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Abstract. Letd = (6p, 61) be a fixed vector irR2 with strictly positive components and suppose
00,01 > 0. Setoy = Ogog + 6101 and, ifxg, x1 € R", setxg = Ogxg + 61x1. Moreover, for any

Jj €1{0,1,0}, let cj: R"” — R be a continuous, bounded function and denot@pjycj (t,x,y) the
fundamental solution of the diffusion equation

2
b o 1
8_:: = —élAv - U—izcj(x)v, t>0 xeR".

1 6o 601 n
—cp(xg) < —colxp) + —c1(x1), x0,x1 €R
a9 00 o1
then by applying the Girsanov transformation theorem of Wiener measure it is proved that

Op Pog.co (1. X0, ¥9) = {08 Pog,co (s X0, Y0)1P07 %0 (02 pory e (£, X1, y7)}P201/ %

for all xq, xg, yo, y1 € R" andr > 0. Finally, in the last section, another proof of this inequality is
given more in line with earlier investigations in this field.

Mathematics Subject Classifications 1991): 60H30, 60J65.

Key words: Brownian motion, Hamilton—Jabobi—-Bellman equation, Girsanov transformation,
Brunn—Minkowski inequality.

1. Introduction

Suppose is a real-valued function defined on a bounded convex doikidim R"

and letH, be the operator—%A + ¢(x) in K equipped with the Dirichlet bound-

ary condition zero. Here, as usual,denotes Laplace operator. The functiois

called potential function. During the past twenty years we have encountered several
inequalities in diffusion theory which motivate either convex potential functions
(Brascamp and Lieb [6-7]) or so-called%-concave potential functions (Borell
[3-5]). Here recall that a functiolf is said to be—%-concave if f is either zero
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everywhere or strictly positive everywhere and such that the fungfti&lis con-
cave. The purpose of this paper is twofold. First, we want to point out a new method
in this context and second, we want to give a more unified approach than has been
done earlier. To begin with, however, we will tell more about the background.

Let p,.(t, x, y) denote the fundamental solution of the diffusion equation

2
% = %Av — ;c(x)v,t >0,xe K
with the Dirichlet boundary condition zero an> 0,x € dK. Hereo is a pos-
itive parameter. For short, we write, (¢, x, y) = p.(t, x, y). By applying log-
concavity of Gaussian measuresR¥i, Brascamp and Lieb ([6—7]) proved that
the fundamental solutiop. (¢, x, y) is a log-concave function afx, y) for fixed
t > 0, if the potential functior: is convex. Here recall that a functighis said to
be log-concave iff is nonnegative and the function fhis concave with values in
{—o0}UR. From the above, Brascamp and Lieb among other things concluded that
the ground state wave function of the Hamiltoniépis log-concave for a convex
potential functiorc (the result is put into historical perspective by Kawohl [12]).
Let g.(x, y) be the Green function of the operathy so that

gc(x,y) = / pe(t, x, y)dt.
0
A classical theorem by Gabriel says that the harmonic ball

{x € B; go(x,y) >r}

is convex for fixedy € K andr > 0 (see e.g. Hérmander [11]). Stated otherwise,
the Green functioro(x, y) is a quasi-concave function ofif y is fixed. In [3] we
applied the Gabiriel line of reasoning to a Green funcgefx, y) corresponding

to a—%-concave potential functionand obtained that.(x, y) is a quasi-concave

function of (x, y) if n = 2 and that the functiog..(x, y)ﬁ is a convex function
of (x, y) if n > 3. For short, givem > 2, we here say that the Green functign
is zfn -convex. Later, by combining Brunn—Minkowski theory and the Feynman—
Kac formula, we proved in [5] that the functionin{s” p.(s?, x, y)} is a concave
function of (s, x, y) €10, 00[ xK x K, if the potential function is—%-concave.
Interestingly enough, from this result, giver> 2, then—fz-convexity of the Green

function g. for a —%-concave potential function follows by very simple means
[5].
Now consider a situation where the potential function eventually depends on the
parametet as well as on the positionin R”. Let0 < o < 8. If ¢, (x) = ¢(x, 0)
and the function

c(x,0)

,xeK,a<o<B
o
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is convex, then Theorem 3.2 below implies that the function
olnfo"p., o, x, )}, (o,x,y) €la, Bl x K x K

is concave for fixed > 0. From this the above quoted results by Brascamp and
Lieb and the author follow at once. Theorem 3.2 is the main contribution of this pa-
per. Its proof is based on the Girsanov transformation theorem of Wiener measure
and ideas from the theory of stochastic optimal control. In particular, we obtain a
Brownian motion proof of the classical Brunn—Minkowski inequality. As far as we
know, this approach to inequalities of the Brunn-Minkowski type is new, although
very similar arguments appear in connection with the Merton portfolio problem in
the theory of finance (see e.g. Fleming and Soner [10], p. 204).

