡ µK ≡
∫ 1

0
K(t) dt = EK(ξ)

and σ2 ≡ σ2
K ≡ Var[K(ξ)], when these exist. We also let X̄n =

∑n
1 Xni/n denote

the sample mean and S2
n =

∑n
1 (Xni − X̄n)

2/n denote the “sample variance”. For

trimming numbers kn ∧ k
′

n ≥ 1 and for an ≡ kn/n and a′n ≡ k′n/n, we let K̃n(·)
denote K(·) Winsorized outside (an, a

′
n) (see notation 6.5.1) and define

µ̌n ≡ µ̌K(an, a
′
n) ≡

∫ 1−a′n
an

K(t) dt = E{K(ξ)× 1(an,1−a′n)(ξ)} ,
σ̃2
n ≡ σ̃2

K(an, a
′
n) ≡

∫ 1

0

∫ 1

0
[s ∧ t− st] dK̃n(s) dK̃n(t) = Var[K̃n(ξ)] ,

X̌n ≡ X̌n(an, a
′
n) ≡ 1

n

∑n−k′n
i=kn+1Xn:i = µ̌Kn(an, a

′
n),

S̃2
n ≡ σ̃2

Kn
(an, a

′
n).

(0)

Here S̃n ≡ σ̃Kn(an, a
′
n) denotes the sample (an, a

′

n)-Winsorized standard deviation,

and the rv X̌n = µ̌Kn(an, a
′
n) is being called the sample (an, a

′
n)-truncated mean,

while X̆n ≡ X̌n/(1 − an − a′n) denotes the sample (an, a
′
n)-trimmed mean. Also,

µ̆n ≡ µ̌n/(1−an−a′n) is the population trimmed mean, and σ̆n ≡ σ̃n/(1−an−a′n).
Now, X̌n is our vehicle of convenience for studying the trimmed mean X̆n, since

√
n (X̌n − µ̌n)/σ̃n = Z̆n ≡

√
n (X̆n − µ̆n)/σ̆n .(1)

[Said another way, X̆n has statistical meaning, while X̌n does not; but X̌n is much
more convenient to work with notationally and probabilistically.] For kn ∧ k′n ≥ 1
we always have (integrating Brownian bridge U, which for each fixed ω is just a
continuous function)

Z(K̃n) ≡ −
∫ 1−a′n

an

U dK/σ̃n = −
∫ 1

0

U dK̃n/σ̃n ∼= N(0, 1).(2)

Generally, K̃t,t(·) denotesK(·) Winsorized outside (t, 1−t), and σ̃2(t) ≡ Var[K̃t,t(ξ)].
Recall that Rn=a Sn denotes that Rn − Sn →p 0. 2

Convention We now specify that throughout this chapterXni ≡ K(ξni) = F−1(ξni),
for 1 ≤ i ≤ n, for the ξni described in notation 1.2 below. (Recall the sentence above
(6.4.3) noting that this representation of rvs allows alternative methods of proof.)

Note The conclusions in (4), and (6) below are true only for these particular rvs
F−1(ξni) that are iid F (·), but the implied →d conclusion is true for any iid rvs
Xn1, . . . , Xnn having df F (·).

Theorem 1.1 (The CLT) Let K ∈ D(Normal). Equivalently, suppose

t [K2
+(ct) ∨K2(1− ct)] / σ̃2(t)→ 0 as t→ 0, for each fixed c > 0.(3)
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(Note proposition 10.6.1 regarding (3).) Define kn ≡ k′n ≡ 1, µ̌n ≡ µK(1/n, 1/n)

and σ̃n ≡ σ̃K(1/n, 1/n), and let K̃n(·) denoteK(·) Winsorized outside (1/n, 1−1/n).
Then iid rvs Xn1, . . . , Xnn with qf K(·) satisfy (as also shown in theorem 10.6.1)

Zn =
√
n (X̄n − µ̌n)/σ̃n=a Z(K̃n) ∼= N(0, 1) and Sn/σ̃n →p 1 .(4)

Notation 1.2 For the following theorem, suppose the integers kn and k′n satisfy

(kn ∧ k′n)→∞, (an ∨ a′n)→ 0, and a′n/an → 1.(5)

Of course, K̃n(·) now denotes K(·) Winsorized outside (an, 1− a′n). 2

Theorem 1.2 (CLT for trimmed means) Suppose the qf K(·) is such that

the partial variance σ̃2(t) ≡ Var[K̃t,t(ξ)] is in one of the regularly varying classes

R−β , for some β ≥ 0. [This union of all the R−β classes was labeled as D̃ in the

definition (C.5.33) R0 = D(Normal). Note (C.5.4).] If (5) holds, then

Z̆n =
√
n (X̌n − µ̌n)/σ̃n=a Z(K̃n) ∼= N(0, 1) and S̃n/σ̃n →p 1.(6)

If β = 0, we can weaken (5) to an ∨ a′n → 0 when 0 < lim an/a
′
n ≤ lim an/a

′
n <∞.

Corollary 1 (Trimming fixed fractions) Suppose an → a and a′n → a′ for
0 < a < 1− a′ < 1. Then (4) holds for any qf K(·) continuous at both a and 1− a′.

Notation 1.3 Be clear that we are working on the specific probability space
(Ω,A, P ) of theorem 12.10.3 on which are defined a fixed Brownian bridge U and
a triangular array of rvs whose nth row members ξn1, . . . , ξnn are iid Uniform(0, 1)

with order statistics 0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ 1, empirical df Gn, and empirical

process Un =
√
n [Gn − I] that not only satisfy ‖Un = U‖ →p 0, but in fact, for

each fixed 0 ≤ ν < 1
4 , satisfy

∆νn ≡
∥∥∥∥

nν (Un − U)
[I ∧ (1− I)](1/2)−ν

∥∥∥∥
1−1/n

1/n

= Op(1) .(7)

For any ξn1, . . . , ξnn (and hence for this realization also), for each fixed 0 < ν < 1,

∆0
νn ≡

∥∥∥∥
nν (Gn − I)

[I ∧ (1− I)]1−ν
∥∥∥∥
1

0

= Op(1). 2(8)

Remark 1.1 We prove these theorems in such a way that the uniformity available
is apparent. To see the full range of uniformity possible, consult the 1st Edition of
this text, where this topic is pursued much more completely. Random kn and k′n,
(useful to applied statisticians) are also considered therein. 2

Proofs. Integration by parts (with
∫
(d,c] ≡ −

∫
(c,d] if c < d in (b), (c), etc.

below) [a.s., dK puts no mass at any ξn:i] yields

Z̆n =
√
n (X̌n − µ̌n)/σ̃n

=
√
n{
∫
[ξn:kn+1,ξn:n−k′

n
]K dGn −

∫
(an,1−a′n)

K(t) dt}/σ̃n(a)
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=
√
n {−KGn

∣∣
ξn:kn+1− −

∫
[ξn:kn+1,ξn:n−k′

n
]Gn dK +KGn

∣∣
ξn:n−k′

n
+
}/σ̃n(b)

+
√
n {tK

∣∣
an+

+
∫
(an,1−a′n)

t dK − tK
∣∣
1−a′n−

}/σ̃n

=a.s. −
∫
(an,1−a′n)

U dK̃n/σ̃n −
∫
(an,1−a′n)

[Un − U] dK̃n/σ̃n(c)

−
∫
(ξn:kn+1,an]

√
n [Gn(t)− an] dK/σ̃n

−
∫
[1−a′n,ξn:n−k

′
n
)

√
n [Gn(t)− (1 − a′n)] dK/σ̃n

≡ Z(K̃n) + γ1n + γ2n + γ′2n(9)

{+ γ3n + γ′3n when replacing X̌n − µ̌n by X̄n − µ̌n during theorem 1.1},

where γ3n ≡ K(ξn:1)/
√
n σ̃n and γ′3n ≡ K(ξn:n)/

√
n σ̃n are the extreme summands

of Z̆n. [We require the added terms γ3n and γ′3n only for the theorem 1.1 identity,

because in this case only we have used the “non-natural for the identity” value
µ̌(1/n, 1/n) in the theorem statement. The “natural value” µ = µ̌(0, 0) would have

caused trouble in the proof. Note the definition of kn = k′n = 1 in theorem 1.1.]

We begin an examination of the various γ-terms. Concerning γ1n, we note that

|γ1n| ≤ ∆νn ×
∫ 1−a′n

an

n−ν [t(1− t)]1/2−ν dK(t)/ σ̃n ≡ ∆νn ×Mνn(K),(10)

and it is this sort of factorization into a random term times a deterministic term that
is key to the proof. The randomness refers only to the Uniform(0, 1) distribution,
and the only reference to K(·) is in the deterministic term (to which inequality
(C.6.1) applies). In particular, ∆νn = Op(1) by (7). Then (C.6.3) gives (the second
term appearing in (d) is the γn of (C.6.3), and the γ′n term in (d) is the symmetric
term from the right tail)

Mνn(K) ≤ (3/
√
ν )

[(kn ∨ r) ∧ (k′n ∨ r′)]ν
+

√
r |K+(an)−K+(r/n)|√

n σ̃n
1[an<r/n]+γ

′
n.(d)

Note with regard to γ2n that monotonicity of Gn(·) implies that

the integrand of γ2n is uniformly bounded by |Un(an)| =
√
anEn ,(e)

where it is trivially true that En ≡ |Un(an)/
√
an | = Op(1). We also let 1nǫ denote

the indicator function of an event, having probability exceeding 1 − ǫ, on which
(with λ ≡ λǫ small enough) we can specify our choice of one of the following:

(i) λan ≤ ξn:kn ≤ ξn:kn+1 ≤ an/λ.
(ii) ξn:kn+1 lies between an ∓ λ

√
kn/n = an(1∓ λ/

√
kn ).

(iii) Bound ξn:kn+1 by its lower and upper ǫ/2-quantiles t∓nǫ.

(f)

[The bounds in (f) are derived as follows: For (ii), the Chebyshev (second moment)
inequality with beta rv moments of ξn:kn+1. Or for (i), the Markov (first moment)
inequality, or from the in probability linear bounds of inequality 12.11.2. Or for
choice (iii), the exact distribution of ξn:kn+1.]
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Consider theorem 1.1, when an = a′n = 1/n. Now, γ1n is controlled via (d) (at
the left end) solely by |K+(an)|/

√
n σ̃n (just choose r first to be very large in the

first term in the bound of (d)). To summarize, γ1n →p 0 whenever

{√an |K+(an)|+
√
a′n |K(1− a′n)| }/σ̃n → 0 .(11)

For γ2n and γ3n we apply (f)(i) in choosing the 1nǫ in (f) to get (when K+(0) < 0)

|γ2n| × 1nǫ ≤ En ×
∣∣∣√an

∫
(λan,an/λ)

dK/σ̃n

∣∣∣ ≤ 2En × |
√
anK(λan)/σ̃n| ,(g)

|γ3n| × 1nǫ ≤ 2× |K+(λan)| /(
√
n σ̃n) ≤ 2× |√anK(λan)/σ̃n| .(h)

Thus the CLT claim of (4) holds, provided only (adding the symmetric condition
in the right tail)

{√an |K+(λan)|+
√
a′n |K((1− λa′n))| }/σ̃n → 0(12)

for each 0 < λ ≤ 1, and it holds uniformly in any class of qfs in which (12) holds
uniformly. But (12) follows from (3) (or any of the equivalent conditions (10.6.32),
or (10.6.16), or (10.6.28), or (10.6.21), or (C.2.6), or (C.2.15), or (C.1.53)—for
example. Thus the normality in theorem 1.1 is established again—using a funda-
mentally different proof from that in section 10.6. [Note that (the crude upper
bound) condition (12) implies (11), (g), and (h).]

Consider theorem 1.2. The first term in (d) converges to 0, and the other two
terms that appear in (d) equal zero. Thus, again γ1n →p 0 whenever kn ∧ k′n →∞
(but now, it converges uniformly in all qfs). In the present context the γ3n term
always equals 0. Thus, only γ2n must be shown to be negligible; but we must now be
much more careful than the crude bound (12). Now, using (f)(ii) in the definition
of 1nǫ in (f), we obtain

|γ2n| × 1nǫ ≤ En ×
∣∣∣√an

∫
Iλn

dK/σ̃n

∣∣∣ ,(i)

where Iλn ≡ (an(1 − λ/
√
kn ), an(1 + λ/

√
kn )). Thus the CLT claim of (6) holds,

provided that (with symmetric requirements in the right tail)

√
an

∣∣∣K(an(1∓ λ/
√
kn ))−K+(an)

∣∣∣ /σ̃n ≡
√
an
∫
I∓λn

dK/σ̃n → 0(13)

for each λ > 0. Thus, normality holds uniformly in any class Ku in which both (13)
and its right tail analogue hold uniformly; call such a class Ku a uniformity class.

Summary (so far) Whenever kn ∧ k′n →∞,

supK∈Ku

∣∣∣
√
n [X̌n(an, a

′
n)− µ̌n]/σ̃n − Z(K̃n)

∣∣∣→p 0(14)

for any class Ku in which both (13) and its right tail analogue hold uniformly. (Also,
we may replace σ̃n by S̃n in (14) under this same requirement (as was be shown in
the variance estimation proof given in the 1st Edition)).

Now, (13) does hold for a fixed K whenever both K is in any R−β and the
trimming numbers of (5) are employed (appeal to theorem C.5.1), and this gives
theorem 1.2. (Two uniformity classes Ku are exhibited in theorem C.5.2.) Aside
from variance estimation, the proofs of theorems 1.1 and 1.2 are complete. The
1st Edition carefully considers both variance estimation and the uniformity of the
asymptotic normality, via making (12) hold uniformly. 2
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Remark 1.2 The class D̃ of qfs K having σ̃2(·) ∈ R−β for some β ≥ 0 is strictly
bigger than the stable laws; the class of stable laws also require that

v+(t)/v−(t)→ (some (1− p)/p) ∈ [0, 1],

so that both the contributions from the two extreme tails {(from 1 to kn) and (from
n − k′n + 1 to n)} can be balanced. (Recall the De Haan result in exercise C.4.2.)
But we do not need to balance them; we threw them away. 2

Exercise 1.1 Verify that sup{Un(t)|/
√
an : c an ≤ t ≤ an/c} = Op(1).

Exercise 1.2∗ (Rossberg) Suppose 0 ≤ ξn:1 ≤ · · · ≤ ξn:n are the order statistics
of the first n of the infinite sequence of independent Uniform(0, 1) rvs ξ1, ξ2, . . . . Let
αn ≡ {j : 1 ≤ j ≤ kn}, δn ≡ {j : kn + 1 ≤ j ≤ ln}, βn ≡ {j : ln + 1 ≤ j ≤ n− l′n},
δ′n ≡ {j : n − l′n + 1 ≤ j ≤ n − k′n}, and α′

n ≡ {j : n − k′n + 1 ≤ j ≤ n}. Show

that the collections of rvs {ξn:j : j ∈ αn}, {ξn:j : j ∈ βn}, and {ξn:j : j ∈ α′
n} are

asymptotically independent when kn ր∞ with an ≡ kn/n→ 0 and ln ≡ k1+2ν
n for

0 < ν < 1
4 (with analogous conditions in the right tail).

