
M- and Z- theorems; GMM and Empirical Likelihood

Wellner; 5/13/98, 1/26/07, 5/08/09, 6/14/2010

Z-theorems: Notation and Context

Suppose that Θ ⊂ Rk, and that

Ψn : Θ→ Rk , random maps

Ψ : Θ→ Rk , deterministic maps.

Suppose that θ̂n and θ0 are the corresponding solutions (or approximate solutions) of

Ψn(θ̂n) = 0 or Ψn(θ̂n) = op(n
−1/2) ,

Ψ(θ0) = 0 .

In the simple case of i.i.d. data X1, . . . , Xn i.i.d. P0 with empirical measure Pn, and
then, for the usual case of linear estimating equations, the functions Ψn, Ψ are given
by

Ψn(θ) = Pnψ(·, θ), and Ψ(θ) = P0ψ(·, θ)

for a vector of functions ψ : X × Θ → Rk, ψ(x, θ) = ψ(x, θ); often the functions ψ
are score functions motivated by likelihood, pseudolikelihood, quasilikelihood, or some
other “likelihood” for the data.

Here are the four basic conditions needed for Huber’s Z− theorem:

A1 Ψn(θ̂n) = op(n
−1/2) and Ψ(θ0) = 0.

A2
√
n(Ψn −Ψ)(θ0)→d Z0.

A3 For every sequence δn → 0,

sup
|θ−θ0|≤δn

|
√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)|

1 +
√
n|θ − θ0|

= op(1).

A4 The function Ψ is (Fréchet-)differentiable at θ0 with nonsingular derivative Ψ̇(θ0) ≡
Ψ̇0:

Ψ(θ)−Ψ(θ0)− Ψ̇0(θ − θ0) = o(|θ − θ0|) .

Theorem 1. (Huber (1967); Pollard (1985)). Suppose that A1 - A4 hold. Let θ̂n be

random maps into Θ ⊂ Rk satisfying θ̂n →p θ0. Then

√
n(θ̂n − θ0)→d −Ψ̇−1

0 (Z0) ;
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if Z0 ∼ Nk(0, A), then this yields, with Ψ̇0 ≡ B,

√
n(θ̂n − θ0)→d Nk(0, B

−1A(B−1)T ) .

Proof. By definition of θ̂n and θ0,

√
n(Ψ(θ̂n)−Ψ(θ0)) =

√
n(Ψ(θ̂n)−Ψn(θ̂n)) + op(1)

= −
√
n(Ψn −Ψ)(θ0)

−
{√

n(Ψn −Ψ)(θ̂n)−
√
n(Ψn −Ψ)(θ0)

}
+ op(1)

= −
√
n(Ψn −Ψ)(θ0) + op(1 +

√
n|θ̂n − θ0|) + op(1) ; (1)

here the last equality holds by A3 and θ̂n →p θ0. Since Ψ̇0 is continuously invertible,
there exists a constant c > 0 such that

‖Ψ̇0(θ − θ0)‖ ≥ c‖θ − θ0‖

for every θ; this is just the basic property of a nonsingular matrix. By A4 (differentia-
bility of Ψ), this yields

|Ψ(θ)−Ψ(θ0)| ≥ c|θ − θ0|+ o(|θ − θ0|) .

By (1) it follows that

√
n|θ̂n − θ0|(c+ op(1)) ≤ Op(1) + op(1 +

√
n|θ̂n − θ0|) ,

which implies √
n|θ̂n − θ0| = Op(1) .