Finally, in the last section we give another proof of Theorem 3.2 more in line
with the papers [5—7].

2. The Hamilton—Jacobi-Bellman Equation

Suppos& is a positive parameter and consider the diffusion equation

9 2
8_1; = %Av — ;c(x)v, t>0, xeR"

with the initial condition
v(0,x) = f(x), x € R",
where f(x) > 0 for anyx € R". The substitutions
V =—c%lnv
and
F—0o?Inf
reduce the above Cauchy problem to the Hamilton—Jacobi—Bellman equation

v o1 2
o + E|vv|2 —e(x) = %AV, t>0, xeR" (2.1)

with the initial condition
V(,x)=F(), x e R".

To begin with in this section, we assume thand F are infinitely many times
differentiable with bounded derivatives of all order<. Our subsequent reasoning
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follows the Fleming and Soner book on stochastic optimal control [10] (especially
pp. 257-258).

Suppose > 0 is fixed and letP be Wiener measure on the Banach sp&ce
of all continuous functiong of [0, ¢] into R"” with w(0) = 0. If B(w) = w =
(@1(5), ..., w,(s))ogs<s» @ € R, thenB is a normalized Brownian motion iR”
relative to the probability measug that is,B is a centred Gaussian proces&in
relative to the probability measure with

EB B ool =] T
min(so, s1),i = j.
By setting
Bl (s)=x+0oB(s), s 20
the Feynman—Kac formula yields
v(t, x) = EP[e o2 FBI O o e(BI () ds)y

and the assumptions erand F imply that

inf - v(s,x)>0 (2.2)

0<s<t,xeR”
and

sup  |Vu(s, x)| < oo. (2.3)
0<s<t,xeR”

Letu(s), 0 < s < t, be a bounded, progressively measurable process and set
h(s) = h,(s) = / uM)da,0<s <t
0
and
dO(w) = e 22 o MOPd—Z fu@ do gp )y

Then, by the Girsanov theorem (see e.g. Nualart [15]),

/w<w+1h) dQ(w) = / ¢(w) dP(w)
Q o Q

for any positive measurable functignon €2 and it follows that

u(t, x) = EP[e Yot FBIO)+[ge(B () ds)y
= EQ[g Yo FBIO+hO)+ g (B (5)+h(s)) ds}y

— EP[e Vo ttFBIO+ho)+; C(BY (5)+h(s) ds} g 5,2 Jo )P ds=2 g u() dis);
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For short, we write
X(s) =X,(s) = BJ(s) + h,(s),0< s < ¢
so that
u(t, x) = EP[e Yo IFX )5 cX(5) b5} g1/20% g lu(s)Zds—F fou(s) do(s)
and the Jensen inequality yields
Inv(t, x) > —G—leP[Yu(t)], (2.4)
where
Y, (t) = F(X(1)) + /OI(C(X(S)) + 3lu()?) ds + o fguls) do(s).

Note that

EP [/ u(s) da)(s)] =0.
0

If we chooset in an appropriate way, it turns out that the random variable)
is constant with probability one, which implies that equality occurs in (2.4) for this
choice ofu. To find such a process first define

U(s,x) ==VV(@ —s5,x),0<s <t

From the assumptions enand F we conclude that the functiofi(s, x), 0 < s <
t,x € R", is bounded and continuous and, moreover, the equations (2.2) and (2.3)
imply that there exists a constafit> 0 such that

[U(@s,x) —U(s,y)| <Clx —y],0<s <t,x,y e R".
Therefore the stochastic differential equation

dX(s) =U(s, X(s))ds + o dw(s), 0< s < ¢t
with the initial conditionX (0) = x possesses a unique solution. Weggh) =
U(s, X(s)),0 < s < t, and haveX(s) = x + ow(s) + h,,(s) = BI(s) +

huy(s), 0 < s < t. Moreover, we claim that the random varialbdlg (¢) is constant
with probability one. To prove this claim we introduce the process

E(s) =V —s,X(s)) +/0 (c(X (1) + 3luo(M)>) ds + o f5 uo(r) dw (1)
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defined for all 0< s < ¢ and have, recalling the It6 lemma,

dé(s) = =Vt — s, X(s))ds + VV (¢ — s, X(5)) - (uo(s) ds 4+ o dw(s))

2
+%AV(¢ — 5, X(5)) ds + (c(X(5)) + L[uo(s)[?) ds

+oug(s) dw(s).