Remark 1.3 Consider asymptotic normality of the sample mean. Let Un, Vn,
Wn, V

′
n, and U

′
n denote the sum of those Xn:j = K(ξn:j) for which j is in αn, δn,

βn, δ
′
n, and α′

n, respectively. The previous exercise shows that Wn, Un, and U ′
n

are asymptotically independent. Exercise C.6.1 shows that Vn and V ′
n are always

asymptotically negligible. We saw in appendix C that the condition σ̃2(·) ∈ L
is also necessary for (4). Since the vast middle is “nearly always” normal, one
needs to determine what is happening only in the extreme tails (as the mid-tails
were always negligible). This asymptotic independence is at the heart of the very
general asymptotics for X̄n found in S. Csörgő, Haeusler, and Mason (1989). 2

Exercise 1.3 (Winsorized mean) Let Z̃n ≡
√
n (X̃n − µ̃n)/σ̃n for the sample

mean X̃n of the Winsorized sample X̃n1, . . . , X̃nn. For the N(0, 1) rv Z(K̃n) of (2),
the identity (9) becomes

Z̃n = Z(K̃n) + γ1n + γ̃2n + γ̃′2n,

where γ̃2n ≡
√
n
∫
In
Gn dK/σ̃n and γ̃′2n ≡

√
n
∫
I′n
Gn dK/σ̃n

and γ1n is as before. Here In is equal to [ξn:kn+1, an] or (an, ξn:kn+1) according as
ξn:kn+1 < an or ξn:kn+1 ≥ an, and I ′n is equal to [1−a′n, ξn:n−k′n ] or (ξn:n−k′n , 1−a′n)
according as 1− ξn:n−k′n < a′n or 1− ξn:n−k′n ≥ a′n. Show that this quantity γ̃2n for
the Winsorized mean essentially exceeds the γ2n of the trimmed mean proof by the
factor

√
kn. This is just enough to prevent analogues of the theorems for trimmed

means that we proved in this chapter.
(a) Prove what you can for the Winsorized mean.
(b) Graph a typical K on (0, 1). Locate an and ξn:kn+1 near the 0 endpoint (and
suppose K(0) < 0). Obtain the natural graphical upper bounds on the magnitudes
of γ2n and γ̃2n, and note how the second quantity is inherently larger than the first
(pictorially, a “trapezoid” versus a “triangle”).
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Exercise 1.4 (Uniform WLLN) Suppose the qf K0(·) is of order one, in that

t ( |K0(t)|+ |K0(1− t)| )→ 0 as t→ 0 .(15)

Then one can claim the uniform WLLN

sup
K∈K0

∣∣∣∣∣X̄n −
∫ 1−1/n

1/n

K(t) dt

∣∣∣∣∣→p 0,(16)

when K0 ≡ {K : |K| ≤ |K0| on (0, a0] ∪ [1− a0, 1)}, for some 0 < a0 ≤ 1
2 .
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2 Linear Rank Statistics and Finite Sampling
Example 2.1 (Linear rank statistics) Consider the RN process of section 12.10,
with the same notation and assumptions as were made there. Thus (for cNi’s with
mean c̄N = 0, standard deviation σ2

cN = 1, and standardized fourth central moment

c4N/σ
4
cN ≤M <∞ for all N) we define (for the antiranks D ≡ (DN1, . . . , DNN))

RN (t) ≡ 1√
N

[(N+1)t]∑

i=1

cNDNi − cN ·
σcN

=
1√
N

[(N+1)t]∑

i=1

cNDNi on [0, 1],(1)

and this process satisfies ∆̈νN = Op(1), as in (12.10.35). The known constants
cN ≡ (cN1, . . . , cNN)

′ are called regression constants. Let aN ≡ (aN1, . . . , aNN)
′

specify known scores. Let aN · , σ2
aN > 0, and µ4(aN ) denote their mean, variance,

and fourth central moment. The class of simple linear rank statistics is defined by

TN ≡ TN (aN ) ≡ 1√
N

N∑

i=1

aNi − aN ·
σaN

cNDNi .(2)

Now, ETN = 0 and Var[TN ] = N
N−1 by exercise 2.1 below. Assume (for convenience

only) that the scores are ordered as

aN1 ≤ · · · ≤ aNN ,
and we define an ր left-continuous qf KN on [0, 1] by

KN (t) = aNi − aN · for (i − 1)/N < t ≤ i/N, and 1 ≤ i ≤ N,(3)

with KN (0) ≡ aN1. Note that

TN ≡
∫ 1

0

KN dRN/σaN = −
∫ 1

0

RN dKN/σaN .(4)

The basic probability space and rvs are as defined in notation 15.1.3. Let

ZN ≡ Z(aN ) ≡ −
∫ 1

0

W dKN/σaN .(5)

Clearly, ZN is a normal rv with mean 0, since it is just a linear combination of the
jointly normal rvs W(1/N), . . . , W(1− 1/N). Fubini’s theorem gives

Var[ZN ] = Var
[
−
∫ 1

0W dKN/σaN

]
=
∫ 1

0

∫ 1

0 [s ∧ t− st] dKN(s) dKN (t)/σ2
aN

= Var[KN (ξ)]/σ2
aN = 1.(6)

We will also consider the sum of independent rvs given by

T 0
N ≡ T 0

N (aN ) ≡ −1
σaN

∫ 1

0 WN dKN = 1
σaN

∫ 1

0 KN dWN

= 1√
N

∑n
i=1 [ cNiKN(ξNi) ]/ σaN ∼= (0, 1).

(7)

We next show that TN =a T
0
N =a ZN ∼= N(0, 1) under rather mild conditions. 2

Exercise 2.1 Show that ETN = 0 and Var[TN ] = N/(N − 1).
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Definition 2.1 (D(aN )-negligibility) Call such aN a negligible array if

D(aN ) ≡ max1≤i≤N |aNi − aN ·|√
N σaN

≤ (some ǫN)ց 0 .(8)

We let A denote any collection of such arrays that uses the same ǫN ’s. When the
aNi are random, we call them

p-negligible if D(aN )→p 0 and a.s.-negligible if D(aN )→a.s. 0 .

Theorem 2.1 (Uniform CLT for linear rank statistics) Suppose that the

regression constants satisfy c4N ≤ M < ∞ for all N . Let A be a collection of

uniformly negligible arrays, in that ǫN ≡ supA D(aN )→ 0. Then

supA |TN(aN )− Z(aN )| →p 0 and supA |T 0
N (aN )− Z(aN )| →p 0 .(9)

Proof. Fix 0 ≤ ν < 1
4 . Now, γ(aN ) ≡ TN − ZN satisfies

|γ(aN )| = |TN − ZN | = | −
∫ N/(N+1)

1/(N+1) (RN −W) dKN/σaN |(a)

≤
∥∥∥∥
Nν(RN −W)

[I(1− I)]1/2−ν
∥∥∥∥
N/(N+1)

1/(N+1)

×
∫ N/(N+1)

1/(N+1)

N−ν[t(1−t)]1/2−ν dKN(t)/σaN(b)

≡ ∆̈νN ×MνN(K̃N ),(10)

where ∆̈νN = Op(1) by (12.10.35). Thus (??.??.??) gives

|TN − ZN | ≤ ∆̈νN

×
{√

9/ν

rν
+
√
r
|KN (1/(N + 1))− aN ·|√

NσaN
+
√
r
|KN(N/(N + 1))− aN ·|√

NσaN

}

≤ ∆̈νN × {
√
9/ν /rν + 2

√
r [max1≤i≤N |aNi − aN ·|/

√
N σaN ]}(c)

≤ ∆̈νN × {
√
9/ν /rν + 2

√
r D(aN)}.(11)

By first choosing r large and then letting N →∞, we see that

|TN − ZN | = Op(1)× o(1)→p 0 .(d)

Note that we have separated the randomness from properties of the aNi’s, so that

the convergence is uniform over A. [The rate for TN in (9) depends on the sequence
ǫN → 0, and on the cNi’s only through theMǫ’s in the statement P (∆̈νN ≥Mǫ) ≤ ǫ
for all N .] Since (see (12.10.34))

|T 0
N − ZN | = |

∫ N/(N+1)

1/(N+1) (WN −W) dKN/σaN | ≤ ∆̇νN ×MνN (K̃N ),(e)

comparing (e) with (a) and (10) shows that the proof is the same in this case.

[One can also allow random regression constants cN and scores aN that are

independent of the antiranks f0or which c4N = Op(1) and supA D(aN )→p 0.] 2
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Example 2.2 (Creating normality) The following are known, and intuitive.

(A) (Using normal regression constants) When lim c4N ≤ ∞, present methods give

TN →d N(0, 1) if and only if either D(aN )→ 0 or cNDN1 →d N(0, 1).(12)

Result 1 Thus, with absolutely no hypotheses,

the choice cNi ≡ Φ−1(i/(N + 1))

always gives TN →d N(0, 1) for every choice of aNi’s.
(13)

(B) (Winsorizing a finite sample) Let ãN ·, σ̃aN , T̃N , and Z̃N be defined as before,

but now based on the (kN , k
′
N )-Winsorized population ~̃aN consisting of

aN,kN+1, . . . , aN,kN+1; aN,kN+1, . . . , aN,N−k′N ; aN,N−k′N , . . . , aN,N−k′N .(14)

Of course, theorem 2.1 also applies to T̃N . But note that now

D( ãN ) = max
1≤i≤N

|ãNi − ãN ·|/
√
N σ̃aN

=
[
|aN,kN+1 − ãN ·| ∨ |aN,N−k′N − ãN ·|

]
/(
√
N σ̃aN )

≤
|aN,kN+1 − ãN ·| ∨ |aN,N−k′N − ãN ·|

{
(kN + 1)(aN,kN+1 − ãN ·)2 + (k′N + 1)(aN,N−k′N − ãN ·)2

}1/2

≤ 1/
√
(kN ∧ k′N ) + 1, provided only that aN,kN+1 < aN,N−k′N .(15)

Thus D( ãN )→ 0 whenever

kN ∧ k′N →∞, and aN,kN+1 < aN,N−k′N for all N sufficiently large.(16)

Result 2 Suppose c4N ≤M <∞ for all N . For fixed kN ∧ k′N →∞, we have

sup
A

{∣∣∣T̃N (aN )− Z̃(aN )
∣∣∣ : all arrays in A with aN,kN+1 < aN,N−k′N

}
→p 0.(17)

Summary Asymptotic normality is guaranteed byWinsorizing a number that slowly
increases to infinity, provided only that we do not collapse the whole sample. 2

Exercise 2.2 Argue heuristically why (13) should be true. [See Shorack(1996).]

Example 2.3 (Permutation statistics) Suppose X1, . . . , XN are iid rvs with
nondegenerate df F on (Ω,A, P ). Then let XN ≡ (X1, . . . , XN )′ denote the full

population of observed values, having order statisticsXN :1 ≤ · · · ≤ XN :N , antiranks

(DN1, . . . , DNN), sample mean X̄N , sample variance S2
N , empirical df FN , and

empirical qf KN ≡ F−1
N . Let 0 ≤ kN < N − k′N ≤ N , and let X̃N denote the

(kN , k
′
N )-Winsorized population X̃N :1 ≤ · · · ≤ X̃N :N (as in (14)) whose parameters

are the Winsorized mean T̃N , the Winsorized variance S̃2
N , and empirical qf K̃N .

We note that

XN :1 ≤ · · · ≤ XN :N and (DN1, . . . , DNN) are independent rvs,

if tied Xi’s are randomly assigned their ranks.
(18)
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We also recall (from theorem 10.7.1, or from exercise 8.4.20) that

D(XN )→a.s. 0 if and only if 0 < Var[X ] <∞.(19)

D(XN )→p 0 if and only if F ∈ D(Normal).(20)

Moreover, from (16),

D(X̃N )→a.s. 0 [making X̃N a.s. negligible] for a.e. X1, X2, . . . ,(21)

provided only that

kN ∧ k′N →a.s. ∞ and lim (XN :N−k′N −XN :kN+1) > 0 a.s.(22)

for kN and k′N that are either fixed integer sequences or integer-valued rvs that are
independent of the antiranks DN . Condition (22) necessarily holds if

F is any nondegenerate df , and if kN ∧ k′N →∞ while (kN ∨ k′N )/N → 0.(23)

[We shall maintain the order statistics (which are on (Ω,A, P )), but we can replace

the independent antiranks by a realization (on some (Ω∗,A∗, P ∗) independent of

(Ω,A, P )) for which ∆̈∗
νN = Op(1) on (Ω∗,A∗, P ∗) (from (12.10.25)) for some

Brownian bridge W. This is possible whenever c4N ≤ M < ∞ for all N (see

theorem 12.10.3).]

By a permutation statistic we mean a rv of the form

TN ≡ TN (XN ) ≡ 1√
N

N∑

i=1

cNiXi/SN =
1√
N

N∑

i=1

cNDNi XN :i/SN ,(24)

with S2
N = σ2

XN =
∑N

1 (Xk− X̄N)
2/N and with a cN ≡ (cN1, . . . , cNN )′ population

that is standardized. (Note that the distribution of TN is unaltered by using this
different realization of the antiranks.) 2

Theorem 2.2 (Permutation tests) If ∆̈∗
νN = Op(1) (as when lim c4N < ∞),

then the asymptotic normality

TN =a Z(XN ) ∼= N(0, 1)

holds





on (Ω∗,A∗, P ∗) for a.e. X1, X2, . . . if cNi = Φ−1(i/N + 1),
on (Ω∗,A∗, P ∗) for a.e. X1, X2, . . . if 0 < Var[X ] <∞,
on (Ω× Ω∗,A×A∗, P × P ∗) if F ∈ D(Normal).

(25)

[The convergence is uniform over classes F of dfs F in which D(XN ) →p or a.s. 0
uniformly.] Also, whenever (22) (or (23)) holds a.e. we have

T̃N =a Z(X̃N ) ∼= N(0, 1) on (Ω∗,A∗, P ∗) for a.e. X1, X2, . . . .(26)

Similar results hold for TN(YN ) and T̃N (YN ), where YN ≡ (YN1, . . . , YNN )′ with

YNi ≡ ĝN(Xi) for any function ĝN (·) independent of the antiranks DN .(27)
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Proof. Equation (11) now becomes (recall (10) for MνN (·))
|γ(XN )| ≡ |TN −Z(XN )| = | −

∫ 1

0
(RN −W) dKN/SN | ≤ ∆̈∗

νN ×MνN (KN )(a)

≤ ∆̈∗
νN × {

√
9/ν /rν + 2

√
r D(XN )}(28)

= Op(1)× o(1)→p 0, as in (25),(b)

using either (19), (20) on subsequences, or the proof of (13) on D(XN ). So, (25)
holds. Likewise, conclusion (26) holds by using (22) to apply (15) to D(X̃N ). 2

Sampling from Finite Populations

Example 2.4 (Simple random sampling) Let X1, . . ., Xn be a random sample
without replacement from an aN ≡ (aN1, . . . , aNN)

′ population. As usual, let X̄n

and S2
n ≡ X2

n − X̄2
n denote the sample mean and “sample variance.” Suppose that

aN1 ≤ · · · ≤ aNN , that n ≡ nN , and that the D(aN ) of (8) satisfy both

0 < lim n/N ≤ lim n/N < 1 and(29)

sup
A
D(aN ) = sup

A
{ max

1≤i≤N
|aNi − aN ·|/

√
N σaN} → 0 .(30)

Prior to normalizing, the cNi’s consist of n values of 1 and m ≡ N − n values of 0,
with cN · = −n/N and σ2

cN = mn/N2. After normalizing,

c4N = (m3 + n3)/(mnN) ≤ 2(m ∨ n)/(m ∧ n) .

Thus (29) implies that all c4N ≤ (some M) < ∞. Since cNDN1 →d N(0, 1) clearly

fails, (12) shows that TN →d N(0, 1) if and only if D(aN )→ 0. The limiting rv (as

in (5)) will be ZN ≡ Z(aN ) ≡ −
∫ 1

0 W dKN/σaN ∼= N(0, 1). Now define

TN ≡ TN (aN ) ≡
√
n (X̄n − aN ·)

σaN
√
1− n/N

= −
∫ 1

0RN dKN/σaN ∼= (0, N/(N − 1)) ,(31)

T̂N ≡ T̂N (aN ) ≡
√
n (X̄n − aN ·)

Sn
√
1− n/N

. 2(32)

Theorem 2.3 (Simple random sampling) Suppose (29) holds, and suppose

the arrays A are uniformly negligible with supAD(aN )→ 0 (as in (30)). Then

supA |TN(aN )− Z(aN )| →p 0,(33)

supA | 1
σaN

Sn − 1| →p 0,(34)

T̂N (aN )− Z(aN )→p 0. In fact, supA |T̂N (aN )− Z(aN )| →p 0(35)

if (36) also holds. That is, the uniform convergence conclusion in (35) holds if

supN
∫ N/(N+1)

1/(N+1) g(t) d
KN (t)−aN·

σaN
<∞(36)

for g(t) = b(t) [t ∧ (1− t)]1/2 and b(t) = b(1− t) = 1 ∨ [2 log2 1/t]
1/2 for t ∈ [0, 1/2].
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Exercise 2.3 (a) Show that (30) and (36) both hold whenever the qfs KN (·) have
a uniformly bounded 2 + δ moment for any δ > 0.