Hence from (1) again and A.4 it follows that

Ψ̇0(
√
n(θ̂n − θ0)) + op(

√
n|θ̂n − θ0|) = −

√
n(Ψn −Ψ)(θ0) + op(1)

and therefore √
n(θ̂n − θ0)→d −Ψ̇−1

0 (Z0)

by A2 and A4. 2

Example 1. Suppose that X1, . . . , Xn are i.i.d. with distribution P0 on R. Suppose
we assume (perhaps incorrectly) that the model is P = {Pθ : pθ(x) = f(x− θ), θ ∈ R}
where f is the logistic density given by

f(x) =
e−x

(1 + e−x)2
.
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If P0 /∈ P , then the model is not correctly specified and we say that P is miss-specified.
If θ̂n is the MLE of θ for the model P , what can we say about θ̂n when P0 /∈ P? For
the logistic model P the MLE is given by the solution of the score equation

Pnl̇θ(X) =
1

n

n∑
i=1

l̇θ(Xi) = 0

where

l̇θ(x) = −(f ′/f)(x− θ) =
1− exp(−(x− θ))
1 + exp(−(x− θ))

takes values in (−1, 1) and is continuous and strictly decreasing as a function of θ for
each fixed x. It follows that

Ψn(θ) = Pnl̇θ =
1

n

n∑
i=1

l̇θ(Xi)

is continuous and strictly decreasing with values in (−1, 1). Furthermore Ψn(θ)→ ±1

as θ → ∓∞, and hence there exists a unique solution θ̂n of Ψn(θ̂n) = 0.
Let

Ψ(θ) ≡ P0l̇θ(X; θ) = P0

(
−f

′

f
(X − θ)

)
, θ ∈ R.

Ψ is also a monotone strictly decreasing function of θ with a unique solution θ0 ≡ θ(P0)
of Ψ(θ) = 0. Thus condition A1 of Huber’s theorem holds.

For condition A2, note that

√
n(Ψn −Ψ)(θ0) =

√
n(Pn − P0)(l̇θ(·; θ0)

=
1√
n

n∑
i=1

(l̇θ(Xi; θ0)− P0l̇θ(·; θ0))

is a normalized sum of i.i.d. random variables with mean 0 which are bounded and
hence

V arP0(l̇θ(X1; θ0)) = P0l̇
2
θ(X; θ0) ≡ A <∞.

Thus by the ordinary CLT

√
n(Ψn −Ψ)(θ0)→d Z ∼ N(0, A),

and condition A2 holds. Now since

Ψ(θ) = P0l̇θ(X; θ) = P0

(
1− exp(−(X − θ))
1 + exp(−(X − θ))

)
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is bounded and l̇θ(X; θ) is a bounded and differentiable function of θ for all x. Thus

Ψ̇(θ0) = P0l̈θθ(X; θ0) = −2P0

(
e−(X−θ0)

(1 + e−(X−θ0))2

)
= −2P0(f(X − θ0)) ≡ −B < 0

for any P0 and where f is the standard logistic density. Thus condition A4 holds.
Note that if P0 has density g(· − θ) where g is symmetric about 0, then

Ψ(θ) = P0l̇θ(X) =

∫
−f

′

f
(x− θ)g(x− θ0)dx

=

∫
−f

′

f
(y − (θ − θ0))g(y)dy

= 0 at θ = θ0

since −(f ′/f) is odd and g is even. Thus θ(P0) = θ0, the center of symmetry of P0.
It remains only to verify condition A3: now

√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0) = Gn(l̇θ(X; θ)− l̇θ(X; θ0))

= Gn(fθ − fθ0)

where

F = {fθ ≡ l̇θ(·; θ) : θ ∈ R} = {−(f ′/f)(· − θ) : θ ∈ R}

is the class of shifts of the (one!) bounded monotone function −(f ′/f). Thus the
collection of subgraphs of the class F are linearly - ordered by inclusion: if Cθ ≡
{(x, y) : y ≤ fθ(x), x ∈ R} then Cθ ⊂ Cθ′ if θ < θ′; that is, this class of sets is linearly
ordered by inclusion, and hence a VC class of sets with VC index V (C) = 2. Thus F is
a bounded VC - subgraph class of functions, and hence is uniformly P−Donsker and
(in particular) Donsker for every P0. Thus for every sequence δ′n → 0 we have

Pr

(
sup

ρP0 (fθ,fθ0 )<δ′n

|Gn(fθ − fθ0)| > ε

)
→ 0

for every ε > 0, and this implies that

sup
|θ−θ0|≤δn

|
√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)| = op(1)

which in turn implies that condition A3 holds. Thus by Huber’s Z−theorem

√
n(θ̂n − θ0)→d −Ψ̇(θ0)−1Z = B−1Z ∼ N(0, B−1AB−1).
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It is interesting to consider these calculations in the more general case of an arbitrary
log-concave density f replacing the standard logistic density.