Moreover, since the functioW (z, x) satisfies the Hamilton—Jacobi— Bellman equa-

tion (2.1), d(s) = 0, and we conclude th&tis constant with probability one. In

particular,£(r) = Y, () is constant with probability one, which was to be proved.
From the above,

ueU(t)

v(t,x) = exp<— inf J(,x, u))
where
1 '
J(t,x, M) = _2E [Yu(t)]
o
and wherell () denotes the class of all bounded, progressively measurable processes

u(s),0<s <.
In the following, let

2 4 1 (RO g
vF (2, x) = EP[e Yo AP B0 el o) o

and

J(fc(t, X, U)

= éEP [F(Bf:(t) + hu (1)) +/ (c(BZ(s) + hy(s)) + 2u(s)|?) dsi|
0

for all continuous and bounded functiofisandc in R”. Then, from the above, it
is simple to conclude that

vl (t,x) = exp(— inf JX.(t,x, u)) . (2.5)

ueU(t)
Below we will also make use of the short-hand notation

_ 2 o 1 o
vé,c‘F(t, x) — EP[lA(B)(CT(t))e 1/(7 [F(Bx (I))-‘rfo C(Bx (?))ds}]

for any Borel setd in R”.
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3. Application to Diffusion Equations

In what follows,6 = (6, #1) denotes a fixed vector iR? with strictly positive
components. Ifg, x; € R, let

Xg = Ooxo + 01x1
and, if Ag and A; denote subsets &", let
Ag = {xg; x0 € Ap andx; € Ay}.
Suppose first thatg, 01 > 0 and letD;,i = 0,1, be subdomains dR".

Below we will often consider functiong;: D; — R, j = 0, 1,6, which satisfy
the inequality

1 6o 01
—@o(xg) < —@o(x0) + —¢1(x1), Xo € Do, x1 € D1.
Og oo o1
Note that this inequality is true in the following situations:

Casel: o9 = 01,00+ 601 =1 and
¥ (xg) < Bopo(xo) + 0hp1(x1), x0 € Do, x1 € D1.

Case2: ¢;(x) = wjz(x),j =0, 1, 8, where the); are nonnegative and
Vo (xe) < Ooo(xo) + 01¥1(x1), X0 € Do, x1 € D1.

4
Case3: ¢;(x) = #] =0, 1,6, where they; are positive and
j X p

Yo (x9) = Ooo(xo) + O1%1(x1), X0 € Do, x1 € D;.

In connection with the last two cases it is useful to know that the function

a+1l
a,k>0,0>0 (3.1)

ya()‘a G) =

is convex and positively homogeneous of degree onexfor 1 anda = 2,
respectively.

THEOREM 3.1. Let og,0;, > 0 and suppose;(x), Fi(x),j = 0,1,0, are
bounded, continuous functions defined forxalt R” such that

1 o 01
—cg(xp) < —colxg) + —c1(x1)
09 0o o1
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and
1 6o 01
— Fy(xg) < — Fo(xo) + — F1(x1)
Oy oo o1

for all xq, x; € R".

Then
vt (8, xg) = (k0 (1, x0)) 07 v L (1, x1)} RV (3.2)
for all xg, x1 € R* andr > 0.
Moreover,
Vg ! (1, X9) = {vg 8o (8, x0)} 0707 {ug 1 [3(r, x0) )20/ (3.3)

for all xg, x1 € R",t > 0and Borel setsig and A in R”.
Proof. Letug, u; € U(r) and define

ug(s) = Oouo(s) + O1u1(s),0 < s < t.
Then
B (s) 4 huy (s) = O0o(BR(s) + hug(s)) + 01(BI(s) + hyy (5))

forall 0 < s < r and every fixedv = B(w). Moreover, since the functiop;
defined by (3.1) is convex and positively homogeneous of degree one,

1 t
- [Fe(B;’j (1) + hyy (1) + /0 (co(BY(5) + huy (8)) + 3lug(5)1?) dS}

6 t
< U—‘; [FO(B;‘,’(r) + hyo () + /0 (co(B2(5) + hug(5)) + uo(s)1?) ds}

91 o1 ! o1 1 2
+a_1 Fi(By (1) + hy, (1)) + ; (c1(BI(s) + huy(5)) + 3lua(s)[9) ds
and hence,

Lpr Fop(BE(t) + hy, (1)) + t( (BZ(5) + huy (8)) + 3lug(s)[?) d
o 2] X0 ug 0 Co X0 S ug S > Ug (S A)
< i—ZEP [Fo<Bzg<r)+huo<t>>+ /0 (co(BP(s) + hug(9)) + 3luo(s)|?) ds}

+i_1lEP [Fl(Bfll(t) + huy (1)) +/0 (c1(BYH(S) + huy (9)) + 3lus(9)[?) ds}
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that is,

F F
09 J g, ¢, (1 X, Ug) < 00005 o

F
(7, xo0, o) + 6101J;, ., (¢, x1, uz).

