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Abstract: We develop the Cramér - Chernoff method of deriving exponential bounds and use it to
derive several classical exponential bounds

1. The Cramér-Chernoff method

Suppose that X is a random variable, and we want a bound for P (X > x). Let r > 0. Then we can bound
the tail probability P (X > x) as follows. Since r > 0 and the exponential function is monotone increasing,
application of Markov’s inequality yields

P (X > x) = P (rX > rx) = P (exp(rX) > exp(rx))

≤ exp(−rx)E exp(rX).

Since this is true for every r > we can choose r > 0 to minimize the bound. Thus we conclude that

P (X > x) ≤ inf
r>0

exp(−rx)E exp(rX).

Example 1. Let Z ∼ N(0, 1). Then since E exp(rZ) = er
2/2, the Cramér-Chernoff method gives

P (Z > z) ≤ inf
r>0

e−rzE exp(rZ) = inf
r>0

exp(−rz + r2/2) = exp(−z2/2)

by choosing r = z. In this particular case we can do better. Note that for the bound we derived, P (Z > 0) =
1/2 while exp(−02/2) = 1. It turns out that for Z ∼ N(0, 1) an argument geared to this case yields

P (Z > z) ≤ 1

2
e−z

2/2 for all z > 0. (1.1)

Furthermore, with φ and Φ denoting the standard normal density and distribution function,

P (Z > z) = 1− Φ(z) =

∫ ∞
z

φ(y)dy ≤
∫ ∞
z

y

z
φ(y)dy

=
1

z

∫ ∞
z

−φ′(y)dy since φ′(y) = −yφ(y)

=
1

z
φ(z).
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This inequality is known as Mills’ ratio. Thus we have

P (Z > z) ≤ min

{
1

2
exp(−z2/2),

1

z
√

2π
exp(−z2/2)

}
.

Note that the very general Cramér - Chernoff method captured the basic structure of these special bounds
for the tail of the standard normal distribution.

Example 2. Now suppose that ε1, . . . , εn are i.i.d. Rademacher random variables (i.e. P (ε1 = ±1) = 1/2),
and a1, . . . , an ∈ R. Then with Sn ≡

∑n
j=1 ajεj , we want to bound P (Sn ≥ t). Here the Cramér - Chernoff

method yields, for t > 0,

P (Sn > t) ≤ inf
r>0

EerSn

ert
. (1.2)

By the independence of the Rademacher random variables εj ,

E exp(rSn) =

n∏
j=1

Eerajεj =

n∏
j=1

{
1

2
eraj +

1

2
e−raj

}
. (1.3)

Now the quantity in brackets on the right side is just cosh(raj) where

cosh(v) =
1

2
(ev + e−v)

=
1

2

∞∑
k=0

2
v2k

(2k)!
≤
∞∑
k=0

(v2/2)k

k!

= exp(v2/2)

where the inequality follows from (2k)! ≥ 2kk! for k ≥ 0. Using this bound in (1.3) yields

E exp(rSn) ≤ exp(r2‖a‖2/2).

Plugging this into (1.2) yields

P (Sn > t) ≤ inf
r>0

exp(−rt+ r2‖a‖2/2) = exp

(
− t2

2‖a‖2

)
by choosing r = t/‖a‖2. This is sometimes known as Hoeffding’s inequality since it follows from similar
exponential bounds obtained by Hoeffding [1963]. It is a typical example of a sub-Gaussian tail bound.

Example 3. (A Poisson tail probability bound) Before proceeding to more general exponential bounds
it is helpful to see what the Cramér-Chernoff method yields for a centered Poisson(ν) random variable. If
Y ∼ Poisson(ν), then we have

P (Y − ν ≥ t) ≤ inf
r>0

e−rtE(exp(r(Y − ν)))

so we need to calculate the moment generating function of Y − ν:

E exp(r(Y − ν)) = e−rν
∞∑
k=0

erke−ν
νk

k!
= e−rν−ν

∞∑
k=0

(νer)k

k!