Example 2. Now consider moment estimators for the two component exponential
mixture model P defined by

pθ(x) = pµ−1
1 exp(−x/µ1) + (1− p)µ−1

2 exp(−x/µ2)

where θ = (p, µ1, µ2) ∈ (0, 1)× R+ × R+. Here we define

ψ1(x, θ) = x− (pµ1 + (1− p)µ2),

ψ2(x, θ) =
1

2
x2 − (pµ2

1 + (1− p)µ2
2),

ψ3(x, θ) =
1

6
x3 − (pµ3

1 + (1− p)µ3
2).

Thus if we set T (x) = (x, x2/2, x3/6)T and t(θ) = (pµ1+(1−p)µ2, (pµ
2
1+(1−p)µ2

2, pµ
3
1+

(1− p)µ3
2)T , we can write

ψ(x, θ) = T (x)− t(θ).

Then we set

Ψn(θ) = Pnψ(·, θ) = Pn(T (X))− t(θ),
Ψ(θ) = P0ψ(·, θ) = P0(T (X))− t(θ).

Then Ψ(θ0) = 0 if P0 = Pθ0 ∈ P and Ψn(θ) = 0 has a solution θ̃n given by xyz. Thus
condition A1 of Huber’s theorem holds.

Now if P0X
6 <∞, then X3 ∈ L2(P0) and it follows from the multivariate CLT that

√
n(Ψn −Ψ)(θ0) =

√
n(Pn − P0)(ψ(·; θ0)

→d N3(0, A)

where A = CovP0(X,X
2/2, X3/6). Thus condition A2 of Huber’s theorem holds if

P0(X6) <∞.
To see that A3 holds, note that

√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)

=
√
n(Pn − P0)(T − t(θ))−

√
n(Pn − P0)(T − t(θ0))

=
√
n(Pn − P0)(T )−

√
n(Pn − P0)(T )

= 0.

Finally,

Ψ(θ) = P0(T )− t(θ),
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so Ψ̇(θ0) = −ṫ(θ0) can be easily be calculated:

Ψ̇(θ0) = −ṫ(θ0)

= −

 µ1 − µ2 p 1− p
µ2

1 − µ2
2 2pµ1 2(1− p)µ2

µ3
1 − µ3

2 3pµ2
1 3(1− p)µ2

2


≡ −B

It is not too hard to show that B is non-singular if µ1 6= µ2, so condition A4 holds.
Thus by Huber’s theorem,

√
n(θ̃n − θ0)→d B

−1Z ∼ N3(0, B−1A(B−1)T ).

The interesting part of this example is that condition A3 holds very easily, and that
this is apparently generally true for method of moments estimators.

Example 3. Zero-inflated Poisson distribution (from Knight (2000), page 197).
Suppose that X ∼ pθ where pθ(x) = γδ0(x) + (1− γ)e−λλx/x! for θ = (γ, λ) with γ ∈
[0, 1], λ > 0, and x ∈ N = {0, 1, 2, . . .}. This is a mixture model involving the discrete
distributions δ0 and Poisson(λ) on the non-negative integers. We consider method of
moment estimators based on the two functions g1(x) = 1{0}(x) and g2(x) = x. Then
for X ∼ pθ we have

Eθg1(X) = Pθ(X = 0) = γ + (1− γ)e−λ ≡ t1(θ),

Eθg2(X) = EθX = (1− γ)λ ≡ t2(θ).

Thus we define

ψ1(x, θ) = g1(x)− t1(θ) = 1{0}(x)− γ − (1− γ)e−λ,

ψ2(x, θ) = g2(x)− t2(θ) = x− (1− γ)λ.