From this the inequality (3.2) is an immediate consequence of (2.5) written in the
form

—oln v(fc(t,x) = oJ(t,x,u).

inf
ueU(t)

To prove the inequality (3.3) there is no loss of generality to assumel greatd
A1 are nonempty and compact.AfC R" is nonempty and compact aad> 0, let

d(x, A) =min{|x — y|; y e R"},x e R,
A* ={x e R";d(x,A) <¢)

and
@5 (x) =min(e, d(x, A)),x € R".

Then, if we define

b 61
~ _ . “v i 1
@Y. = 0g MIN (00, o1 (Ag)* @001

it follows that
1

—@e(xg) < %902 (x0) + ﬁwi (x1)
Op og o1 1t

for all xg, x; € R", and the inequality (3.2) gives

e 6ooo/09 e 0101/00
Vet Fo (1 xp) > UWAOJFFO(I xo0) vnl(pA1+Fl(t x1)
09,Co sy AO) = 00,0 s A0 01,1 s AL

for all xg, x; € R",t > 0 andm e N,. The inequality (3.3) now follows for all
nonempty and compaet, andA; by first lettingm — oo and then letting — 0.
This completes the proof of Theorem 3.1.

EXAMPLE 3.1. Suppos® = (6, 01) is a vector inR? with strictly positive

components such theg+6; = 1 and letf;, j = 0, 1, 6, be nonnegative continuous
functions inR" which satisfy the inequality

fa(xe) = foP(x0) f1*(x1)
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for all xo, x; € R". The Prékopa inequality says that

6o 61
/ Jo(x) dx > {/ fo(x) dx} {/ f1(x) dx}
Ag Ao A1

(Prékopa [16, 17]). In the special cage= 1, j = 0, 1, 6, this inequality reads
m,(Ag) = myP(Ag)m (A1)

wherem, denotes Lebesgue measureRt Sincem,(a¢A) = a"m,(A),a > 0,
the Prékopa inequality thus implies the classical Brunn—Minkowski inequality

1 1 1
my; (Ao + A1) = my (Ao) + my (A1)

valid for all nonempty Borel setdg andA, in R". Conversely, the classical Brunn—
Minkowski inequality implies the Prékopa inequality ([16—17]).

The Prékopa inequality is an immediate consequence of Theorem 3.1. To see
this there is no loss of generality to assume that

0<inff; <supfj <oo,j=0,10.
Furthermore, let > 0 and set

Fj=-ad%Inf;,j=0,1,06.
Then, ifog=01=0,c0 =c1 =cy =0, xg =x1 = 0andr = 1 in Theorem 3.1,
the inequality (3.3) says that

(%
|X|2 1

2 6o 2
fo(x)e 22 dx > { fo(x)e_lzxa_|2 dx} { fl(x)e‘lza_|2 dx}
Ao A1l

Ap

and in the limit asr — oo we obtain the Prékopa inequality.
There is a complement to the Prékopa inequality for Gaussian measures which
we would like to point out here. Put

(A) e_|2x_|§ &
Mo (A) = N
A N 2mo?

for any Borel setA in R" ando > 0. If we choose:; = F; =0, j =0, 1,60 and
xo =x1 = 0andr = 1in Theorem 3.1, the inequality (3.3) implies that

Moy (A9) = (1o (A0)} "7/ {p1gy (An) Y2/

for all Borel setsAg and A; in R". Hered may be any vector ifR" with strictly
positive components.



DIFFUSION EQUATIONS AND GEOMETRIC INEQUALITIES 59

It is well known that the Prékopa inequality implies log-concavity of Wiener
measure (Borell [1]) as well as various log-concavity properties of solutions to the
classical diffusion equation iR" with a convex potential function (Brascamp and
Lieb [6, 7]) (cf. Case 1 above). The approach in this section based on transforma-
tion of Wiener measure is sometimes more direct.

EXAMPLE 3.2. Consider the Cauchy problem

ov 1
ar 2

5 1
og°Av — —Zc(x)v
o

v(0,x) = exp<— F()ZC)) , t>0 xeR"
o

with ¢ and F both convex. Then, in view of Theorem 3.1, we rediscover a result
by Brascamp and Lieb stating that the functiot, x) = v(ic(t,x) is a log-
concave function of for fixedr > 0. Incidentally, let us note that the Hopf—Cole
substitution

V(t,x) = —o?VInu(t, x) = VV,(t, x)
reduces the above Cauchy problem to the Burgers equation

ov
ot
v(O,x) =VFx)A, t >0, x e R".