(b) Devise a “logarithmic moment” that will suffice.

Proof. Now, (33) follows from (9). Consider (34). Let dN ≡
√
m/nN . Simple

algebra (start on the right) gives

S2
n − σ2

aN

σ2
aN

=

{ 1
n

∑n
1 (Xi − aN ·)2 − σ2

aN

σ2
aN

}
−
{
X̄n − aN ·
σaN

}2

≡ I2n − I21n .(a)

Using Chebyshev’s inequality with the finite sampling variance of (A.1.9) yields

P (|I1n| ≥ ǫ) ≤ Var[X̄n]/ǫ
2σ2
aN = [1− n−1

N−1 ]/nǫ
2 → 0.(b)

Letting Yi ≡ (Xi − aN ·)2, we use (A.1.9) again for

P (|I2n| ≥ ǫ) = P (|Ȳn − µY | ≥ ǫ σ2
aN ) ≤ Var[Ȳn]/ǫ

2σ4
aN(c)

≤ σ2
Y

n ǫ2 σ4
aN

[
1− n− 1

N − 1

]
≤ E(X − aN ·)4

n ǫ2 σ4
aN

m

N − 1
(d)

=

∑N
1 (Xi − aN ·)4/N

n ǫ2 σ4
aN

m

N − 1
≤ D2(aN )

σ2
aN

σ2
aN

2m

ǫ2 n

≤ D2(aN )
2m

ǫ2 n
→ 0 by (29).(e)

Thus (34) holds. Then (33) and (34) gives the first claim in (35) via Slutsky’s
theorem. (Note that (29) uniformly bounds the ratio

√
m/n.) The second claim

made in (35) will now follow from the identity

(T̂N − ZN) = (TN − ZN )× {[(σaN/Sn)− 1] + 1}+ ZN × [(σaN/Sn)− 1],(f)

provided we show that

supN |Z(aN )| = Op(1).(37)

The proof that (36) implies (37) is found in the 1st Edition. 2

Remark 2.1 At this point in the 1st Edition, the next section was used to rederive
the bootstrap results of Chapter 10 using the present methods instead. 2



422 CHAPTER 15. ASYMPTOTICS VIA EMPIRICAL PROCESSES

3 L-Statistics
Let K ≡ F−1, and define Xni ≡ K(ξni), for 1 ≤ i ≤ n, in terms of the Uniform
(0, 1) rvs ξn1, . . . , ξnn of notation 15.1.3. Then Xn1, . . . , Xnn are iid F , and we let
Xn:1 ≤ · · · ≤ Xn:n denote the order statistics. Suppose the statistician specifies a
known ր and left-continuous function h, known constants cn1, . . . , cnn, and known
integers 0 ≤ kn < n − k′n ≤ n. We wish to establish the asymptotic normality of
the trimmed L-statistic

Ln ≡ Ln(kn, k′n) ≡
1

n

n−k′n∑

i=kn+1

cni h(Xn:i) =
1

n

n−k′n∑

i=kn+1

cniH(ξn:i),(1)

where H ≡ h(F−1) = h(K) is also ր and left continuous. [Other useful cases
such as h(x) = x2 are dealt with by considering (H−)2 and (H+)2 separately, and
then adding the results. Here H− ≡ −H · 1[H≤0] and H

+ ≡ H · 1[H≥0] denote the
negative and positive parts of H . Thus there is no theoretical loss in now assuming
that h(X) = X and H = F−1.]

Now, Gn and Un denote the empirical df and the empirical process of those
specially constructed ξni’s of notation 15.1.2, whose empirical process Un converges
pathwise to the Brownian bridge U in the manner described. This will figure heavily
in our proofs and in =a claims, but not in any →d claims.

We need a centering constant µn for Ln. We define

Jn(t) = cni for (i− 1)/n < t < i/n and 1 ≤ i ≤ n,(2)

where the value of Jn at the i/n points is totally inconsequential. Suppose that Jn
“converges” to J in some sense. Define an ≡ kn/n, a

′
n ≡ k′n/n as before, and then

define centering constants

µn ≡
∫ 1−a′n
an

Jn(t)H(t) dt and µ0
n ≡

∫ 1−a′n
an

J(t)H(t) dt(3)

with µ0 ≡ µ0
n(0, 0) =

∫ 1

0 J(t)H(t) dt. Note that µn =
∑n−k′n

i=kn+1 cni
∫ i/n
(i−1)/nH(t) dt,

which means that kn = 0 and cn1 > 0 (that k′n = 0 and cnn > 0) entails the added
requirement that EH−(ξ) be finite (that EH+(ξ) be finite), for ξ ∼= Uniform (0,1).
[Our main interest is in µn, while µ

0
n is secondary; µn is the data analysis constant,

while µ0
n is just a constant for theory.]

It is convenient to assume that on (0, 1)

Jn ≥ 0, J ≥ 0 is continuous, and H is ր and left continuous.(4)

[More generally, we can apply our results for two separate J functions and then just
subtract the results.] Now specify a· ∈ (0, 1) to satisfy H+(a·) = 0, and define

K(t) ≡
∫

(a·,t)

J(s) dH(s),(5)

where
∫
(a·,t)

≡ −
∫
[t,a·]

. (But set a· = 0 if H(·) ≥ 0, and use
∫
[0,t) in (5); and set

a· = 1 if H(·) ≤ 0, and use
∫
[t,1]

in (5).) Thus (in case (5))

K is ր and left continuous on (0, 1) with K+(a·) = 0,(6)
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where K+ is the right-continuous version, and ∆K ≡ K+ −K. [Since Ln − µn is
invariant under vertical shift, there is actually no theoretical loss in also assuming
as we did above that H satisfies H+(a·) = 0.] Since K is a qf, the unobservable rvs

Yni ≡ K(ξni), for 1 ≤ i ≤ n, are iid with qf K, and let Ȳn ≡ 1
n

∑n
i=1 Yni .(7)

The most historically important case obtains when

σ2 ≡ Var[K(ξ)] ∈ (0,∞), µ ≡ EK(ξ), and kn = k′n = 0.(8)

In this case we would desire to show that (on the same probability space where the
special ξni’s above are defined) for some N(0, 1) rv that we will denote by ZK (or

alternatively, and suggestively, we will also denote by
∫ 1

0 K dU/σ) we have

√
n [Ln(0, 0)−µn(0, 0)]/σ=a

√
n (Ȳn−µ)/σ=a ZK ≡

∫ 1

0
K dU/σ ∼= N(0, 1).(9)

We would also like a consistent estimator of σ, and we might want to be able to

replace µn(0, 0) by µ
0 =

∫ 1

0 J(t)H(t) dt. Of course, Jn will have to approximate J

sufficiently closely.

Let K̃n denote K Winsorized outside (an, 1 − a′n), and define the unobservable
Winsorized rvs

Ỹni ≡ K̃n(ξni) for 1 ≤ i ≤ n.(10)

Then Ỹn1, . . . , Ỹnn are iid with qf K̃n and mean µ̃n and variance σ̃2
n given by

µ̃n ≡ EỸni =
∫ 1

0 K̃n(t) dt and σ̃2
n ≡ Var[Ỹni] = Var[K̃n(ξ)] .(11)

(We can allow only kn = 0 or k′n = 0 if the variance double integral is finite.) Let

Ỹn· ≡ Ỹn(an, a′n) ≡ 1
n

∑n
i=1 Ỹni =

∫ 1

0 K̃n dGn .(12)

In this case it is our desire to show that

√
n (Ln−µn)/σ̃n=a

√
n (Ỹn·− µ̃n)/σ̃n =

∫ 1

0
K̃n dUn/σ̃n = −

∫ 1

0
Un dK̃n/σ̃n(13)

=a ZK(an, a
′
n) ≡

∫ 1

0
K̃n dU/σ̃n ∼= N(0, 1) .(14)

We also seek an appropriate estimator of σ̃n, and we may want to be able to replace

µn by µ0
n. Whenever kn ∧ k′n ≥ 1, we always define the symbol

∫ 1

0
K̃n dU to mean

−
∫ 1

0 U dK̃n (that is, pathwise integration for each ω) for all qfs.

Make throughout without further comment the rather modest assumptions that
an and a′n satisfy lim inf(1−an−a′n) > 0 and lim inf σ̃n = lim inf σK(an, a

′
n) > 0 for

the df F or F0 under consideration at the particular moment. The first says that
we will deal with averaging, rather than just “quantiles” (though we could easily
have added in fixed quantiles had we chosen to do so). The second says that the
statistician has at least enough insight to avoid removing all the variation.



424 CHAPTER 15. ASYMPTOTICS VIA EMPIRICAL PROCESSES

The now state the two most elementary theorems about L-statistics found in
the 1st Edition. The results found there establish uniform convergence to normality
over large classes of dfs, and they present studentized versions of such results. This
is a very complete treatment of L-statistics. Roughly, suppose the finite sample
score function Jn function is sufficiently close to a limiting score function J , as
defined in the 1st Edition. Then any asymptotic normality theorem for the mean
(whether trimmed or untrimmed) of a sample from the df K defined in (5) is also
true for the corresponding L-statistic of (1) based on samples from the df F .

Theorem 3.1 (CLT for L-Statistics) Suppose the score function J(·) of (4) is
approximated “sufficiently closely” by a sequence Jn(·). Let the statistic Ln in (1)

be untrimmed. Suppose also that Y ≡ K(ξ) ∼= (µ, σ2) with σ2 ∈ (0,∞) for the K

of (5). Let µ̃n and σ̃n be as in (11) (with an = a′n = 1/n, for the sake of the proof).

Let µn be as in (3). Then (in the context of notation 15.1.3)

√
n (Ln−µn)/σ=a

√
n (Ȳn−µ)/σ=a Zn(K) ≡

∫ 1−1/n

1/n
U dK/σ̃n ∼= N(0, 1) .(15)

(Moreover, Vn/σ →p 1 for an estimator V 2
n of σ2 presented in the 1st Edition.)

Theorem 3.2 (CLT for trimmed L-statistics) Suppose that J(·) as in (4) is
approximated “sufficiently closely” by a sequence Jn(·). Suppose the statistician
protects himself by specifying trimming numbers kn and k′n for which kn∧k′n →∞,

while an ∨a′n → 0 with an/a
′
n → 1, and suppose that K is in the statistical domain

of attraction D̃ (recall (C.5.33), (15.1.3), and proposition 10.6.1). Then (in the
context of notation 15.1.3)

√
n (Ln − µn)/σ̃n=a

√
n (Ỹn· − µ̃n)/σ̃n(16)

= −
∫ 1−a′n
an

Un dK/σ̃n = −
∫ 1

0Un dK̃n/σ̃n,

=a Zn ≡ ZK(an, a
′
n) ≡ −

∫ 1−a′n
an

U dK/σ̃n = −
∫ 1

0
U dK̃n/σ̃n ∼= N(0, 1) .(17)

(Moreover, Ṽn/σ̃n →p 1 for an estimator Ṽ 2
n of σ̃2

n presented in the 1st Edition.)

[If K ∈ D(Normal), only (kn ∧k′n) ≥ 1 is required and an/a
′
n → 1 may be omitted.]



Appendix A

Special Distributions

1 Elementary Probability

Independent Bernoulli Trials

If P (X = 1) = p = 1− P (X = 0), then X is said to be a Bernoulli(p) rv. We refer
to the event [X = 1] as “success,” and [X = 0] as “failure.” Let X1, . . . , Xn be
iid Bernoulli(p), and let Tn ≡ X1 + · · · +Xn denote the number of successes in n
independent Bernoulli(p) trials. Now,

P (Xi = xi for 1 ≤ i ≤ n) = p
∑n

1 xi(1 − p)n−
∑n

1 xi if all xi equal 0 or 1;

this formula gives the joint distribution of X1, . . . , Xn. From this we obtain

P (Tn = k) =

(
n

k

)
pk(1 − p)n−k for 0 ≤ k ≤ n,(1)

since each of the
(
n
k

)
different possibilities that place k of the 1’s in specific positions

in an n-vector containing k outcomes 1 and n − k outcomes 0 has probability
pk(1−p)n−k, from the earlier display. We denote this by writing Tn ∼= Binomial(n, p)
when (1) holds. Note that Binomial(1, p) is the same as Bernoulli(p).

Let X1, X2, . . . be iid Bernoulli(p); call this a Bernoulli(p) process. Interesting
rvs include Y1 ≡W1 ≡ min{n : Tn = 1}. Since we can rewrite the event [Y1 = k] =
[X1 = · · · = Xk−1 = 0, Xk = 1], we have

P (Y1 = k) = (1 − p)k−1p for k = 1, 2, . . . .(2)

We write Y1 ∼= GeometricT(p). Now let Wm ≡ min{n : Tn = m}. We call Wm

the waiting time to the mth success; Wm counts the number of turns until the mth
success. We let Ym ≡ Wm −Wm−1 for m ≥ 1, with W0 ≡ 0, and we call the Ym’s
the interarrival times. Note that [Wm = k] = [Tk−1 = m− 1 and Xk = 1]. Hence

P (Wm = k) =

(
k − 1

m− 1

)
pm(1 − p)k−m for k = m,m+ 1, . . . .(3)

We write Wm
∼= Negative Binomial Turns(m, p) ≡ NegBiT(m, p). [We agree that

NegBiF(m, p) denotes the distribution of Wm − m, and that this “F” connotes
“failures”; the rv Wm −m counts the number of failures prior to the mth success.]

425
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Exercise 1.1 Explain why Y1, Y2, . . . are iid GeometricT(p).

Since the number of successes in the first n1+n2 trials is the same as the number
of successes in the first n1 trials plus the number of successes in the next n2 trials,
it is clear that

T1+T2 ∼= Binomial(n1+n2, p) for independent rvs Ti ∼= Binomial(ni, p).(4)

Likewise, waiting for m1 successes and then waiting for m2 more successes is the
same as waiting for m1 +m2 successes in the first place. Hence,

W1+W2
∼= NegBiT(m1+m2, p) for independent rvs Wi

∼= NegBiT(mi, p).(5)

Urn Models

Suppose an urn contains N balls that are identical, except thatM bear the number
1 and N − M bear the number 0. Thoroughly mix the balls in the urn. Draw
one ball at random. Let X1 denote the number on the ball drawn. Then X1

∼=
Bernoulli(p) with p ≡M/N . Now replace the ball in the urn, thoroughly mix, and
draw at random a second ball with number X2. Continue the process. This is the
sampling with replacement scheme. Then Tn ≡ X1 + · · · + Xn

∼= Binomial(n, p),
where p =M/N represents the probability of success in n independent Bernoulli(p)
trials.

Suppose now that the same scheme is repeated, except that the balls are not
replaced. In this sampling without replacement scheme X1, . . . , Xn are dependent
Bernoulli(p) rvs with p =M/N . Also,

P (Tn = k) =

(
M
k

)(
N−M
n−k

)
(
N
n

) , provided that the value k is possible.(6)

We write Tn ∼= Hypergeometric(M,N −M ;n).
Suppose now that sampling is done without replacement, but the N balls in

the urn bear the numbers a1, . . . , aN . Let X1, . . . , Xn denote the numbers on the
first n balls drawn, and let Tn ≡ X1 + · · · + Xn. We call this the general finite
sampling model. Call ā ≡∑N

1 ai/N the population mean and σ2
a ≡

∑N
1 (ai− ā)2/N

the population variance. Note that Xi
∼= (ā, σ2

a) for all 1 ≤ i ≤ n, since we now
assume n ≤ N . From (6.3.4), we have

0 = Var[
∑N

1 Xi] = N Var[X1] +N(N − 1)Cov[X1, X2],(7)

with the 0 valid, since
∑N

1 Xi is a constant. Solving (7) yields

Cov[X1, X2] = −σ2
a/(N − 1).(8)

As in (7), and using (8), Var[Tn] = nσ2
a − n(n− 1)σ2

a/(N − 1). Thus

Var[Tn/n] =
1

n
σ2
a

[
1− n− 1

N − 1

]
,(9)

where [1 − (n − 1)/(N − 1)] is called the correction factor for finite population
sampling.
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Exercise 1.2 Verify (8) and (9).