Then

0 = Ψn(θ) = Pnψ(X, θ) =

(
Pn({0})− t1(θ)
PnX − t2(θ)

)
defines θ̃ = (γ̃, λ̃) and

0 = Ψ(θ) = P0ψ(X, θ) =

(
P0({0})− t1(θ)
P0X − t2(θ)

)
defines θ0 ≡ θ(P0) = (γ(P0), λ(P0)) via p0(0) = γ + (1− γ) exp(−λ) and µ0 = (1− γ)λ
where p0(0) ≡ P0({0}) and µ0 = P0X = E0(X). Thus 1 − γ = µ0/λ and this yields
(1− p0)λ = µ0(1− exp(−λ)).
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If E0X
2 <∞, then

√
n(Ψn −Ψ)(θ0) =

√
n(Pn − P0)(1{0}(X), X)T )→d Z ∼ N2(0, A)

where A = Cov0(1{0}(X), X), so condition A2 holds. Furthermore condition A3 holds
trivially since √

n(Ψn −Ψ)(θ)−
√
n(Ψn −Ψ)(θ0) = 0

just as in Example 2. Much as in Example 2,

Ψ̇(θ0) = −ṫ(θ0) = −
(

1− e−λ0 −(1− γ0)e−λ0

−λ0 1− γ0

)
≡ −B

where det(B) = (1 − γ0)e−λ0(eλ0 − 1 − λ0) > 0 if γ0 ∈ (0, 1). Thus it follows from
Huber’s theorem that

√
n(θ̃n − θ0)→d B

−1Z ∼ N2(0, B−1A(B−1)T ).

Example 4. Consider estimation of θ in the simple triangular density family P =
{Pθ : θ ∈ [0, 1]} given by the densities

p(x; θ) = 2

{
x

θ
1[0,θ](x) +

1− x
1− θ

1(θ,1](x)

}
, θ ∈ [0, 1].

Then the score function for θ for one observation is

l̇θ(x; θ) = −1

θ
1[0,θ](x) +

1

1− θ
1(θ,1](x),

at least in the sense of a Hellinger derivative:∫ 1

0

{
√
p(x; θ)−

√
p(x; θ0)− 2−1l̇θ(x; θ0)

√
p(x; θ0)}2dx = o(|θ − θ0|2).

Our goal is to use Huber’s theorem to study the behavior of the MLE of θ in this model
when (possibly) X,X1, . . . , Xn are i.i.d. P on [0, 1] with P /∈ P . Let F (x) = P (X ≤ x)
be the distribution function corresponding to X. From the score calculation above, the
score equation for estimation of θ is equivalent to

Ψn(θ) = Fn(θ)− θ = 0.

The corresponding population version of Ψn is Ψ given by

Ψ(θ) = F (θ)− θ, where F (x) =

∫ x

0

p(y)dy.
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It is reasonable to assume that Ψ(θ0) = 0 has a unique solution θ0 = θ0(P ) if P has
a density p which is unimodal on [0, 1]. (Of course it is easy to construct examples in
which this has only trivial solutions 0 or 1, or for which there are many solutions: for
the former, consider the “anti-triangular density” p(x) = 2(1/2− x)1[0,1/2](x) + 2(x−
1/2)1(1/2,1](x); for the latter consider p(x) = 1 + (1/2) sin(6πx).)

Let θ0 = θ0(P ) satisfy Ψ(θ0) = 0 = F (θ0)− θ0. Then F (θ0) = θ0, and

√
nΨn(θ0) =

√
n(Ψn(θ0)−Ψ(θ0))

=
√
n(Fn(θ0)− F (θ0)

→d Z0 ∼ N(0, F (θ0)(1− F (θ0))) = N(0, θ0(1− θ0)) ≡ N(0, A)

Thus A2 holds. Moreover if F is differentiable at θ0 with derivative p(θ0), then A4
holds with

Ψ̇(θ0) = p(θ0)− 1 ≡ B

Furthermore, the condition A3 holds since, for any δn → 0,

sup
θ:|θ−θ0|≤δn

|
√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)|

= sup
θ:|θ−θ0|≤δn

|
√
n(Fn − F )(θ)−

√
n(Fn − F )(θ0)|

→p 0

if F is continuous at θ0 by the asymptotic equicontinuity of the empirical process. We
conclude from Huber’s theorem that any solution of Ψn(θ̂n) = op(n

−1/2) satisfies

√
n(θ̂n − θ0) →d −(p(θ0)− 1)−1Z0

∼ N(0, B−1AB−1) = N

(
0,

θ0(1− θ0)

(p(θ0)− 1)2

)
.