+ (v, V)V = 02AV + Ve(x)

Therefore, ifc and F are convex, the velocity field(z, x) is the gradient of a
convex function ofv for every fixedr > 0.

Under the stronger assumptions that the functioasd F are nonnegative with
V¢ and+/F both convex (cf. Case 2 above), the function

1
—V,(t,x),x eR",o >0
o

iSs convex.

Now let D be a region inR” and suppose the functions F: D — R are
continuous and bounded from below. We define the funciiam R" equal toc
in D and equal tao off D. Similarly, we define the functiod on R" equal toF
in D and equal tac off D and set

2( (RO 1~ po g
oF (1, x) = EP[e Vo FBLO) BT a)

Moreover, set

2( (RO !~ po .
v(f‘,’cF(t,x) — EP[].A(B;’(Z‘)) @ L/o"{(F(BY (1)+ o E(BY (S))ds}]
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for any Borel se# contained inD. If p, (¢, x, y) denotes the fundamental solution
of the diffusion equation

v _o*, ().t >0,xeD
— = —Av— —c()v,t>0,x
ot 2 o?

with the Dirichlet boundary condition zero en> 0, x € 9D,
vl x) = / 1y (x) e Yo F@p (¢, x,y)dy,t > 0,x € D.
D

Theorem 3.1 now implies the following result, the proof of which is excluded
here.

THEOREM 3.2.Letog, 01 > 0and letD;, i =0, 1, be subdomains &”. Further-
more, suppose;, F; : D; — R, j =0, 1,0, are continuous functions which are
bounded from below and such that

1 o 61
—cg(xp) < —co(xg) + —c1(x1)
Oy oo} 01

and

1 0 0
— Fy(xg) < = Folxo) + = Fi(x1)
09 00 o1

for all xg € Dgandx; € D;.
Then

F, F 6 F [%
Vet xg) = (vl (1, x0)) 0/ (] (1, xp)) o/ (3.4)
for all xg € Dg, x; € Dy andt > 0.

Moreover,

Ag, Fy Aop, F( 0 A1, F- %
VA L0 (8, x9) = (05002, x0)} 7077 (v 3 (1, x0)) oV (3.5)

for all xo € Do, x1 € D1,t > 0and Borel setsA; € D;,i =0, 1.

The following example draws the attention to a certain construction method of
—%-concave functions, which is immediate from the Brascamp and Lieb papers
([6-7]). Furthermore, we will point out that Theorem 3.2 here yields an alternative
to the Brascamp and Lieb approach. Below, wevfet= v/ andv? = v..

EXAMPLE 3.3. Suppos® = (6, 01) is a vector inR? with strictly positive
components such thég + 6; = 1 and suppos®;,i = 0, 1 are bounded domains
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in R". Furthermore, let;: D; — R, j = 0,1, 6, be continuous functions which
are bounded from below and such that

co(xp) < Ooco(xo) + O1c1(x1)
for all xg € Dy andx; € D;. Then, by Brascamp and Lieb ([6-7])

Vey (1, Xg) = (Ve (2, X0)} 00y (2, X1) )™

for all xg € Dgandx; € D;. Alternatively, this inequality follows from Theorem 3.2.
The Prékopa inequality now gives that

6o 01
/ Ve, (t, x) dx > {/ Veo (2, X) dx} {/ Ve, (2, X) dx} .
Dy Dg Dy

Moreover, since the limit

1
Ae;(Dj) = —tll)rrgo;ln/ v, (, x) dx

Dj

is equal to the smallest eigenvalue of the opera{ém + ¢j(x) in D; with the
Dirichlet boundary condition zero, Brascamp and Lieb ([6—7]) concluded that

)\’CQ (DQ) > GOA'Co(DO) + 01)"61(D1)~

For a zero potential itD, Ag(@D) = a?Ao(D), a > 0, and it follows that

o 2(Dy) = 6org 2 (Do) + 61105 (Dy)

|ij :0,j20,1,9.

From the above it is possible to construe%-concave functions as follows.
SupposeX is a bounded convex domainRi" and letF = {0} x R"~. We define
R = {x € R"; (x + F) N K # ¢}. Furthermore, lef] be the negativgn — 1)-
dimensional Laplace operator({n+ F)N K equipped with the Dirichlet boundary
condition zero on the relative boundary @f + F) N K viewed as a subset of
x + F.If x(x) denotes the smallest eigenvalueHy for x € R, then the function
A(x), x € R, is —1-concave.