Exercise 1.3 Suppose that T1 ∼= Binomial(m, p) and T2 ∼= Binomial(n, p) are
independent. Then the conditional distribution of T1 given that T1 + T2 = k is
Hypergeometric(k,m+ n− k;m).

The Poisson Process

Suppose now that Xn1, . . . , Xnn are iid Bernoulli(pn), where npn → λ as n → ∞.
Let Tn ≡ Xn1 + · · ·+Xnn, so that Tn ∼= Binomial(n, pn). Simple calculations give

P (Tn = k)→ λke−λ/k! for k = 0, 1, . . . .(10)

When P (T = k) = λke−λ/k! for k = 0, 1, . . . , we write T ∼= Poisson(λ).
This is now used to model a Geiger counter experiment. A radioactive source

with large half-life is placed near a Geiger counter. Let N(t) denote the number of
particles registered by time t. We will say that {N(t) : t ≥ 0} is a Poisson process.
(Do note that our treatment is purely informal.) Physical considerations lead us
to believe that the increments N(t1),N(t1, t2], . . . ,N(tk−1, tk] should be independent
rvs; here, the increment N(ti−1, ti] ≡ N(ti)−N(ti−1) is the number of particle counts
across the interval (ti−1, ti]. We say that N has independent increments. Let us now
define

ν ≡ E N(1) ≡ [the intensity of the process].(11)

Let M denote the number of radioactive particles in our source, and let Xi equal 1
or 0 depending on whether or not the ith particle registers by time t = 1. It seems
possible to assume that X1, . . . , XM are iid Bernoulli. Since N(1) = X1 + · · ·+XM

has mean ν = E N(1) = M EX1, this leads to N(1) ∼= Binomial(M, ν/M). By the
first paragraph of this section, N(1) is thus approximately a Poisson(ν) rv. We now
alter our point of view slightly, and agree that we will use this approximation as
our model. Thus N(1) is a Poisson(ν) rv. Since M is huge, the accuracy should be
superb. Because of the stationary and independent increments we thus have

N(s, t] ≡ N(t)− N(s) ∼= Poisson(ν(t− s)) for all 0 ≤ s ≤ t, and(12)

N has independent increments.(13)

Agree also that N(0) ≡ 0. (This is actually enough to rigorously specify a Poisson
process.) Let Y1 ≡W1 ≡ inf{t : N(t) = 1}. Since

[Y1 > t] = [N(t) < 1] = [N(t) = 0],(14)

we see that 1− FY1(t) = P (Y1 > t) = P (N(t) = 0) = e−νt by (12). Thus Y1 has df
1− exp(−νt) for t ≥ 0 and density

fY1(t) = νe−νt for t ≥ 0;(15)

we write Y1 ∼= Exponential(ν). Now let Wm ≡ inf{t : N(t) = m}; we call Wm the
mth waiting time. We call Ym ≡ Wm −Wm−1, m ≥ 1, the mth interarrival time.
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In light of the physical properties of our Geiger counter model, and using (13), it
seems reasonable that

Y1, Y2, . . . are iid Exponential(ν) rvs.(16)

Our assumption of the previous sentence could be expressed as follows:

Y1 and N1(t) ≡ N(Y1, Y1 + t] = N(Y1 + t)− N(Y1) are independent,
N1 is again a Poisson process, with intensity ν.

(17)

We will call this the strong Markov property of the Poisson process. Additionally,

[Wm > t] = [N(t) < m],(18)

so that 1 − FWm(t) = P (Wm > t) =
∑m−1

k=0 (νt)ke−νt/k! ; the derivate of this
expression telescopes, and shows that Wm has density

fWm(t) = νmtm−1e−νt/Γ(m) for t ≥ 0.(19)

We write Wm
∼= Gamma(m, ν). Since waiting for m1 counts and then waiting for

m2 more counts is the same as waiting for m1 +m2 counts in the first place,

Z1 + Z2
∼= Gamma(m1 +m2, ν) for independent Zi ∼= Gamma(mi, ν).(20)

It is true that (19) is a density for any real number m > 0, and the property (20)
still holds for all positive mi’s.

Exercise 1.4 Verify (10), that Binomial(n, pn)→ Poisson(λ) as npn → λ.

Exercise 1.5 Verify (19), that FWn has derivative fWn .

Exercise 1.6 Verify that (20) holds for arbitrary real mi > 0.

Exercise 1.7 If X ∼= Poisson(ν1) and Y ∼=Poisson(ν2), then the conditional
distribution of X given that X + Y = n is Binomial(n, ν1/(ν1 + ν2)).

Exercise 1.8 Use Kolmogorov’s extension theorem to show that a Poisson process
N exists on (R[0,∞),B[0,∞)). Then apply the smoother realizations theorem 5.4.2.

Location and Scale

If a > 0, then

FaZ+b(x) = P (aZ + b ≤ x) = P (Z ≤ (x− b)/a) = FZ((x− b)/a)

holds for any FZ(·). Thus for any density fZ(·), the rv aZ + b has density

faZ+b(x) =
1
afZ(

x−b
a ) for −∞ < x <∞.(21)
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Normal Distributions

Suppose the rv Z has density

fZ(x) =
1√
2π

exp(−x2

2 ) for −∞ < x <∞;(22)

then Z is said to be a standard normal rv. So the rv X ≡ µ + σZ ∼= (µ, σ2) has
density

1√
2π σ

exp(− 1
2 (
x−µ
σ )2) for −∞ < x <∞,(23)

and we write X ∼= Normal(µ, σ2), or just X ∼= N(µ, σ2).

Exercise 1.9 Show that the formula fZ(·) of (22) is a density. Then show that
this density has mean 0 and variance 1. [Transform to polar coordinates to compute
(
∫
fZ(x) dx)

2 = 1.]

The importance of the normal distribution derives from the following theorem.
Recall that if X1, . . . , Xn are iid (µ, σ2), then

√
n (X̄ −µ)/σ ∼= (0, 1) for the sample

average X̄n ≡ (X1 + · · · + Xn)/n. This is only a statement about moments. But
much more is true. The powerful result we now state will be proved in chapter ??.
We will use it in the meantime for motivational purposes.

Theorem 1.1 (Classical CLT) If X1, . . . , Xn are iid (µ, σ2), then
√
n (X̄n − µ)→d N(0, σ2) as n→∞.(24)

Let σ > 0. Then the Zn below is asymptotically normal, in that

Zn ≡
√
n (X̄n − µ)/σ →d N(0, 1) as n→∞.(25)

Suppose that Z is N(0, 1). Then

FZ2 (x) = P (Z2 ≤ x) = P (−√x ≤ Z ≤ √x ) = FZ(
√
x )− FZ(−

√
x );(26)

thus Z2 has density

fZ2(x) =
1

2
√
x
[fZ(
√
x )− fZ(−

√
x )] for x ≥ 0.(27)

[Note that formula (27) is true for any density fZ(·).] Plugging into (27) for this Z
shows that

fZ2(x) = (2πx)−1/2 exp(−x/2) for x ≥ 0;(28)

this is called the Chisquare(1) distribution. Note that Chisquare(1) is the same as
Gamma(12 ,

1
2 ). Thus (20) establishes that

if X1, . . . , Xm are iid N(0, 1), then
m∑

i=1

X2
i
∼= Chisquare(m),(29)

where Chisquare(m) ≡ Gamma(m2 ,
1
2 ).
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Uniform and Related Distributions

Write X ∼= Uniform(a, b) if

fX(x) = 1
(b−a)1[a,b](x) =

1
(b−a) on [a, b].(30)

By far the most important special case is Uniform(0, 1). A generalization of this is
the Beta(c, d) family. We write X ∼= Beta(c, d) if

fX(x) = 1
β(c,d) x

c−1(1− x)d−1 1[0,1](x) =
1

β(c,d) x
c−1(1− x)d−1 on [0, 1],(31)

where β(c, d) ≡ Γ(c)Γ(d)/Γ(c+ d). Here, b > 0 and c > 0 are required.
Suppose that ξ1, . . . , ξn are iid Uniform(0, 1). Let 0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ 1

denote the ordered values of the ξi’s; we call the ξn:i’s the uniform order statistics.
It seems intuitive that ξn:i equals x if (i − 1) of the ξi’s fall in [0, x), 1 of the ξi’s
is equal to x, and n− i of the ξi’s fall in (x, 1]. There are n!/[(i − 1)!(n− i)!] such
designations of the ξni’s, and for each such designation the “chance” of the rv’s
falling in the correct parts of [0, 1] is xi−1(1 · dx)(1 − x)n−i. Thus

fξn:i(x) =
n!

(i− 1)!(n− 1)!
xi−1(1−x)n−i1[0,1](x), or ξn:i ∼= Beta(i, n−i+1).(32)

Exercise 1.10 Give a rigorous derivation of (32) by computing 1−Fξn:i(x) and
then differentiating it.

Exercise 1.11 Choose a point at random on the surface of the unit sphere (with
probability proportional to area). Let Θ denote the longitude and Φ denote the
latitude (relative to some fixed axes) of the point so chosen. Determine the joint
density of Θ and Φ.

The Cauchy Distribution

Write X ∼= Cauchy(b, a) if

fX(x) = 1/{aπ[1 + (x− b)2/a2]} on (−∞,∞).(33)

By far the most important special case is Cauchy(0, 1); we then say simply that
X ∼= Cauchy, and its density is given by 1/[π(1 + x2)] on (−∞,∞). Verify that
E|X | = ∞. We will see below that if X1, . . . , Xn are iid Cauchy, then the sample
average X̄n ≡ (X1+ · · ·+Xn)/n ∼= Cauchy. These two facts make the Cauchy ideal
for many counterexamples.

Double Exponential and Logistic Distributions

We say X ∼= Double Exponential(b, a) when (X − b)/a has density 1
2 exp(−|x|) on

the line. We say X ∼= Logistic(b, a) when (X − b)/a has density ex/(1 + ex)2 =
1/(e−x/2 + ex/2)2 on the line.

Exercise 1.12 Now, X ≡ F−1(ξ) has df F by the inverse transformation. So,
compute F−1 for the Logistic(0, 1) and the Double Exponential(0, 1) distributions.
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Rademacher Random Variables and Symmetrization

Many problems become simpler if the problem is symmetrized. One way of accom-
plishing this is by the appropriate introduction of Rademacher rvs. We say that ǫ
is a Rademacher rv if P (ǫ = 1) = P (ǫ = −1) = 1

2 . Thus ǫ
∼= 2 Bernoulli(12 )− 1.

We say that X is a symmetric rv if X ∼= −X . If X and X ′ are iid, then
Xs ≡ (X −X ′) ∼= (X ′ −X) = −(X −X ′) = −Xs; hence Xs is a symmetric rv.

Exercise 1.13 If X is a symmetric rv independent of the Rademacher rv ǫ, then
X ∼= ǫX always holds.

The Multinomial Distribution

Suppose that B1 + · · · + Bk = R for Borel sets Bi ∈ B; recall that we call this
a partition of R. Let Y1, . . . , Yn be iid rvs on (Ω,A, P ). Let Xi ≡ (Xi1, . . . , Xik)
≡ (1B1(Yi), . . . , 1Bk

(Yi)) for 1 ≤ i ≤ n, and set

T ≡ (T1, . . . , Tk)
′ = (

n∑

i=1

Xi1, . . . ,
n∑

i=1

Xik) = (
n∑

i=1

1B1(Yi), . . . ,
n∑

i=1

1Bk
(Yi)).(34)

Note that X1j , . . . , Xnj are iid Bernoulli(pj) with pj ≡ P (Yi ∈ Bj), and thus Tj ∼=
Binomial(n, pj) (marginally). Note that T1, . . . , Tn are dependent rvs. The joint
distribution of (T1, . . . , Tn)

′ is called the Multinomial(n, p ) distribution. We now
derive it. The number of ways to designate n1 of the Yi’s to fall in B1, . . . , Bk, and
nk of the Yi’s to fall in Bk is the multinomial coefficient

(
n

n1 . . . nk

)
≡ n!

n1! · · ·nk!
, where n1 + · · ·+ nk = n.(35)

Each such designation occurs with probability
∏k

1 pi
ni . Hence for each possible n,

P (T = n) ≡ P (T1 = n1, . . . , Tk = nk) =

(
n

n1 . . . nk

)
pn1
1 · · · pnk

k .(36)

It is now a trivial calculation that

Cov[Xij , Xil] = E1Bj (Yi)1Bl
(Yi)− E1Bj (Yi)E1Bl

(Yi) = −pjpl if j 6= l.(37)

Thus

Cov[Tj , Tl] = −n pj pl for all j 6= l.(38)

Thus (with Dp a diagonal matrix having each dii = pi)




T1
.
.
.
Tk



∼= n







p1
.
.
.
pk


 ,




p1(1− p1)
.
.
.

−pkp1

.
.
.

−p1pk
.
.
.

pk(1− pk)





 = n( p , [Dp − p p′ ] ).(39)
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Assorted Facts

Stirling’s Formula For all n > 1 we have

n! = ean nn+1/2 e−n
√
2π, where 1/(12n+ 1) < an < 1/(12n).(40)

Eulers’s Constant
∑n

i=1 1/i− logn ↑ γ ≡ 0.577215664901533 . . . .(41)

Exercise 1.14 (An added touch) If
∑∞

1 an < ∞, there exists a cn ↑ ∞ such
that

∑∞
1 cnan <∞.

Elementary Conditional Probability

One defines the conditional probability of the event A given that the event B has
occurred via P (A|B) ≡ P (AB)/P (B) when P (B) 6= 0. One then calls A and B
independent if P (A|B) = P (A), because the probability of A is then unaffected by
whether or not B occurred. Thus both of the following statements hold:

Definition: P (A|B) ≡ P (AB)/P (B)

leads to Theorem: P (AB) = P (B)P (A|B).
(42)

Definition: Independence means P (A|B) = P (A)

leads to Theorem: P (AB) = P (A)P (B) if A and B are independent.
(43)

The big advantage of computation of P (A|B) via the theorem of (42) is that one
can often revisualize P (A|B) in the context of a much simpler problem. Thus the
probability of drawing two Reds when drawing at random without replacement
from an urn containing 6 Reds and 4 Whites is P (R1R2) = P (R1)P (R2|R1) =
(6/10)× (5/9), where we revisualized to an urn containing 5 Reds and 4 Whites to
compute P (R2|R1) = 5/9. [Had we used sampling with replacement, our answer
would have been (6/10) × (6/10) via (43).] [In the next exercise, revisualization
works superbly to trivialize the problem.]

Exercise 1.15 (Craps, according to Hoyle) (a) The “shooter” rolls two dice,
and obtains a total (called the “point”). If “point” equals “seven” or “eleven,” the
game is over and “shooter” wins. If point equals “two” or “twelve,” the game is
over and “shooter” loses. Otherwise, the game continues. It is now a race between
“point” and “seven.” If “point” comes first, the “shooter” wins; otherwise, he loses.
Determine the probability that the “shooter” wins in the game of craps.
[When trying to “convert” a “point” of “ten” (say), we can revisualize and say that
on the turn on which the game ends the dice will be showing either one of the 3 tens
or one of the 6 sevens, and the probability of this conversion is clearly 3/(3 + 6).]
(b) (The Las Vegas game) The above game is favorable to the “shooter.” Thus
the version played in Las Vegas has different rules. Specifically, a “three” on the
first roll of the two dice is also an immediate loss for “shooter.” Determine the
probability that “shooter” wins the Las Vegas version of craps.
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2 Distribution Theory for Statistics

Convolution

If X and Y are independent rvs on (Ω,A, P ), then

FX+Y (z) = P (X + Y ≤ z) =
∫∫

x+y≤zdFX(x) dFY (y)

=
∫∞
−∞
∫ z−x
−∞dFY (y) dFX(x)

=

∫ ∞

−∞
FY (z − x) dFX(x) ≡ FX ∗ FY (z)(1)

is a formula, called the convolution formula, for FX+Y in terms of FX and FY (the
symbol ∗ defined here stands for “convolution”). In case Y has density fY with
respect to Lebesgue measure, then so does X + Y . In fact, since

∫ z
−∞
∫∞
−∞fY (y − x) dFX(x) dy =

∫∞
−∞[

∫ z
−∞fY (y − x) dy] dFX (x)

=
∫∞
−∞FY (z − x) dFX (x) = FX+Y (z),

we see that X + Y has a density given by

fX+Y (z) =

∫ ∞

−∞
fY (z − x) dFX(x).(2)

In case both X and Y have densities, we further note that

fX+Y (z) =

∫ ∞

−∞
fY (z − x)fX(x) dx ≡ fY ∗ fX(z).(3)

Exercise 2.1 Use (2) to show that for X and Y independent:
(i) X ∼= N(µ1, σ

2
1) and Y

∼= N(µ2, σ
2
2) implies X + Y ∼= N(µ1 + µ2, σ

2
1 + σ2

2).
(ii) X ∼= Cauchy(0, a1) and Y ∼= Cauchy(0, a2) has X + Y ∼= Cauchy(0, a1 + a2).
(iii) X ∼= Gamma(r1, θ) and Y ∼= Gamma(r2, θ) has X+Y ∼= Gamma(r1 + r2, θ).