When P ∈ P holds, θ0(Pθ) = θ (so θ0(Pθ0) = θ0), and p(θ0; θ0) = 2. Thus the
asymptotic variance in the conclusion of Huber’s theorem reduces to θ0(1− θ0), which
agrees with the information bound calculation based on the score l̇θ. 2

Now our goal is to extend Theorem 1 to an infinite-dimensional setting in which Θ
is a Banach space. A sufficiently general Banach space is the space

l∞(H) ≡ {z : H → R
∣∣ ||z|| = sup

h∈H
|z(h)| <∞}

where H is a collection of functions. We suppose that

Ψn : Θ→ L ≡ l∞(H ′) , n = 1, 2, ...
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are random, and that
Ψ : Θ→ L ≡ l∞(H ′) ,

is deterministic. Suppose that either

Ψn(θ̂n) = 0 in L;

(i.e. Ψn(θ̂n)(h′) = 0 for all h′ ∈ H ′), or

Ψn(θ̂n) = op(n
−1/2) in L;

(i.e. ||Ψn(θ̂n)||H′ = op(n
−1/2)).

Here are the four basic conditions needed for the infinite-dimensional version of Huber’s
Z− theorem due to Van der Vaart (1995):

B1 Ψn(θ̂n) = op(n
−1/2) in l∞(H ′) and Ψ(θ0) = 0 in l∞(H ′).

B2
√
n(Ψn −Ψ)(θ0)⇒ Z0 in l∞(H ′).

B3 For every sequence δn → 0,

sup
‖θ−θ0‖≤δn

‖
√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)‖

1 +
√
n‖θ − θ0‖

= op(1).

B4 The function Ψ is (Fréchet-)differentiable at θ0 with derivative Ψ̇(θ0) ≡ Ψ̇0 having
a bounded (continuous) inverse:

‖Ψ(θ)−Ψ(θ0)− Ψ̇0(θ − θ0)‖ = o(‖θ − θ0‖) .

Theorem. (van der Vaart, 1995). Suppose that B1 - B4 hold. Let θ̂n be random maps

into Θ ⊂ l∞(H ′) satisfying θ̂n →p θ0. Then

√
n(θ̂n − θ0)⇒ −Ψ̇−1

0 (Z0) in l∞(H) .

Proof. Exactly the same as in the finite-dimensional case: see van der Vaart (1995)
or van der Vaart and Wellner (1996), pages 310-312. 2
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M-theorems: Notation and context
Suppose that Θ ⊂ Rk and that m : X × Θ → R. We often write mθ(x) = m(x, θ)

for x ∈ X , θ ∈ Θ. Suppose that θ̂n and θ0 are the corresponding maximizers (or
approximate maxmizers in the first case) of

Mn(θ) ≡ Pnm(X, θ) = Pnmθ(X), and

M(θ) ≡ P0m(X, θ) = P0mθ(X),

respectively. A common choice for m(x, θ) would be log p(x; θ) ≡ log pθ(x) where
pθ(·) is the density of Pθ with respect to some dominating measure µ for a model

P = {Pθ : θ ∈ Θ}. Then θ̂n is a Maximum Likelihood (or approximate maximum
likelihood) estimator for the model P .

Theorem. Suppose that for each θ in an open subset of Θ ⊂ Rk, x 7→ mθ(x) is a
measurable function such that θ 7→ mθ(x) = m(x, θ) is differentiable at θ0 for P0−
almost every x with derivative ṁθ0(x) and such that, for every θ1, θ2 in a neighborhood
of θ0 and a measurable function ṁ with P0ṁ

2 <∞,

|mθ1(x)−mθ2(x)| ≤ ṁ‖θ1 − θ2‖.