= e−rν−ν exp(νer),
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and it follows that

ψY−ν(r) ≡ logEer(Y−ν) = ν(er − 1− r) = νϕ(r),

so that

ψY−ν(r)− rt = ν(er − 1− r)− rt

and the latter is minimized by r∗ = r∗(t) = log(1 + t/ν). Thus the resulting bound becomes

P (Y − ν ≥ t) ≤ exp(−νh(1 + t/ν)) (1.4)

where h(v) ≡ v(log v − 1) + 1.
The bound in the last display become more understandable if we define ψ(x) ≡ (2/x2)h(1 + x) so that

(x2/2)ψ(x) = h(1 + x), and the bound in (1.4) becomes

P (Y − ν ≥ t) ≤ exp

(
−ν t

2/ν2

2
ψ

(
t

ν

))
= exp

(
− t

2

2ν
ψ

(
t

ν

))
.

Here the function ψ satisfies ψ(0) = 1 and ψ(x) ∼ 2x−1 log x as x→∞. Furthermore,

ψ(x) ≥ 1

1 + x/3
for all x ≥ 0, (1.5)

so a less refined form of the bound is

P (Y − ν ≥ t) ≤ exp

(
− t2

2(ν + t/3)

)
.

This last inequality has the form of a Bernstein type inequality.

2. The exponential bounds of Bennett and Bernstein

In this section we first derive an exponential bound due to Bennett [1962]. We then derive a further (simpler)
exponential bound which is due to Bernstein [1946].

Theorem. (Bennett’s inequality) Suppose that X1, . . . , Xn are independent random variables with finite
variances and Xj ≤ b for all 1 ≤ j ≤ n. Let Sn ≡

∑n
i=1(Xi − EXi). and ν ≡

∑n
i=1E(X2

i ). Then, for all
r > 0,

logEerSn ≤ n log
(

1 +
ν

nb2
ϕ(br)

)
≤ ν

b2
ϕ (br)

where ϕ(u) = eu − 1− u. Furthermore, for any t > 0,

P (Sn > t) ≤ exp

(
− ν
b2
h

(
1 +

bt

ν

))
(2.1)

where h(v) ≡ v(log v − 1) + 1.

Proof. By homogeneity we may assume that b = 1; if not, divide each Xj by b. Note that u−2ϕ(u) is a
non-decreasing function of u ∈ R where we extend the function by continuity at 0. Hence for all r > 0 and
1 ≤ i ≤ n

erXi − 1− rXi ≤ X2
i (er − 1− r).
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Taking expectations across the inequality in the last display yields

EerXi − 1− rEXi ≤ E(X2
i )ϕ(r).

Since the cumulant generating function of a sum of independent random variables is the sum of the their
cumulant generating functions, it follows that

ψSn
(r) ≡ logEerSn

≤
n∑
i=1

{
log
(
1 + rEXi + E(X2

i )ϕ(r)
)
− rEXi

}
≤ n

{
log

(
1 + r

∑n
1 EXi

n
+
ν

n
ϕ(r)

)
− r

∑n
1 EXi

n

}
by concavity of the log

≤ n

(∑n
1 EXi

n
+
ν

n
ϕ(r)

)
− r

∑n
1 EXi

n

since log(1 + u) ≤ u
= νϕ(r)

which has the same form as in the Poisson example in the previous section. After optimizing the choice of r
the upshot is that (2.1) holds �

By using the function ψ(x) = 2x−2h(1 + x) as in the last paragraph of section 1, we get an inequality
which is called Bernstein’s inequality:

Corollary: Suppose that the hypotheses of Bennett’s inequality hold. Then

P (Sn ≥ t) ≤ exp

(
− ν
b2

(bt/ν)2

2
ψ

(
bt

ν

))
= exp

(
− t

2

2ν
ψ

(
bt

ν

))
≤ exp

(
− t

2

2ν

1

1 + (bt)/(3ν)

)
= exp

(
− t2

2(ν + bt/3)

)
For a nice treatment of these and other exponential bounds via the Chernoff - Cramér method see

Boucheron, Lugosi and Massart [2013]. For more on the functions h and ψ, see Shorack and Wellner [1986],
chapters 10 and 11. For applications of the Hoeffding and Bernstein inequalities see van der Vaart and
Wellner [1996] sections 2.2 - 2.5. For an introduction to exponential bounds for martingales and further
applications, see Bercu, Delyon and Rio [2015].

3. Some exercises

Exercise 1. Plot the functions h(v) and ψ(v) for v ≥ 0. Does the function ψ extend to [−1,∞)?
Exercise 2. Find an upper bound for P (−(Y − ν) ≥ t).
Exercise 3. Prove that (1.1) holds.
Exercise 4. Show that (1.5) holds.
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