Exercise 2.2 (i) If X1, . . . , Xn are iid N(0, 1), then the normed sample average
necessarily satisfies (X1 + · · ·+Xn)/

√
n ∼= N(0, 1).

(ii) If X1, . . . , Xn are iid Cauchy(0, 1), then (X1 + · · ·+Xn)/n ∼= Cauchy(0, 1).

If X and Y are independent rvs taking values in 0, 1, 2, . . ., then clearly

P (X + Y = k) =
k∑

i=0

P (X = i)P (Y = k − i) for k = 0, 1, 2, . . . .(4)

Exercise 2.3 Use (3) to show that for X and Y independent:

X ∼= Poisson(λ1) and Y ∼= Poisson(λ2) has X + Y ∼= Poisson(λ1 + λ2) .
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A fundamental problem in probability theory is to determine constants bn and
an > 0 for which iid rvs X1, . . . , Xn, . . . satisfy

(X1 + · · ·+Xn − bn)/an →d G, as n→∞(5)

for some nondegenerate df G. Exercise 2.2 gives us two examples of such conver-
gence; each was derived via the convolution formula. Except in certain special cases,
such as exercises 2.1 – 2.3, the various convolution formulas are too difficult to deal
with directly. For this reason we need to develop a more oblique, but ultimately
more convenient, approach if we are to solve problems of the form (5). This is taken
up in chapters 11, 13, 14, and 15.

Other Formulas

Exercise 2.4 Suppose that X and Y are independent with P (Y ≥ 0) = 1. Show
that products and quotients of these rvs satisfy

FXY (z) ≡ P (XY ≤ z) =
∫∞
0 FX(z/y) dFY (y) for all z,(6)

FX/Y (z) ≡ P (X/Y ≤ z) =
∫∞
0
FX(zy) dFY (y) for all z.(7)

If FX has a density fX , then changing the order of integration above shows that
FXY and FX/Y have densities given by

fXY (z) =
∫∞
0 y−1 fX(z/y) dFY (y) for all z,(8)

fX/Y (z) =
∫∞
0
y fX(yz) dFY (y) for all z.(9)

Exercise 2.5 Let Z ∼= N(0, 1), U ∼= χ2
m, and V ∼= χ2

n be independent.
(a) Establish these classically important results:

Z√
U/m

∼= Student’s tm .(10)

U/m

V/n
∼= Snedecor’s Fm,n .(11)

U

U + V
∼= Beta(m/2, n/2) .(12)

Here

ftm(x) ≡ Γ((m+ n)/2)√
πmΓ(m/2)

1

(1 + x2/m)(m+n)/2
for −∞ < x <∞,(13)

fFm,n(x) ≡
Γ((m+ n)/2)

Γ(m/2)Γ(n/2)

(m/n)m/2xm/2−1

(1 +mx/n)(m+n)/2
for 0 < x <∞.(14)

(b) Compute the kth moment of each of these three distributions.
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Exercise 2.6 If Y1, . . . , Yn+1 are iid Exponential(θ), then

(Y1 + · · ·+ Yi)/(Y1 + · · ·+ Yn+1) ∼= Beta(i, n− i+ 1).(15)

Exercise 2.7 Let X1, . . . , Xn be iid N(µ, σ2).

(a) Show that Wn ≡
√
n (X̄n − µ)/ σ ∼= N(0, 1).

(b) Show that (n− 1)S2
n/ σ

2 ≡∑n
1 (Xk − X̄n)

2/ σ2 ∼= χ2
n−1.

(c) Show that Wn and S2
n are independent rvs.

(d) Show that Tn ≡
√
n (X̄n − µ)/ Sn ∼= Student’s tn−1.

[Hint. Let Γ ≡ |[ γij ]| be an orthogonal matrix with all γ1j = 1/
√
n. Now let

~Z ≡ Γ ( ~X−µ~1 )/ σ. This yields iid N(0, 1) rvs Z1, . . . , Zn, with Wn = Z1
∼= N(0, 1)

and (n− 1)S2
n =

∑n
2 Z

2
k
∼= χ2

n−1. Apply exercise 2.5.]

Statistical Confidence Intervals

Example 2.1 Suppose we model the performances of n independent repetitions
X1, . . . , Xn of an experiment as iid N(µ, σ2) rvs. The previous exercise shows
that

√
n (X̄n − µ)/σ is a N(0, 1) rv independent of the sample variance estimator

S2
n ≡

∑n
1 (Xk − X̄n)

2/(n− 1) of σ2, and that Sn/σ ∼= {χ2
n−1/(n− 1)}1/2. Thus

Tn ≡
√
n [X̄n − µ]/Sn ∼= Tn−1 ≡ Student tn−1.(16)

Specify tp/2 such that P (−tp/2 ≤ Tn−1 ≤ tp/2) = 1−p; perhaps p = .05. Then with
the “large” probability of 1− p = .95 we have

1− p = P (−tp/2 ≤ Tn ≤ tp/2) = P (−tp/2 ≤
√
n [X̄n − µ]/Sn ≤ tp/2)(17)

= P (µ− tp/2 Sn/
√
n ≤ X̄n ≤ µ+ tp/2 Sn/

√
n ≤ X̄n)(18)

= P (X̄n − tp/2 Sn/
√
n ≤ µ ≤ X̄n + tp/2 Sn/

√
n) .(19)

That is:

The random interval X̄n ± tp/2 Sn/
√
n

will contain the unknown value of µ

an average of (1 − p)× 100% of the time.

(20)

So when we apply this to the data values x1, . . . , xn, we can have (1 − p) × 100%
confidence that the interval x̄n ± tp/2 sn/

√
n did enclose the true (but unknown)

value of µ. We say that

X̄n ± tp/2 Sn/
√
n provides a (1− p)× 100% confidence interval(21)

for the unknown mean µ. Or we say that

x̄n ± tp/2 sn/
√
n provides a (1 − p)× 100% numerical confidence interval(22)

for the unknown mean µ. There is a probability of 1−p (or a (1−p)×100% chance)
that the former will contain the unknown value of µ when the X-experiment is
repeated n times. There is a (1 − p) × 100% confidence (or degree of belief) that
the latter did contain the unknown value of µ after the X-experiment was repeated
n times giving the actual data values x1, . . . , xn. We call tp/2 sn/

√
n the numerical

margin for error exhibited by our experiment. 2
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Transformations of Random Variables

Exercise 2.8 Suppose X has density fX(·) with respect to Lebesgue measure
λn(·) on n-dimensional Euclidean space Rn.
(a) Let Y ≡ AX denote a linear transformation with A a nonsingular matrix. The
Jacobian of this linear transformation is

J ≡
∣∣∣
[ ∂(old)
∂(new)

]∣∣∣ ≡
∣∣∣
[∂xi
∂yj

]∣∣∣ = A−1, with |J |+ = |A−1|+ = 1/|A|+.

Verify that the rv Y has a density fY (·) with respect to Lebesgue measure that is
given by fY (y) = fX(A−1y)/ |A|+ on Rn.
(b) Suppose now that X has density fX(·) with respect to Lebesgue measure on a
region RX in Rn. Suppose the 1-to-1 transformation Y ≡ g(X) from RX to the
region RY ≡ g(RX) has a nonsingular Jacobian with continuous elements at each
point of the region. Show that Y has a density given by

fY (y) = fX(g−1(y))× |[∂(old)/∂(new)]|+.

(Any “nice” transformation is locally linear.)

Exercise 2.9 Suppose that U ≡ XY and V ≡ X/Y for rvs having joint density
fXY (·, ·) on the region where x > 0 and y > 0. The inverse transformation is
X =

√
UV and Y =

√
U/V with a “nice” Jacobian that is equal to 2v. Thus the

joint density of U, V is

fUV (u, v) =
1
2v fXY (

√
uv,
√
u/v )) on the appropriate (u, v)-region,

provided that the transformation is 1-to-1. Now evaluate fUV (·, ·) and fV (·) in the
following cases.
(a) X and Y are independent Exponential(1).
(b) X and Y are independent with density 1/(xy)2 on x, y ≥ 1. Evaluate fU (·).
(c) X and Y are independent N(0, 1). [Note that this transformation is not 1-1.]
(d) X ∼= N(0, 1) and Y ∼= Uniform(0, 1) are independent.
[This exercise demonstrates vividly the important role played by the regions RX
and RY .]



3. LINEAR ALGEBRA APPLICATIONS 437

3 Linear Algebra Applications

Notation 3.1 (Mean vector and covariance matrix) Let X ≡ (X1, . . . , Xn)
′

be a rv. Then E(X) ≡ µ ≡ (µ1, . . . , µn)
′, where µi ≡ E(Xi) is called the mean

vector. And Σ ≡ |[σij ]| ≡ |[ Cov[Xi, Xj ] ]| is called the covariance matrix. (By the
Cauchy–Schwarz inequality, both of µ and Σ are well-defined provided that each of
σii ≡ Var[Xi] ≡ Cov[Xi, Xi] is finite.) 2

Definition 3.1 (Linear algebra) We will operate on n-dimensional space Rn
with n× n matrices and n× 1 vectors.
(i) A matrix Γ with column vectors γi (that is, Γ = [γ1, . . . , γn] ) is called orthogonal
if Γ′ Γ = I. [Thus γ′i γj equals 1 or 0 according as i = j or i 6= j; when γ′i γj = 0 we
say that these vectors are orthogonal, and we write γi ⊥ γj .] Under the orthogonal
transformation of Rn onto itself defined by y = Γx, the image of each γi is the
standardized basis vector ei ≡ (0, . . . , 0, 1, 0, . . . , 0)′ with the 1 in the ith slot.
(ii) Call a symmetric matrix A positive definite (written A > 0) if x′Ax > 0 for
all vectors x 6= 0. Call it nonnegative definite (written A ≥ 0) if x′Ax ≥ 0 for all
vectors x 6= 0.
(iii) If A is symmetric and idempotent (that is, if AA = A), then A is called a
projection matrix (the symbol P is often used for a projection matrix).
(iv) Let Da be the diagonal matrix with dii = ai (and dij = 0 for all i 6= j).
(v) Let R[A] denote the column space of A; that is, it is the set of all vectors that
can be written as linear combinations of the column vectors of A.
(vi) Call x′Ax =

∑n
j=1

∑n
i=1 xi aij xj a quadratic form in the vector x.

What follows is the statistician’s main result from linear algebra. We simply
state it, then interpret it geometrically in discussion 3.1, and then put it into a very
useful format in discussion 3.2.

Theorem 3.1 (Principal axes theorem) Let A denote an arbitrary real and
symmetric matrix of rank r.
(a) There exists an orthogonal matrix Γ ≡ [γ1, . . . , γn] and a diagonal matrix D for
which we have the representation

A = ΓD Γ′ and/or Γ′AΓ = D with rank(D) = r.(1)

The γi are called eigenvectors, while the corresponding dii are called eigenvalues.
(See (39) below for further comments.)
(b) If A > 0 (A ≥ 0), then all dii > 0 (dii ≥ 0).
We can specify Γ such that d11 ≥ · · · ≥ drr > 0 = dr+1,r+1 = · · · = dnn.
(c) If P is a projection matrix, then all dii = 1 or 0. Moreover, we must have
r ≡ rank(A) = tr(D) = tr(A) =

∑n
1 aii.

Discussion 3.1 (Spectral decomposition) Consider a projection matrix P of
rank r. Then the transformation y = P x can be broken down as

Px = ΓD Γ′x = [γ1, . . . , γn]D [γ1, . . . , γn]
′x =

∑n
1 dii (γ

′
i x) γi ,(2)
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where (γ′i x) γi is the projection of x onto γi in the direction of γi, and where this
term is present when dii = 1 and is absent when dii = 0. Also, Px ⊥ (I − P )x,
where the transformation

(I − P )x =
∑n

i=1 [1− dii] (γ′i x) γi(3)

projects onto R[γr+1, . . . , γn] = R⊥[γ1, . . . , γr ]. Finally,

Px =
∑r

i=1 dii (γi γ
′
i )x = [

∑r
i=1 Pi ]x(4)

with Pi ≡ γi γ
′
i. This is called the spectral decomposition of the transformation

y = Px. 2

Exercise 3.1 (a) Show that for compatible matrices B and C,

tr(BC) = tr(CB) and rank(BC) ≤ rank(B) ∧ rank(C),(5)

giving rank(AΓ) = rank(A) above.
(b) Prove theorem 3.1(b)(c) using theorem 3.1(a).

(c) Show that R[A] = R[AA′ ] and R[A′ ] = R[A′A].

Proposition 3.1 (Properties of E(·)) (a) It holds that

E(AX B + C) = AE(X)B + C and Cov[AX,B Y ] = ACov[X,Y ]B′ .(6)

(b) Any covariance matrix ΣX ≡ |[ Cov[Xi, Xj] ]| satisfies ΣX ≥ 0.

Exercise 3.2 Prove proposition 3.1.

Discussion 3.2 (Versions of Σ− and Σ−1/2) Let X ∼= (µ,Σ). According to
the principal axes theorem, we can make the decomposition (for any orthogonal
matrix ∆ whatsoever)

Σ = ΓD Γ′ =

[
Γ

[
D1/2

0
0
0

]
∆′
] [

∆

[
D1/2

0
0
0

]
Γ′
]

=

[
Γ

[
D1/2

0
0
0

]] [[
D1/2

0
0
0

]
Γ′
]
= (ΓD1/2 )(D1/2 Γ′ ) ≡ AA′ ,

(7)

where D1/2 has the numbers d
1/2
ii on its diagonal and where A is n×k. The presence

of ∆′ ∆ (which equals I ) shows that this decomposition is not unique. Continuing
on gives

Σ = ΓD Γ′ = (ΓD Γ′) (ΓD Γ′) ≡ Σ1/2 Σ1/2,(8)

Σ−1/2 ≡ ΓD−1/2 Γ′, where d
−1/2
ii ≡

{
0 if dii = 0,

1√
dii

if dii > 0,(9)

Σ− ≡ ΓD− Γ′, where D− ≡ D−1/2D−1/2.(10)
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Note that

ΣΣ− Σ = Σ and Σ1/2 Σ−1/2 Σ1/2 = Σ1/2 ,(11)

Σ1/2 Σ−1/2 =

[
Ik
0

0
0

]
= Σ−1/2 Σ1/2 and ΣΣ− =

[
Ik
0

0
0

]
= Σ− Σ .(12)

These last two results are in keeping with the definition of generalized inverses. 2

Recall that the generalized inverse B− of the matrix B is defined to be any
matrix B− that satisfies BB−B = B. A generalized inverse always exists. It has
the following interpretation. Fix the matrix B and the vector c. Then

B β = c (with any c ∈ R[B] ) has the solution β̂ = B− c .(13)

(It is clear that such a solution does always exist, for a fixed c.) Suppose such a B−

exists, in general; which we accept, and will use freely. Then replace c in (13) by
each column of B, and see that such a B− must necessarily satisfy BB−B = B.