Furthermore, suppose that θ 7→ P0mθ has a second order Taylor expansion at a point
of maximum θ0 with nonsingular second derivative matrix Vθ0 : i.e.

P0mθ = P0mθ0 +
1

2
(θ − θ0)TVθ0(θ − θ0) + o(‖θ − θ0‖2).

If Pnmθ̂n
(X) ≥ supθ Pnmθ(X)− op(n−1) and θ̂n →p θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Xi) + op(1).

In particular √
n(θ̂n − θ0)→d Nk(0, V

−1
θ0
P0(ṁθ0ṁ

T
θ0

)V −1
θ0

).

Proof. See van der Vaart, Asymptotic Statistics, section 5.3, pages 51 - 60. 2

Also see van der Vaart, Asymptotic Statistics, section 5.5 and Theorem 5.39 page
65, for a theorem of this type with mθ(x) = log pθ(x). This is the cleanest theorem I
know concerning asymptotic normality of MLE’s in parametric models.
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Applications and Extensions of Van der Vaart’s Z-theorem:

• Gamma frailty model; Murphy (1995).

• Partially censored data; Van der Vaart (1995).

• Correlated gamma-frailty model; Parner (1998).

• Semiparametric biased sampling models; Gilbert (2000).

• Two-phase sampling models with data missing by design; Breslow, McNeney and
Wellner (2003), Breslow and Wellner (2007), (2008).

However, in many statistical problems the parameter usually includes both a finite-
dimensional parameter (e.g. regression parameters) and an infinite dimensional (nui-
sance) parameter. We now suppose that θ = (β,Λ), where β is a finite-dimensional
parameter, say in Rd, and Λ an infinite dimensional parameter (a function). The
M-estimators of β, β̂n, and of Λ, Λ̂n, respectively, often have different convergence
rates. The convergence rate for Λ̂n is often smaller than n1/2, such as n1/3, or n2/5 in
some cases. Huang (1996) established a general theorem to show that under certain
hypotheses, the maximum likelihood estimator of a finite dimensional parameter has
n1/2 convergence rate and is asymptotically semiparametric efficient, even though the
convergence rate for the maximum likelihood estimator of the infinite dimensional pa-
rameter is smaller than n1/2. He also successfully applied his general theorem to the
proportional hazards model with interval censored data.

The following theorem due to Zhang (1998) generalizes the theorem of Huang (1996)
to the case of inefficient M-estimators; it shows that under reasonable regularity hy-
potheses, the M-estimator of a finite-dimensional parameter β has n1/2 convergence
rate, and that β̂n is asymptotically normal, even though the M-estimator of the corre-
sponding infinite dimensional parameter Λ converges perhaps more slowly than n1/2.
The resulting asymptotic covariance matrix for the M-estimator of β has the well-known
“sandwich” structure.

Here is the notation and conditions needed for the theorem. Let θ = (β,Λ), where
β ∈ Rd, and Λ is an infinite dimensional parameter in a class of functions F . Λη is a
parametric path in F through Λ, i.e. Λη ∈ F , and Λη|η=0 = Λ.

Let H =

{
h : h = ∂Λη

∂η

∣∣∣
η=0

}
and define

m1(β,Λ;x) = ∇βm(β,Λ)(x) ≡
(

∂

∂β1

m(β,Λ)(x), · · · , ∂

∂βd
m(β,Λ)(x)

)′
.

m2(β,Λ;x)[h] =
∂

∂η
m(β,Λη)(x)

∣∣∣∣
η=0

,
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m11(β,Λ;x) = ∇2
βm(β,Λ)(x),

m12(β,Λ;x)[h] =
∂

∂η
m1(β,Λη;x)

∣∣∣∣
η=0

,

m21(β,Λ;x)[h] = ∇βm2(β,Λ;x)[h],

and

m22(β,Λ;x)[h, h] =
∂2

∂η2
m(β,Λη;x)

∣∣∣∣
η=0

.