COROLLARY 3.1. Letog,01 > Oand letD;,i = 0, 1, be subdomains dR".
Furthermore, suppose;: D; — R, j = 0,1, 6, are continuous functions which
are bounded from below and such that

1 o 01
—cg(xp) < —colxg) + —c1(x1)
09 0o o1
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forall xg € Dgandx; € D;y.
Then

n
k
po‘g,cg (ta X0, J’(?) Haé )

k=1
n 6oo0/00 n tho1/01
> Poo.co (t, X0, yo) 1_[ a(()k) } {pal,cl (t, X1, yl) 1_[ aik)
k=1 k=1
for all xo, yo € Do, x1,y1 € Dy ands > 0and all vectorsag = (aS’, ..., a")
anda; = (a!”, ..., a) with nonnegative components or, stated otherwise,

GerpUg,Cg (tv X@, }’9) 2 {ngao,co(t» xOv yO)}QOUO/GH {Ufpcrl,cl (ta -xlv yl)}9001/09

for all xq, yo € Do, x1, y1 € D1 and: > 0.

Corollary 3.1 is an immediate consequence of Theorem 3.2 and the following
standard lemma in Brunn—Minkowski theory.

STANDARD LEMMA. Suppose¥: [0, co[x[0, co[— [0, co[ is a continuous,
positively homogeneous function of degree one, increasing in each variable sepa-
rately, and such tha® (¢, n) = 0, if £ = 0 or n = 0. Moreover, letQqg, 2; C R”
be open and supposg: 2; — [0, oo, j =0, 1, 6, are continuous functions.

The following assertions are equivalent:

(i)

/ o(x)dx > W (/ @o(x) dx,/ @1(x) dX)
Ag Ap Ax

for all Borel setsA; € Q;,i =0, 1;

(i)
n n n
k k k
oot [ > w (Wo) [Ta. pa0 [T >)
k=1 k=1 k=1
for all xo € Q0,x1 € 21, and all vectorsag = (a$”, ...,al") anda; =
@, ..., al") with nonnegative components.

In particular, if og, o1 > 0, the following assertions are equivalent:

(i)’

6poo/ 00 6101/09
/ @o(x)dx > {/ ®o(x) dX} {/ @1(x) dX}
Ag Ao A1
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forall openA; € Q;,i =0, 1;
(i)’
04 9o (xg) = {08 90(x0)}"7 7 (o] @1 (x1)}17/ %

for all xg € Qg, x1 € Q1.

The equivalence ofif and {i) in the Standard Lemma is proved in [2] and [5].
In view of this result, the equivalence aj'(and (i)’ above is a consequence of the
following lemma.

LEMMA 3.1. Letog, o1 > 0and let&, n and¢ be nonnegative real numbers such
that

olE > {061”}0000/09{an}Oldl/Ue. (3.6)
Then

n n 9000/09 n
k k k
e[Ta > {nnag>} {;na;>}
k=1 k=1 k=1

6101/09

for all vectorsap = (ai”,...,a$") anda; = (ai”, ..., a") with nonnegative

components.
Proof. The function

A
oln—,o,A>0 (3.7)
o
is concave and positively homogeneous of degree one. Therefoig, i
@, ..., a8")anda; = (a\”, ..., a{") are vectors with nonnegative components,
6poo/ 09 6101/09
aék) a(()k) a;(l_k)
—_— > 11— — k=1, ...,n.
Op 00 01

By multiplying all thesen inequalities and the inequality in (3.6), Lemma 3.1
follows at once.

Again let D be a subdomain oR" and suppose is a continuous potential
function defined inD which is bounded from below. The solution of the diffusion
equation

ow 4
EZEAw—c(x)w,t >0,xeD
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with the initial condition
w0, x) =14(x),x € D

and with the Dirichlet boundary condition zero on- 0, x € 0D, is denoted by
w(t, x). Clearly,

wi(t, x) = v, x).
Moreover, if
qg=0"c
we have
vyt x) = EP[14(B () e Yo" Joa(B7 ()
= EP[14(B (1)) e fo?BI G0 &
and since the stochastic procesges (s)),>o and(B(GZS))s>o are equivalent,
v0, x) = EP[14(Bl(o?n))e o foeBiri &y
= EP[lA(Bi(azt))e—fé’z’5<B}-(s>>dc].
Accordingly,
wl (0%, x) = v}, %)
and writing p1 (7, x, y) = p.(t, x, y) we have
pc(Uzt, X, ¥) = Pog(t, X, ).

COROLLARY 3.2. LetD;, i = 0, 1, by subdomains d®”". Furthermore, suppose
cj:D; — [0,00[, j =0, 1,0, are continuous functions such that

c; " (x) = bocg " (x0) 4 b1¢; T (x1)

for all xg € Dg, x1 € D1.
Then

wl (55, x9) = {wi0(s5, x0)} 0 fw /i (7, x1)} 4/ (3.8)

for all xg € Dg, x1 € D1, sg, s1 > 0and all Borel setsA; € D;,i =0, 1.
Moreover,

S8 Dey (555 Xos ¥9) = {58 Deo (555 X0, Y0) YO (57 pey (52, x1, y1)}P=H/% (3.9)
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for all xq, x1, yo, y1 € R" andsg, s1 > 0.