Theorem 3.2 (Properties of covariance matrices)
(a) The following results are equivalent for real matrices:

Σ is the covariance matrix of some rv Y.(14)

Σ is symmetric and nonnegative definite.(15)

There exists an n× n matrix A such that Σ = AA′. (Recall (7) for A.)(16)

(b) The matrix ΣX is positive definite (that is, ΣX > 0) if and only a vector c 6= 0
and a constant b do not exist for which c′X = b a.s.

Proof. Now, (14) implies (15): Σ is symmetric, since EYiYj = EYjYi. Also,
a′Σa = Var[a′Y ] ≥ 0 for all vectors a, so that Σ ≥ 0.
Also, (15) implies (16): Just recall (7).
Also, (16) implies (14): Let X ≡ (X1, . . . , Xn)

′, where X1, . . . , Xn are independent
N(0, 1). Let Y ≡ AX . Then Y has covariance matrix Σ = AA′ by (6). 2

Exercise 3.3 Prove theorem 3.2(b).

Exercise 3.4 Let X ∼= (θ,Σ) and let B be symmetric.
(a) E{(X − b)′B (X − b)} = tr(B Σ) + (θ − b)′B (θ − b).
(b) If Σ = σ2 I, then tr(B Σ) = σ2 tr(B) = σ2

∑n
i=1 bii.

(c) If Σ = σ2 I and B is idempotent, then tr(B Σ) = σ2 tr(B) = σ2 rank(B).

Exercise 3.5 For symmetric A there exists an upper (or lower) triangular matrix
H for which A = HH ′. If A > 0 (or A ≥ 0), we may suppose that all hii > 0 (or
that all hii ≥ 0).
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Discussion 3.3 (Best linear predictor and multiple correlation) Consider
the partitioned random vector[

Y0
Y

]
∼=
[[

0
0

]
,

[
σ00
σ0

σ′
0

Σ

]]
with |Σ| 6= 0 .(17)

The best linear predictor of Y0 based on Y is

α′
0 Y ≡ σ′

0 Σ
−1 Y (or α0 ≡ Σ−1 σ0) ,(18)

where “best” is in the sense that

Var[Y0 − β′ Y ] ≥ Var[Y0 − α′
0 Y ] = σ00 − σ′

0 Σ
−1 σ0 for all β.(19)

In parallel with this,

Corr[Y0, β
′ Y ] ≥ Corr[Y0, α

′
0 Y ] for all β.(20)

The maximized value of the correlation (that is, the multiple correlation coefficient)
is given by

ρ0·1,...,n ≡ Corr[Y0, α
′
0 Y ] =

√
σ′
0 Σ

−1 σ0
σ00

,(21)

and the variance of the best linear predictor is also easily seen to equal

Var[Y0 − α′
0 Y ] = σ00 − σ′

0 Σ
−1 σ0 = σ00 (1− ρ20·1,...,n ) .(22)

[Proof. The first holds, since

Var[Y0 − β′ Y ] = Var[ (Y0 − α′
0 Y ) + (α′

0 − β)Y ]

= Var[Y0 − α′
0 Y ] + 2 · 0 + (α0 − β)′ Σ (α0 − β)

≥ Var[Y0 − α′
0 Y ] .

The second holds, since

Corr2 [Y0, β Y ] =
(β′ σ0)2

σ00 β′ Σβ
≤ σ′

0 Σ
−1 σ0
σ00

,

with equality only at β = cΣ−1 σ0 (as follows from application of Cauchy–Schwarz).]

Simple linear regression model We now want the best linear predictor of Y
based on X . The conditional distribution of Y given that X = x is given by

Y
∣∣∣X = x ∼=

(
µY +

σXY
σ2
X

(x− µX), σ2
Y −

σ2
XY

σ2
X

)
= (α+ β x, σ2

ǫ ) ,(23)

expressing the moments in terms of

ρ ≡ σXY
σX σY

, β ≡ ρ σY
σX

, α ≡ µY − β µX , σ2
ǫ ≡ σ2

Y (1− ρ2) .(24)

This leads directly to the simple linear regression model that conditionally onX = x
the observations Yi satisfy

Yi = α+ β xi + ǫi where ǫi ∼= (0, σ2
ǫ ) are iid(25)

with

β = ρ
σY
σX

, σ2
ǫ ≡ σ2

Y (1 − ρ2) , α ≡ µY − µX β . 2(26)
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Discussion 3.4 (Conditional moments and projections) Suppose that

Y =

[
Y (1)

Y (2)

]
∼=
[[
µ(1)

µ(2)

]
,

[
Σ11

Σ21

Σ12

Σ22

]]
.(27)

Then the moments of the conditional distribution of Y (1) given that Y (2) = y(2) are
summarized in

Y (1)
∣∣∣Y (2) = y(2) ∼= (µ(1) + Σ12 Σ

−1
22 (y(2) − µ(2)), Σ11 − Σ12 Σ

−1
22 Σ21).(28)

To see this, just define

Z ≡
[
Z(1)

Z(2)

]
≡
[
(Y (1) − µ(1))− Σ12 Σ

−1
22 (Y (2) − µ(2))

Y (2) − µ(2)

]
.(29)

It is a minor calculation that

Z ∼= [~0,ΣZ ] ≡
[[

0
0

]
,

[
ΣZ,11
ΣZ,21

ΣZ,12
ΣZ,22

]]
=

[[
0
0

]
,

[
Σ11 − Σ12 Σ

−1
22 Σ21

0
0

Σ22

]]
.(30)

The exercises will show that

|ΣZ | = |Σ22| |Σ11 − Σ12 Σ
−1
22 Σ21| .(31)

[Proof. It is straightforward to compute ΣZ,12 = Σ12 − Σ12 Σ
−1
22 Σ22 = 0.

Trivially, we have ΣZ,22 = Σ22. Then

ΣZ,11 = Σ12 − 2Σ12 Σ
−1
22 Σ22 +Σ12 Σ

−1
22 Σ22 Σ

−1
22 Σ21(a)

= Σ12 − Σ12 Σ
−1
22 Σ21.(b)

Since Y (1) = µ(1) + Z(1) +Σ12 Σ
−1
22 Z

(2) with Y (2) − µ(2) = Z(2), conditionally

Y (1)
∣∣∣Y (2) = y(2) ∼= µ(1) + Z(1) +Σ12 Σ

−1
22 z

(2)(c)

∼= (µ(1) +Σ12 Σ
−1
22 z

(2),ΣZ,11)

= (µ(1) +Σ12 Σ
−1
22 (y(2) − µ(2)),ΣZ,11) ,

as required.] [See exercise 3.7 below for (31).] 2

Exercise 3.6 Consider the rvs Z(1) and Z(2) in (29). Suppose µ(1) = 0 and
µ(2) = 0. Let H0

1 and H0
2 denote the Hilbert spaces generated by the rv subsets

Y (1) ≡ (Y1, . . . , Yk) and Y
(2) ≡ (Yk+1, . . . , Yn), respectively. Show that Z(1) is the

projection of Y (1) into the Hilbert space (H0
2 )

⊥. (See (??.??.??).)

Discussion 3.5 (Partitioned matrices) Let

A ≡
[
A11

A21

A12

A22

]
, and write A−1 ≡

[
A11

A21
A12

A22

]
(32)

when the inverse exists. We agree that A11 is k × k.
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Exercise 3.7 (a) If |A22| 6= 0, show that |A| = |A22| |A11 −A12A
−1
22 A21|.

(b) If |A| 6= 0, show that |A+ x y′| = |A| (1 + y′A−1 x) for all vectors x, y.
[Hint. Appeal to

[
C
E

0
D

]
= |C| |D| and work with B ≡

[
I

−A12A
−1
22

0
I

]

for appropriate choices.]

Exercise 3.8 (a) Show that for a symmetric A having |A11| 6= 0 and |A22| 6= 0 :

A11 = (A11 −A12A
−1
22 A21)

−1 and A12 = −A−1
11 A12A

22 .(33)

A22 = (A22 −A21A
−1
11 A12)

−1 and A21 = −A−1
22 A21A

11 .(34)

[Hint. Start multiplying the partitioned form of AA−1 = I.]
(b) Obtain analogous formulas from A−1A = I.
(c) Show that

A11 A11 +A12A21 = I and A11 A
12 +A12A

22 = 0 . 2(35)

Exercise 3.9 Show that for symmetric A,

∂

∂β
[β′Aβ] = 2Aβ .(36)

Discussion 3.6 (Simultaneous decomposition) For a real symmetric matrix A
that is nonnegative definite (that is, A ≥ 0) we wrote

A = ΓD Γ′ and Γ′AΓ = D(37)

with d11 ≥ · · · ≥ drr > 0.
(A) We note that

|A− λ I| = |Γ| |D − λ I| |Γ′| = |D − λ I| = 0(38)

all have the same solutions d11, . . . , drr, 0, and thus d11, . . . , drr are indeed the
nonzero eigenvalues of A. Moreover, (37) gives

AΓ = ΓD or Aγi = dii γi for 1 ≤ i ≤ r,(39)

so that γ1, . . . , γr are the corresponding eigenvectors.
(B) Suppose A > 0 and B ≥ 0. Then

|B − λA| = 0 , |A−1/2BA−1/2 − λ I| = 0 , |A−1B − λ I| = 0
all have the same solutions λ.

(40)

[Just note that |B−λA| = |A1/2| |A−1/2BA−1/2−λ I| |A1/2| and |A−1| |B−λA| =
|A−1B − λ I| .] Writing A−1/2BA−1/2 = ∆Dθ∆

′ with ∆ orthogonal gives

B = (A1/2 ∆)Dθ (∆
′ A1/2) and A = (A1/2 ∆) (∆′ A1/2) .(41)

This last formula is called the simultaneous decomposition of A and B. 2



3. LINEAR ALGEBRA APPLICATIONS 443

Discussion 3.7 (a) (Cauchy–Schwarz) For all vectors x, y:

(x′ y)2 ≤ ‖x‖2 ‖y‖2,(42)

with equality (for y 6= 0) if and only if x = cy for some constant c.
(b) For any real symmetric matrix A > 0

max
a 6=0

a′Aa

a′ a
= d11(A)(43)

(as follows immediately from (1), with d11(A) the largest eigenvalue of A).
(c) Let A > 0, and fix C ≥ 0 and b 6= 0. Then

(x′y)2 ≤ (x′ Ax) (y′ A−1 y),(44)

with equality (when y 6= 0) if and only if x = cA−1 y for some c. Also,

min
a′1=1

{a′Aa} = 1/(1′A−1 1),(45)

with equality only at a0 ≡ A−1 1/(1′A−1 1). Also,

max
a 6=0

(a′ b)2

a′Aa
= b′A−1 b,(46)

with equality only when a = (some c)A−1 b. Also,

max
a 6=0

a′ C a

a′Aa
= max

a 6=0

(a′A1/2) (A−1/2 C A−1/2) (A1/2 a)

(a′A1/2) (A1/2 a)

= d11(A
−1/2 CA−1/2) = d11(C A

−1) .(47)

Here, (a′ C a) = (a′ b)2 is an important special case (already solved via (46)).

(d) Let A > 0, let Bk×n have rank(B) = k, and let bk×1 6= 0. Then

min
B a=b

{a′Aa} = b′ [BA−1B′ ]−1 b, is achieved at a0 ≡ B′ [BA−1B′ ]−1b .2(48)

Exercise 3.10 Prove (42)–(47) (the equality in (42) needs some attention).
[The harder (48) is proven below.]

Proof. Consider (48). Now,

a′Aa ≥ (a′ y)2

y′A−1 y
for all y 6= 0

=
[a′B′ [BA−1B′ ]−1 b ]2

b′ [BA−1B′ ]−1(B A−1B′ )[BA−1 B′ ]−1 b
if y ≡ B′ [BA−1 B′ ]−1b(a)

=
[b′ [BA−1B′ ]−1 b ]2

b′ [BA−1 B′ ]−1 b
for all a, using B a = b(b)

= b′ [BA−1B′ ]−1 b

yielding a bound not depending on a, which proves (48). 2
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Discussion 3.8 (General Linear Model) Consider the general linear model

Y = Xβ + ǫ ≡ θ + ǫ,(49)

where Xn×p is a matrix of known constants, where β p×1 is a vector of unknown
parameters, and where the rv ǫn×1 ∼= (~0, σ2I) with σ2 unknown. Recall that

R[X ] ≡ (the column space of X) = {y : y = Xa with any vector a}(50)

is a vector space (of rank r, say). Noting that θ = Xβ ∈ R[X ], the least squares

estimator (or LSE) of θ is defined to be that value θ̂ in R[X ] that minimizes

‖ǫ‖2 = ‖Y −Xβ ‖2 = ‖Y − θ ‖2 .(51)

This minimization clearly occurs when θ̂ is the projection of Y onto R[X ]; so

θ̂ = (the unique projection of Y onto R[X ] ) = (the unique LSE θ̂ of θ ).(52)

We note that β̂ need not be unique, since

any β̂ for which Xβ̂ = θ̂ gives this same LSE θ̂.(53)

Since (Y − θ̂) is ⊥ to R[X ], it must be that θ̂ and β̂ satisfies the normal equations

X ′(Y − θ̂) = ~0, or equivalently X ′Xβ̂ = X ′Y.(54)

Conversely, suppose β̂ satisfies the normal equations. Then Xβ̂ ∈ R[X ] with

X ′(Y −Xβ̂ ) = ~0, showing that (Y −Xβ̂ ) ∈ R[X ]⊥; and thus Xβ̂ and (Y −Xβ̂ )
must be the projections of Y onto the spaces R[X ] and R[X ]⊥, respectively. Thus

Xβ̂ = θ̂ ≡ (the unique projection of Y onto R[X ]) iff X ′Xβ̂ = X ′Y.(55)

Let Ω ≡ R[X ], let r ≡ rank(X), and let PΩ ≡ (the projection matrix onto Ω). We
will next prove that:

PΩ = X(X ′X)−X ′ ≡ (the hat matrix), with PΩ and (I − PΩ) idempotent.(56)

θ̂ ≡ Ŷ ≡ (the fitted value) = [X(X ′X)−X ′ ]Y = PΩY.(57)

ǫ̂ ≡ (the residuals) ≡ (Y − Ŷ ) = [I − PΩ ]Y = PΩ⊥Y.(58)

E θ̂ = θ, E ‖ǫ̂‖2 = E ‖Y − Ŷ ‖2 = (n− r)σ2 and Cov[θ̂ − θ, Y − θ̂ ] = ~0.(59)

Call RSS ≡ ‖ǫ̂‖2 = ǫ̂′ǫ̂ = ‖Y − Ŷ ‖2 = Y ′ [I − PΩ ]Y the residual sum of squares.

Proof. Let B ≡ X ′X , with R[B] = R[X ′] (by exercise 3.1(c)); and then define

c ≡ X ′Y ∈ R[X ′]. Then (by (13)) the projection of Y onto Ω is given by PΩY = θ̂ =

Xβ̂ = XB−c = X(X ′X)−X ′Y ; so PΩ = X(X ′X)−X ′. Also, E(θ̂) = E(PΩY ) =
PΩ EY = PΩ θ = θ. Finally, the residuals satisfy ‖Y − Ŷ ‖2 = (Y − Ŷ )′(Y − Ŷ ) =
Y ′(I − PΩ )′(I − PΩ )Y = Y ′(I − PΩ )Y , with expectation (given by exercise 3.4)
σ2 tr(I − PΩ) + θ′(I − PΩ)θ = σ2 tr(I − PΩ) + θ′ ~0 = (n− r)σ2.
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When rank(X) = p, then Xb = θ̂ has a unique solution β̂. Moreover,

β̂ = (X ′X)−1X ′Y(60)

is the unique solution of the normal equations (β̂ is now called the LSE of β ), and

E β̂ = (X ′X)−1X ′Xβ = β, so that β̂ is an unbiased estimator of β, and(61)

Σβ̂ = (X ′X)−1X ′(σ2I)X(X ′X)−1 = σ2 (X ′X)−1, with(62)

ES2 = σ2 for S2 ≡ ‖Y − Ŷ ‖2/(n− p), so that S2 is unbiased for σ2.(63)

We thus say that β is identifiable (and estimable) in this full rank case when
rank(X) = p (that is, when X is non-singular, or |X | 6= 0). 2

Exercise 3.11 (Gauss–Markov) Let Y = Xβ+ ǫ = θ+ ǫ (as in (49)) with the rv
ǫ ∼= (0, σ2I) and with rank(X) = r. Consider some c′θ (= c′Xβ). Show that among

the class of all linear unbiased estimators of c′θ, the estimator c′θ̂ is the unique one
having minimum variance (so, it is best). Determine its variance.

Exercise 3.12 (Distribution theory under normality) (a) Let Y = Xβ+ ǫ = θ+ ǫ
(as in (49)) with ǫ ∼= N(0, σ2I), and with r ≡ rank(X). Show that

(β̂ − β)′(X ′X)(β̂ − β) = ‖X(β̂ − β)‖2 = ‖ θ̂ − θ ‖2 ∼= σ2 Chisquarer.(64)

‖ǫ̂‖2 = ‖Y − Ŷ ‖2 = ‖Y − θ̂ ‖2 ∼= σ2 Chisquaren−r, or(65)

RSS/(n− r) = ‖Y − Ŷ ‖2/(n− r) ∼= σ2 Chisquaren−r/(n− r), and(66)

θ̂ and ǫ̂ = (Y − Ŷ ) = (Y − θ̂ ) are uncorrelated.(67)

When r ≡ rank(X) = p (so that β̂ is unique, identifiable, and estimable), show that

β̂ ∼= N(β, σ2 (X ′X)−1) and(68)

β̂ is independent of ǫ̂ = (Y −Ŷ ) = (Y − θ̂ ), and hence of ‖Y − θ̂ ‖2 also.(69)

(b) Suppose instead that ǫ ∼= (~0, V ), with rank(V ) = n. Define Z ≡ V −1/2Y ,
and show that this Z satisfies the linear model equation Z = X∗β + ǫ∗ where
X∗ ≡ V −1/2X and ǫ∗ ∼= (0, σ2 I). So, analogs of all the formulas in (a) are trivial.

Exercise 3.13 (Alternative minimization in the general linear model) In the
context of the model Y = Xβ + ǫ = θ + ǫ (as in (49)) we now let θ̃ denote that
θ ∈ R[X ] that minimizes (for some positive definite covariance matrix M)

‖ǫ ‖2M ≡ ǫ′M ǫ = ‖Y − θ ‖2M = ‖Y −Xβ ‖2M = (Y −Xβ)′M(Y −Xβ)(70)

(instead of minimizing ‖ǫ ‖2 (as in (49))). Show that (Y − θ̃) ⊥M R[X ], and so this
resulting weighted LSE θ̃ = Xβ̃ must satisfy the weighted normal equations

X ′Mθ̃ = X ′MY, (equivalently, X ′MXβ̃ = X ′MY ).(71)

Summary: Xβ̃ = θ̃ if and only if β̃ satisfies the weighted normal equations. Also,

β̃ = (X ′MX)−(X ′MY ) does satisfy the weighted normal equations and(72)

θ̃ = Xβ̃ = [X(X ′MX)−X ′M ]Y ≡ PΩY projects Y onto Ω ≡ R[X ].(73)
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Exercise 3.14 (Minimum variance unbiased linear estimators) (a) LetX1, . . . , Xn

be uncorrelated with common mean µ and common finite variance σ2. All linear
estimators T ≡ ∑n

1 aiXi having
∑n

1 ai = 1 are unbiased estimators of µ (that is,
ET = µ). Show that the choice with all ai = 1/n has minimum variance within this
class of linear unbiased estimators.
(b) Determine the minimum variance unbiased linear estimator of the common mean
µ when the variances are σ2/c1, . . . , σ

2
n/cn, with the ck being known constants.
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4 The Multivariate Normal Distribution
Definition 4.1 (Jointly normal) Call Y = (Y1, . . . , Yn)

′ jointly normal with 0
means if there exist iid N(0, 1) rvs X1, . . . , Xk and an n × k matrix A of known

constants for which Y = AX . [We again write Y in this section, rather than ~Y ,
when the context seems clear.] Note that the n × n covariance matrix ΣY ≡ Σ of
the random vector Y is

Σ ≡ ΣY = EY Y ′ = EAXX ′A′ = AA′.(1)

The covariance matrix of X is the k × k identity matrix Ik. We will write X ∼=
N(0, Ik), and we will write Y ∼= N(0,Σ). Then write Y ∼= N(µ,Σ) if Y − µ ∼=
N(0,Σ). Call Y multivariate normal with mean vector µ and covariances matrix
Σ. Call Y nondegenerate when |Σ| 6= 0 (that is, the determinant of Σ is not equal
to 0). Say that Y1, . . . , Yn are linearly independent if (rank Σ) = n. Of course, this
means that

Y is nondegenerate if and only if rank(A) = n.(2)

Now, Σ is symmetric. Also aΣa′ = Var[aY ] ≥ 0 for all vectors a. When aΣa′ ≥ 0
for all vectors a, the symmetric matrix Σ is called nonnegative definite, and one
writes Σ ≥ 0.

Theorem 4.1 (Densities) If Y ∼= N(0,Σ) is nondegenerate, then Y has density
(with respect to Lebesgue measure on Rn) given by

fY (y) =
1

(2π)n/2 |Σ|1/2 exp(−y′Σ−1y/2) for all y ∈ Rn.(3)

[Note that each possible normal distribution is completely determined by µ and Σ.]

Proof. Now, Y = XA, where AA′ = Σ, (rankA) = n, |A| 6= 0, X ∼= N(0, Ik).
It is trivial that

P (X ∈ Bn) =
∫
1BnfX(x)dx with fX(x) ≡ (2π)−n/2 exp(−x′x/2).(a)

Thus X = A−1Y gives

P (Y ∈ Bn) = P (AX ∈ Bn) = P (X ∈ A−1Bn) =
∫
1A−1Bn

(x)fX(x) dx

=
∫
1A−1Bn

(A−1y)fX(A−1y)|∂x
∂y
|+ dy

=

∫
1Bn(y)(2π)

−n/2 exp(−(A−1y)′(A−1y)/2)|∂x
∂y
|+ dy

=

∫

Bn

(2π)−n/2|Σ|−1/2 exp(−y′Σ−1y/2) dy,(b)

since (A−1)′(A−1) = (AA′)−1 = Σ−1 and

|∂x
∂y
|+ = |A−1|+ =

√
|A′−1||A−1| =

√
|Σ−1| = 1/

√
|Σ|.(c)

This is the required statement. 2
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Theorem 4.2 (Characteristic functions and representations)
(a) If we are given a random vector Y = An×kXk×1 where X ∼= N(0, Ik), we have

φY (t) ≡ E eit
′Y = exp(−t′Σt/2)(4)

with Σ ≡ AA′ and rank(Σ) = rank(A).
(b) If Y has characteristic function φY (t) ≡ EeitY = exp(−t′Σt/2) with Σ ≥ 0 of
rank k, then

Y ∼= An×kXk×1 with (rank A) = k and X ∼= N(0, I).(5)

(Thus the number of independent rvs Xi’s needed is equal to the rank of A.)

Proof. Our proof will use the fact that the characteristic function φY of any rv
Y is unique (as will be shown below in chapter 13.) [When a density function does
not exist, one can use this characteristic function for many of the same purposes.]
We observe that

φY (t) = E exp(it′AX) = E exp(i(A′t)′X)

= exp(−(A′t)′(A′t)/2) since E eitXj = exp(−t2/2)(a)

by example 9.3.2 below

= exp(−t′(AA′)t/2).(b)

The converse follows from (A.3.7). 2

Even when a multivariate normal rv Y does not have a density, the characteristic
function can often be manipulated to establish a desired result.

Theorem 4.3 (Marginals, independence, and linear combinations) Suppose that

Y = (Y1, . . . , Yk, Yk+1, . . . , Yn)
′ ∼= N(0,Σ) with Σ ≡

(
Σ11

Σ21

Σ12

Σ22

)
.

(i) The marginal covariance matrix of (Y1, . . . , Yk)
′ is the k × k matrix Σ11, and

(Y1, . . . , Yk)
′ ∼= N(0,Σ11).(6)

(ii) If Σ12 = 0, then (Y1, . . . , Yk)
′ and (Yk+1, . . . , Yn)

′ are independent.
(iii) If (Y1, Y2) is a jointly normal rv, then Y1 and Y2 are independent if and only if
they have the zero covariance Cov[Y1, Y2] = 0.
(iv) Linear combinations of normals are normal.

Proof. (i) Use the first k coordinates of the representation Y = AX .
(ii) Use the fact that one can factor

φY (t) = exp(−1

2
t′
(
Σ11

0
0

Σ22

)
t) .

(iii) Just apply (ii), as the other direction is trivial.
(iv) Zm×1 ≡ Bm×nY n×1 = B(AX) = (BA)X . 2
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Theorem 4.4 (Conditional distributions) If

Y =

[
Y (1)

Y (2)

]
∼= N

[[
µ(1)

µ(2)

]
,

[
Σ11

Σ21

Σ12

Σ22

]]
,(7)

then

Y (1)
∣∣∣Y (2) = y(2) ∼= N(µ(1) + Σ12Σ

−1
22 (y

(2) − µ(2)), Σ11 − Σ12Σ
−1
22 Σ21).(8)

Note that

|Σ| = |Σ22||Σ11 − Σ12Σ
−1
22 Σ21|.(9)

Proof. The vector

Z ≡
[
Z(1)

Z(2)

]
≡
[
(Y (1) − µ(1))− Σ12Σ

−1
22 (Y

(2) − µ(2))
Y (2) − µ(2)

]
(10)

is just a linear combination of the Yi’s, and so it is normal. We need only verify the
means and variances. But we did this in discussion A.3.4. 2

Exercise 4.1 Show that (Y1, Y2) can have normal marginals without being jointly
normal. [Hint. Consider starting with a joint N(0, I) density on R2 and move mass
in a symmetric fashion to make the joint distribution nonnormal, but still keeping
the marginals normal.]

Quadratic Forms

Exercise 4.2 Let Y n×1 ∼= N(0, I), and suppose that A is symmetric and of
rank r. Then Y ′AY ∼= χ2

r if and only if A is a projection matrix (that is, A2 = A).

Exercise 4.3 Let Y n×1 ∼= N(0, I). Suppose that A and B are symmetric and
both Y ′AY and Y ′BY have chisquare distributions. Show that Y ′AY and Y ′BY
are independent if and only if AB = 0.

Exercise 4.4 Suppose A and B are n × n projection matrices with ranks rA
and rB , and suppose AB = 0 and I −A−B ≥ 0. Then:
(a) I −A is a projection matrix of rank n− rA.
(b) I −A−B is a projection matrix of rank n− rA − rB .

Exercise 4.5 Suppose Y n×1 ∼= N(0,Σ), and let A be an arbitrary symmetric
matrix of rank r. Show that Y ′AY ∼= χ2

r if and only if AΣA = A.

The Multivariate CLT

The following result is theorem 10.1.3, but we also list it here for convenient referral.

Theorem 4.5 Suppose that the random vectors X1, . . . , Xn are iid (µ,Σ). Then
√
n (X̄n − µ)→d N(0,Σ) as n→∞.(11)
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Normal Processes

To specify a normal process, we must specify consistent distributions (in the sense
of Kolmogorov’s consistency theorem). But µ and Σ completely specify N(µ,Σ),
while the marginals of N(µ,Σ) are N(µ(1),Σ11). Thus a normal process exists,
provided only that the mean value function µ(·) on I and the covariance function
Cov(·, ·) on I × I are well-defined and are such that Cov(·, ·) is nonnegative definite
(meaning that every n-dimensional covariance matrix formed from it is nonnegative
definite).

We call {S(t) : 0 ≤ t <∞} a Brownian motion if S is a normal process having

ES(t) = 0 and Cov[S(s), S(t)] = s ∧ t for all s, t ≥ 0.(12)

Since this covariance function is nonnegative definite, a version of the process S
exists on (R[0,∞),B[0,∞)) by the Kolmogorov consistency condition. Then

U(t) ≡ −[S(t)− t S(1)] for all 0 ≤ t ≤ 1 is called Brownian bridge.(13)

It is a normal process on (R[0,1],B[0,1]) for which

EU(t) = 0 and Cov[U(s),U(t)] = s ∧ t− st for all 0 ≤ s, t ≤ 1.(14)
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References
I would like to use this discussion of the literature to say a very heartfelt “Thank
you!” to a number of people who have figured prominently in my professional life.
Especially, I want to thank my professors Fred Andrews (University of Oregon),
Donald Truax (University of Oregon), and Lincoln Moses (Stanford University),
whose voluntary efforts on my behalf had far-reaching consequences on most aspects
of my life. I shall offer some thoughts on my own personal history as well as the
subject matter of this book. My view is strongly affected by how I came to learn
about these things. Others have undoubtedly had different experiences.

Measure theory
This text begins with five chapters devoted to measure theory. Halmos (1950) has
had a major influence on what future books on measure theory and real analysis
would contain and how they would present the subject. Other books on measure
theory and real analysis that I have found to be especially useful include Royden
(1963), Hewitt and Stromberg (1965), Rudin (1966), and the nicely simplified pre-
sentation of Bartle (1966). Many theorems in this introductory part are to some
degree recognizable from several of these sources (and/or from the other sources
listed in the probability section below). Certainly, Halmos’s book was a popular
one while I was getting my M.S. degree in mathematics at the University of Ore-
gon, 1960–1962. My own introduction to “real and abstract analysis” came from a
beautiful course taught by Karl Stromberg. Later, Edwin Hewitt was a colleague
at the University of Washington. So it is a real pleasure for me to cite their work
at various points. Lou Ward taught the topology course that I took at Oregon. He
gave us a list of theorems, and we had to come up with proofs and present them.
That was the most fun I ever had in the classroom. A good deal of appendix B
reflects what I learned in his course. Kelly (1955), Copson (1968), and Housain
(1977) are useful published sources. Watching over the Oregon graduate students
in mathematics was Andrew Moursand, chairman. He really cared about all of us,
and I owe him my thanks.

Probability
Loève’s (1977–78, originally 1955) presentation has been a very influential work on
probability, certainly from the pedagogical point of view. To me, it refines and
specializes much general analysis to probability theory, and then treats a broad
part of this subject. Clearly, many learned probability from his text. Also, many
seem to follow notational conventions used in his book. But I was rather late in
learning from it. My original training was at Stanford from lectures that became
Chung (1974), and those lectures also reflected Chung’s efforts regarding translation
of Gnedenko and Kolmogorov (1954). I truly enjoyed Chung’s course, and his book.
Breiman’s (1968) style coincided most closely with my own. I particularly liked his
treatment of partial sum and empirical processes, as one would suspect from my own
research. I have sometimes used his text as a “permanent reference” to stand beside
my own notes in my courses on probability theory. My choice of notation has been
most influenced by Loève and Breiman. Feller (1966) has a different flavor from
most probability texts, and it includes various interesting approaches not found
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elsewhere. And it is informative on rates of approximation. Billingsley (1968)
created some excitement and spawned much interesting work, and a bit of that is
included here. Doob’s (1954) work on martingales has had a huge influence on the
subject. I find Meyer (1966) and Hall and Heyde (1980) particularly significant.
Lectures by Tom Fleming that led to Fleming and Harrington (1991) sparked part
of my martingale presentation here. Whittaker and Watson (1963) is still a superb
source for the gamma function. Lehmann (1959) has greatly influenced my view of
conditional probability and expectation. This brings me back to the University of
Oregon, and to Fred Andrews. Fred “recruited me to statistics” and then taught a
year-long course out of Lehmann’s book (even though I was the only student), and
he was one of those who lined me up for a National Science Foundation fellowship
that made it possible for me to go to Stanford University. Don Truax also figured
heavily in this. He cared about me, and I learned a lot from him. Thank you both!