Here 02 shall be interpreted a=.
A slightly weaker result than Corollary 3.2 is obtained in [5].

Proof. Without loss of generality we may assume that the potential functions in
Corollary 3.2 are strictly positive. Lel, o, > 0 and define

qucrfcj, j=0,106.

Then

1 6o 01
—qo(x9) < —qo(xo) + —q1(x1)
Oy oo o1

for all xo € Do, x1 € D, since the function/, defined by (3.1) is convex and
positively homogeneous of degree one (cf. Case 3 above). The inequality (3.8)
now follows at once from Theorem 3.2 and the inequality (3.9) follows from (3.8)
and the Standard Lemma. This concludes our proof of Corollary 3.2.

EXAMPLE 3.4. Suppos« is a bounded, convex domain Rf" and letc: K —
[0, +o0[ be a continuous function. Furthermore, Yebe a killed Brownian motion
in K such that, for any starting poigy € K andm € N,

P[Y(tl) € Ala ey Y(tm) € Am|Y(0) = )’0]

= / Hpc(lk — -1, Ye—1, Vi) dy1 ... dy,
A

1X... XA k=1

Dynkin [8]). In our point of view the process is killed at the boundary oK .
Let A be a Borel setirK . If the procesy’ starts at the point € K, the expected
occupation time ofA is given by

UA(X):/ /Pc(t»x,J’)dtd)’-
0 A

The potentiall 4 need not be quasi-convaceAfis convex (in the Newtonian case
n = 3 andc = 0, the potentiallU, cannot be quasi-concave for all> 2 and
O<e<l,ifA={x;0<x <10 x; €£emin(xy,1—x1),i =2 3} and

K = {x; |x| < r}). The situation is different if we change time to log-time. Here
7 is called log-time, ift = ¢* andr is usual time. If the process starts at the point
x € K, the expected occupation log-time #fis given by

Ul = / /pc(e’,x,y) dr dy
—o00 JA

o0 1
= 2/ /pc(sz,x,y)—dsdy
0 A N

forall0=1m<n <t <... <t,andall Borel seta\; C K (for details, see e.g.
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In what follows, suppose the functian K — [0, oo is —%-concave and let
A C K be open and convex. Moreover, t= (6, 61) be a vector inR? with
strictly positive components such thgt+ 6; = 1 and supposeg, x1, yo, y1 € K
andsg, s1 > 0. Finally, letay = (a(()l), ,a™y andag = (ail), al™™) be
vectors inR"*! with nonnegative components. As the function in (3.7) is concave,
Corollary 3.2 and the Standard Lemma now imply that

1 n+1

2 k

pc(se,Xe,ye)—]_[aé)
50 j=1

1 n+1 boso/se 1 n+1 0151/56
k k
> 1 pe(s. x0. yo) = [ [ as” pe(s3, x1, y)— [ 4"
50 1 51

and, accordingly,

1 n+1
2 k
pc(se,Xe,ye)—]_[aé)
56 f=1

1 n+1 1 n+1

: 2 k 2 k

> min pC(S07-x07 yO)_l_[a(()), pC(s]_axla Y1)_1_[a;(1) .
50 j=1 121

By applying the Standard Lemma with(¢, n) = min(&, n) it follows that
Uy(xg) > min(Uy° (xo). Uy (x1))

for all xo, x1 € K and we conclude that the functidi®® is quasi-concave.

Again, as in Example 3.4, suppose the potential funatidm—%-concave and
defined in a bounded convex domdinin R”. If

8c(x,y) =/ pe(t,x,y)dt
0

we remarked above that the potential

/gc(x, y)dy,x € K
A

need not be quasi-concave evemifC K is convex. However, this potential is
quasi-concave iA = K. In fact, by applying the maximum principle of subhar-
monic functions we concluded in [4] that the function

,// g(x,y)dy,x e K
K
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is concave. The special case= 0 was settled independently and at the same
time by Kawohl [13] using a similar method. Actually, we provided in [4] that the
function

1/(2+p)
} , xeR"

{/Bgc(x, »fP(y)dy

is concave if 0O< p < 1, f > 0is concave and the potential functioris —%-
concave. We think a Brownian motion approach to this property of the Green
functiong.(x, y) would be of great interest.

4. An Alternative Proof of Theorem 3.1

In view of the Standard Lemma, Theorem 3.1 and the following theorem are equiv-
alent.

THEOREMA4.1.Letoy, 01 > 0and suppose;:R" — R, j =0, 1, 6, are bounded,
continuous functions such that

) 01
—cp(xg) < —colxo) + —c1(x1)
09 0o o1

for all xg, x; € R". Then

0 Poy.cs (12 X0, ) = {08 Pop.eo (1, X0, Y0)} 707 {0 oy ey (1, X1, y1) } 17
for all xg, x1, y0, y1 € R" andz > 0.

In this section we want to show that the Standard Lemma implies Theorem 4.1
without any use of the Girsanov theorem. To this end we first discuss a suitable
representation of the fundamental solutipp.(z, x, y). In this discussion it is
assumed that the potential functiorR” — R is bounded and continuous.

To begin with consider the Fenyman—Kac formula

vf (1, %) = EP[e Yo F(BI0)+]p (BT () ds}
so that
_ 2
Ve (2, x) =/ e "V pye(t, x, y) dy
with

Poc(t, X, y) = p(o?t, x, y)E[e 7" locBI6N s go ) — g1
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p(tx y)_—ie‘ ylz/tl>0)€y€R
s Ny ,—tn ’ L) .

Recall that

P[B;’(sl) € d)C]_, ey B;Z(SN) S d)CN]

N
2
:l_[p(a (Sk — Sk—1), Xk, Xp—) dxg . ..dxy, 0 <51 < ... <spy
k=1

wheresg = 0 andxg = x. The Brownian bridge with standard deviatien> 0
which starts at the point € R” at time 0 and ends at the poipte R" at time
t > 0is denoted by

BY! = (BY(9))oss<i-

By definition, B7",(0) = x and B} (t) = y, and if

O=so<s1<...<Sy <syp1=t (4.2)
then
P[B{(s1) € dxy, ..., By (sy) € ]
N-+1
oy ... dxy
=[] pe®(st — st-1) X 34m1) ———,
Py p(o?t,x,y)

wherexg = x andxy 1 = y. Therefore, ifs;, ... sy are asin (4.1) ang: RY — R
is a bounded, continuous function,

E[@(B7 (1), - .., BY(sw))]
= Elp(B] (s1), ..., B] (sn)|B] (t) = y]
and it follows that
Prclt, X, y) = plo’t, x, y)E[e Mo oeBion ),

Now let N € N, and set

. t
- N+1

= &N

sr=ssv=¢k, k=0,...,N+1,
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and

AN — Ev[e—s/o-2 ZQI:lC(B-ffV (Sk))]
Clearly,

lim Ay = E[e Yo JocByGo)dsy.
N—o00

Furthermore,
N+1
dxy...dx
AN — / e_a/UZlecV:lC(xk) 1_[ p(o,zg’ Xk, kal) 12 N
RnN k=1 p(G tax? )’)

wherexg = x andxy,1 = y. A rewriting gives

Xf—X, 2
! e e | _du . doy
~ p(o?,x,y) Jran «/27'[802n(N+1)

and we have

. —8/02{12”2“
Poct,x,y) = lim / e 2=t
N RnN

—>00

Ay

%‘ﬂzgﬂcu@} dxq...dxy
(cf. Feynman [9]).

Proof of Theoremd.1. If xq, ..., xyy1 € R", we will write

X = (xo| ... |xny1)-

Herex is considered a vector iR"™+2 ., Moreover, for any fixeg = 0, 1, 0, we
define

2] 1 N+1
—¢/o {221;1

f]'(X) =e

Xjp—X, 2
= e <xk>} 1

n(N+1)
/271.90j2

and conclude that
N+1 N+1 N+1
oy ™ fo(x9) = (o5 N fo(x0) 1700070 g NHD £ (xq) ) rer/ow

for all xo, X; € R"™W+2 since the function

— x€R", >0
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is convex and positively homogeneous of degree one. Thus, in view of the Standard
Lemma,

oy fo(&olxa ... xy|ne) dxy ... dxy

RnN
6oo0/009
P> {U{f N Sfo(&olx1 ... xn1n0) dxl...de}
Rll
0101/09
X {Uf y fi€alxy. .. xnln1) dxl...de}
RVI

for all &, &1, o, n1 € R™. By letting N — oo we have

04 Doy.co (ts €65 M) = {08 Dog.co (ts €05 10)}0° {07 Doy ey (t, E1, 1) }P17H/

for all &g, &1, 19, n1 € R", which proves Theorem 4.1.

Summing up, we claim that the idea to transform Wiener measure to obtain

inequalities of the Brunn—Minkowski type has increased our understanding of this
class of inequalities in measure theory as well as in diffusion theory although alter-
native methods are available. But still there are a variety of problems in connection
with these inequalities, where, apparently, all known methods fail (see e.g. Ledoux
and Talagrand [14, p. 456, Problem 1] and [5]).
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