The scene shifts southward. My years at Stanford were very fruitful, and I met
some fine people. Ingram Olkin is fun and a good teacher, and he went out of his
way to be helpful to me. The multivariate topics in appendix A represent things
I learned from him. Lincoln Moses was my thesis advisor. This relationship grew
out of a course in nonparametric statistics that I took from him. One of the topics
in his course was Charles Stein’s approach to the central limit theorem. Lin spoke
on it for three days, even though he had to leave a couple of well-acknowledged
gaps in his presentation—because he believed it was good work. That gave me
a profound respect for him as a teacher. The topic caught my imagination, and
chapters 11 and 17 reflect this. Lin was also my assigned advisor when I arrived at
Stanford. His second sentence to me was, “OK, Shorack, what’s important to you in
life”? My answer had a lot to do with the geography of the Pacific Northwest. Two
months before I graduated he responded on my behalf to a University of Washington
opening. Wow!

At Washington I had a chance to teach courses in probability and statistics. And
I learned a lot from my association with Ron Pyke, and later with Jon Wellner.
The presentations in parts of chapters 12 and 14 reflect this to varying degrees.
Fritz Scholz got me started on gamma approximations in the central limit theorem.
Likewise, work with David Mason on quantile functions, embedding, and trimmed
means is reflected in parts of chapters 6 and appendix C. I offer them all my thanks.

Obviously, I also owe a huge debt to “the literature” in regard to all these topics,
and I will list some of those sources below. However, this is a textbook. It is not
a research monograph. My emphasis is on presentation, not attribution. Often,
my citation concerns where I learned something rather than who did it originally.
And in some areas (especially, chapters 6 and 12) I have offered only a sampling
of the citations that I could have given. Moreover, I have often chosen to cite a
book instead of an original paper. My own work is cited “too heavily” because it
is written in the same style and notation as this book.

The bibliography contains quite a number of other books on probability theory,
and many are very good books. But it is the ones listed above that have had the
most influence on me. I hope that the reader will find that my book also has a
somewhat different flavor—a statistical flavor. That flavor will be enhanced if you
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think of chapters 16 and 17 and the first appendix of the original 2000 Edition as
part of the total package.

Special thanks to Chari Boehnke, Roger and Heather Shorack, the Michael
Boehnke family, the Barbara Aalund family, Kathleen Shorack, David Mason,
Michael Perlman, Fritz and Roberta Scholz, Jon Wellner, the Jan Beirlant family,
Piet Groeneboom, Frits Ruymgaart, Derek Dohn, and Pauline Reed for enabling
me to write this book.

Thanks Offered to Publishers
I would like to thank several publishers for allowing me to use material in this
text that originated elsewhere in my body of work. The citations made here are
to publications referenced below. Various parts of Chapter 12, a few small pieces
throughout the text, and much of the current Section 13.11 appeared in Shorack and
Wellner (1986) (published by John Wiley & Sons). (Regarding the 1st Edition: The
trimmed means example of Section 16.1 owes a substantial debt to Shorack (1997a)
(published by Gordon and Breach Publishers), the trimmed mean and bootstrap
examples of Sections 16.2 and 16.3 are largely from Shorack (1998) (published by
Elsevier Science), while the L-statistics example of Section 16.4 is largely from
Shorack (1997b) (published by Elsevier Science).) The inequalities from these pub-
lications upon which the applications are based are found at various points in the
current Chapter 6 and Appendix B. The author appreciates the generosity of these
publishers.
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Loève, M. (1977–78) Probability Theory. Springer-Verlag, New York.
Meyer, P. (1966) Probability and Potentials. Blaisdell, Waltham, MA.
Royden, H. (1967) Real Analysis. Macmillan, New York.
Rudin, W. (1966) Real and Complex Analysis. McGraw-Hill, New York.



454 PROBABILITY FOR STATISTICIANS

CHAPTERS 6, 12, 15 and Appendix C
Billingsley, P. (1968) Convergence of Probability Measures. John Wiley & Sons,
New York.
Breiman, L. (1968) Probability. Addision-Wesley, Reading, MA.
Chung, K. (1974) A Course in Probability Theory 2nd ed. Academic Press, New
York.
Cramér, H. and M. Leadbetter (1967) Stationary and Related Stochastic Processes.
John Wiley & Sons, New York.
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Paris.
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singular, 104
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distribution
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Poisson, 244, 248, 279, 291, 427
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Snedecor’s Fm,n, 434
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indicator function proof, 28, 38, 43, 72,

89, 91, 137
induced
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Bonferroni, 50
bounds on (1− x/n)n, 214
Cantelli, 168
Cauchy–Schwarz, 48, 443
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Daniels’ equality, 160, 343
dispersion, 139, 154
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geometric mean, 50
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Hájek–Rényi, 168, 188, 341
Hardy, 50
Hoeffding–Fréchet, 93
Hoffman–Jorgensen, 190
Hölder, 47, 48, 136, 154
Jensen, 49, 136, 139, 154, 188, 350
Khinchin, 154, 159, 265
Kolmogorov, 156, 164, 165, 187, 188,
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Kolmogorov’s other, 183, 184
Lévy, 157, 167, 175
Liapunov, 48, 136, 154, 231
Littlewood, 48, 154
Marcinkiewicz–Zygmund, 159
Markov, 49, 154
Mills’ ratio, 175, 177, 329, 330
Minkowski, 49, 54, 136, 154
moment expansions of chfs, 212, 214,
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monotone, 149, 168, 187, 188, 329
Ottaviani–Skorokhod, 158, 182
Paley–Zygmund, 49, 265, 332
Pyke–Shorack, 336, 342, 344
sandwiching the mean, 151, 152, 162,
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Shorack, 160
Shorack–Smythe, 187
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upcrossing, 355
Wellner, 50
Young, 47

infinitely divisible, 274
limits of, 274
log chf is never zero, 274
subclass I2, 274

information, 35
integrable, 38

collection, 55
ℓr, 61
L1, 37
L2, 84
Lr, 37, 47
L+r , 37
product, 90
uniformly, 55–57, 168, 355, 359, 360,

370, 374
integral, 38

improper, 45
Lebesgue, 37
Lebesgue–Stieltjes, 44
linearity, 38, 136
Riemann, 1, 81
Riemann–Stieltjes, 44, 45

integration by parts formulas, 111, 114
inverse image, 21, 22

of σ-fields, 22
inverse transformation, 107

Jacobian, 84, 436

Khinchin equivalent rvs, 151, 152, 162,
184

Kolmogorov
consistency theorem, 100, 308
extension theorem, 95
Gnedenko–Kolmogorov theorem, 119,

120
inequality (see also), 156
Kolmogorov–Smirnov, 324, 339
representation theorem for I, 276
SLLN (see also), 162, 268
zero–one law, 127, 148, 364

large deviations, 300
Lebesgue

decomposition theorem, 69, 72, 104
integral, 37
Lebesgue–Stieltjes measure, 4, 18,

20, 83, 84, 88
measure, 6, 23, 38, 73
measure λn, 88
sets, 15, 17
singular df, 77, 105
sums, 1
theorem re derivatives, 76, 77, 84

likelihood ratios, 353
LIL, 175, 178, 329, 331

see also Brownian motion, 309
limit theorem

general uan terms, 279
uan terms with negligible variances,

277
Lindeberg’s LF ǫn, 233, 235–237, 243, 253,

271
linear algebra, 437
Lipschitz condition, 80, 404
LLN, 165, 170, 173, 174

Glivenko–Cantelli (see also), 172
negligibility, 162, 169
random sample size, 167
SLLN of Kolmogorov, 153, 162, 167,

268, 363
strong, 168, 173, 178, 185, 333
U-statistics, 363
weak, 153, 170, 171, 173, 185, 226,

237, 280, 415
WLLN of Feller, 153, 162, 167
WLLN of Khinchin, 153

local limit theorem, 250

martingale, 186, 319, 325, 349
closes, 355, 359, 360, 375
CLT, 394
convergence theorem, 355, 359, 360
counting process, 353
decomposition, 369, 370, 384
equivalence, 186, 349
examples re empiricals, 341
exponential, 352, 381, 382
integrable, 350
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Mason theorem, 337, 340, 344
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measure, 4
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motivation, 4
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singular, 68, 69, 77, 104, 105
space, 4
total variation, 67
uniform convergence, 41, 55, 61, 62
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metric space, 301

Arzelà theorem, 403, 405
complete, 401
discontinuity set, 26
regular measure, 16
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separable, 301, 401

metrics
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Dudley, 404
Hellinger, 75, 407
Kolmogorov, 407
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Prohorov, 404
total variation, 74, 250, 407, 408

modulus of continuity, 403
moment, 46, 47, 113

conditional, 441
consistent estimation, 262, 263, 268
convergence of, 54, 183, 195, 199,
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correlation, 48, 129
covariance, 46, 113, 129, 447
cumulant, 217, 293
generating function, 300
mean, 46, 112, 113, 115
partial, 261
skewness γ1 and tail heaviness γ2,

217, 239, 288, 291–293, 296, 297
standard deviation, 46
variance, 46, 112, 113, 115

moments determine the normal, 199
moments of stable laws, 283
Monte Carlo, 174

natural parameters, 264
negligibility, 159, 160, 162, 164–169, 227,

259, 267, 268, 417, 420
uan, 236, 243, 259, 273, 334

nonnegative definite, 223, 439, 450
norm

q-norm, 337
rth mean, 46
sup, 21, 301, 338

null set, 15, 91

oh
o-plus ⊕, or “at most”, 9
big Op, 154
big O, 9
little op, 154
little o, 9

optional sampling, 354, 374, 381
order statistics, 116, 145, 146, 241, 333,

430
orthogonal, 229, 249, 346, 347, 437

partial sum process Sn, 228, 326, 327,
400, 403

partition, 37
P∞, 36
PLT, 227, 278

negligibility, 227
Poisson limit theorem, 227, 278

Poisson
compound, 276
generalized, 276

Poisson approximation, 291, 294
Poisson process, 353, 382, 427
positive definite, 437
positive part, 21, 115, 350
predictable, 369, 371, 384

variation, 371, 372, 383, 384
probability integral transformation, 109

inverse, 107
process, 98

convergence on (D,D), 402
counting, 353
empirical process (see also), 117
existence of on (C, C), 304
existence of on (D,D), 307
general, 99
independent increments, 303
normal, 98, 450
predicatable (see also), 369
realizations (equivalent), 98
realizations (smoother), 101
stationary, 303
stationary increments, 303
versions, 98

product
F0, F , A×A′ = σ[F ], µ× ν, 87
countable, 94
cylinder set, 94
Fubini theorem, 90
integrable, 90
measurable rectangle, 87
measure, 88, 89
measure existence, 88, 90
null sets, 91
sections, 89, 90
σ-field, 87
space, 87

product lemma, 213, 226, 233
product limit estimator, 389
projection, 441, 449

mappings πt1,...,tk , 98

qf, 107, 119
Winsorized qf K̃, 115, 119

quadratic form, 229, 437
quantile, 106, 108, 242, 246

median, 156, 240
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random censorship, 387
random sample size, 174, 245
random variable (see also rv), 33
ranks and antiranks, 117, 146, 240, 334
rationals, 142, 194, 222, 284, 306, 358
regression, 248, 440
regularly varying, 414
representation theorem

Kolmogorov for I2, 276
Lévy–Khinchin, 279, 286

revisualization, 309, 432
rv, 33

existence of, 27, 93, 96, 100, 103
extended, 33
Rademacher, 159, 182, 431
random vector, 92
random element, 98
random process, 98

sample
mean, 116, 240
median, 117, 240
quantiles, 242, 244
space, 20
trimmed mean, 116
truncated mean, 116
variance, 116, 239, 240, 246, 262,

263, 271, 435
Winsorized mean, 116
Winsorized variance, 116

series, 77
three-series theorem, 181, 184
two-series theorem, 181

set theory, 3
De Morgan’s laws, 3
λ-system, 9, 125
limsup (liminf), 7, 8, 127, 148
monotone class, 3, 10, 89, 143
pi system, 125
π̄-system, 3, 6, 9, 28, 125, 138, 317
set difference A \B, 3
σ-field, 3
symmetric difference A∆B, 3

σ-field, 3
µ∗-measurable sets A∗, 4
A = σ[C], 12
Âµ, the completed σ-field, 15

histories, 312, 351
induced F(X) ≡ X−1(B̄), 24
preservation of, 22
symmetric, 128
tail, 127

skewness γ1 and tail heaviness γ2, 288
Skorokhod

elementary theorem, 53, 110, 278
embedding (see also), 326
theorem, 236, 398, 406

slowly varying, 122, 261–263, 413
space

Borel, 142
measurable, 3
measure, 4
probability, 20, 33
sample, 20
vector, 28

spectral decomposition, 348, 437
St. Petersburg paradox, 168
stable laws, 281, 283, 284

strictly stable, 283, 285
symmetric, 284

statistics
L-statistics, 422, 424
permutation, 418
R-statistics, 240, 337, 416
U-statistics, 363

Stirling’s formula, 432
stopping time, 179, 312, 319, 326, 329,

351, 372, 374
strong Markov property, 179, 180, 283,

316, 428
subsequences, 56, 61, 194, 277, 397, 402

criterion relating →a.e. to →µ, 31
sufficient statistic, 145, 146
symmetrized rv, 156, 159, 166, 184, 232

tail equivalence
WLLN, 166

theorem
absolute continuity of the integral,

42, 55
Arzelà, 403, 405
Bochner, 223
Carathéodory extension (see also),

10, 12
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Carleman, 199
Chentsov, 402
chf (see also this topic), 206
continuous mapping, 194, 398
convergence implications, 58
convergence of types, 197, 264, 282,

283, 286
correspondence, 18, 20, 27, 83, 93
DCT, 41, 136
de la Vallée Poussin, 55, 57
Dini, 32
Donsker, 328, 346, 403
Doob, 228, 369, 370, 403
Dynkin’s π-λ, 9
Egorov, 61
Esseen’s lemma (see also chf), 218
Fatou’s lemma, 40, 56, 77, 136, 183,

236, 278
Fubini, 10, 90, 111, 112, 144
fundamental of calculus, 82
Gnedenko–Kolmogorov, 119, 120
Heine–Borel, 17, 19, 106
Helly selection, 194, 197, 199, 403
Helly–Bray, 53, 57, 193, 197, 277,

278
kinder and gentler, 198

Jordan–Hahn, 67
Kolmogorov (see also), 95
Kronecker’s lemma, 149, 164, 168
Lebesgue (see also), 69
Loève, 62
local limit (see also), 250
Lusin, 62, 63
Mann–Wald, 53, 194, 197, 229
Marcinkiewicz–Zygmund, 167, 178
Mason, 337, 340, 344
MCT, 40, 136
mg convergence (see also), 355
moment convergence, 54, 183, 195
monotone class of Halmos, 10, 89,

143
only the zero function, 31, 42, 91,

137
Pólya’s lemma, 195, 197
portmanteau, 196, 396
principal axes, 437

Prohorov, 401, 403
Radon–Nikodym, 72, 83, 130
residue, 203, 205
Riemann–Lebesgue lemma, 215, 219,

251, 297
Riesz, 31
Riesz–Fischer, 52
rth mean convergence, 178
Scheffé, 61, 250
Skorokhod (see also), 110
Slutsky, 33, 34, 206, 236, 245, 397
smoother realization of a process, 101
Strassen, 175, 331, 406
supporting hyperplane, 46, 50
Taylor, 78, 212
Tonelli, 90
Ulam, 405
unconscious statistician, 42, 73, 109,

130
uniform absolute continuity, 55
Vitali (see also), 56, 165
Weierstrass approximation, 172

tightness, 193, 195, 210, 401, 403
topology

boundary, 196
relative, 331, 390

triangular array, 225, 273
trigonometric identities, 348
trimmed, 115

fraction, 116, 411
mean, 115, 410

truncated, 152, 153, 253
mean, 115, 410
variance, 50

type, 105, 197
convergence of types, 197
theorem of types, 264

uan, 236, 243, 273, 334
uncorrelated, 129
uniformity class, 414
upcrossing, 355, 357, 360

Vitali
covering, 17, 76
theorem, 56, 61, 357, 361, 380
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waiting time, 180, 425
Wald’s identity, 180
Wasserstein distance, 110
Winsorized, 115, 152, 270

fraction, 116
mean, 115
moment, 261
outside, 115, 119, 259, 261, 269, 410
variance, 115, 261–263, 269