We also define
S1(β,Λ) = Pm1(β,Λ;X),

S2(β,Λ)[h] = Pm2(β,Λ;X)[h],

S1n(β,Λ) = Pnm1(β,Λ;X),

S2n(β,Λ)[h] = Pnm2(β,Λ;X)[h],

Ṡ11(β,Λ) = Pm11(β,Λ;X),

Ṡ12(β,Λ)[h] = Ṡ ′21(β,Λ)[h] = Pm12(β,Λ;X)[h],

and
Ṡ22(β,Λ)[h, h] = Pm22(β,Λ;X)[h, h].

Furthermore, for h = (h1, · · · , hd)′ ∈ Hd, where hj ∈ H for j = 1, 2, · · · , d,, and
Hd = H×H× · · · ×H︸ ︷︷ ︸

d

, denote

m2(β,Λ;x)[h] = (m2(β,Λ;x)[h1], · · · ,m2(β,Λ;x)[hd])
′,

m12(β,Λ;x)[h] = (m12(β,Λ;x)[h1], · · · ,m12(β,Λ;x)[hd]),

m21(β,Λ;x)[h] = (m21(β,Λ;x)[h1], · · · ,m21(β,Λ;x)[hd]),

m22(β,Λ;x)[h, h](m22(β,Λ;x)[h1, h], · · · ,m22(β,Λ;x)[hd, h])T ,

and define
S2(β,Λ)[h] = Pm2(β,Λ;X)[h],

S2n(β,Λ)[h] = Pnm2(β,Λ;X)[h],

Ṡ12(β,Λ)[h] = Pm12(β,Λ;X)[h],

Ṡ21(β,Λ)[h] = Pm21(β,Λ;X)[h],

and
Ṡ22(β,Λ)[h, h] = Pm22(β,Λ;X)[h, h].

The following Assumptions will be used to formulate our general theorem:
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A1. (Consistency and rate of convergence):

|β̂n − β0| = op(1) and ‖Λ̂n − Λ0‖ = Op(n
−γ)

for some γ > 0.

A2. (Zero-mean structure):

S1(β0,Λ0) = 0, and S2(β0,Λ0)[h] = 0, for all h ∈ H.

A3. (Positive “pseudo-information”): There exists an h∗ = (h∗1, · · · , h∗d)T , h∗j ∈
H j = 1, · · · , d, such that

Ṡ12(β0,Λ0)[h]− Ṡ22(β0,Λ0)[h∗, h] = 0, (2)

for all h ∈ H. Moreover, the matrix

A = −Ṡ11(β0,Λ0) + Ṡ21(β0,Λ0)[h∗] = −P (m11(β0,Λ0;X)−m21(β0,Λ0;X)[h∗])

is nonsingular.

A4. (Approximate solution of pseudo-score equations): The estimator (β̂n, Λ̂n)
satisfies

S1n(β̂n, Λ̂n) = op∗(n
−1/2),

and
S2n(β̂n, Λ̂n)[h∗] = op∗(n

−1/2).

A5. (Stochastic equicontinuity): For any δn ↓ 0 and C > 0,

sup
|β−β0|≤δn,‖Λ−Λ0‖≤Cn−γ

∣∣√n(S1n − S1)(β,Λ)−
√
n(S1n − S1)(β0,Λ0)

∣∣ = op∗(1),

and

sup
|β−β0|≤δn,‖Λ−Λ0‖≤Cn−γ

∣∣√n(S2n − S2)(β,Λ)[h∗]−
√
n(S2n − S2)(β0,Λ0)[h∗]

∣∣ = op∗(1).

A6. (Smoothness of the model): For some α > 1 satisfying αγ > 1/2, and for
(β,Λ) in the neighborhood {(β,Λ) : |β − β0| ≤ δn, ‖Λ− Λ0‖ ≤ Cn−γ},∣∣∣S1(β,Λ)− S1(β0,Λ0)− Ṡ11(β0,Λ0)(β − β0)− Ṡ12(β0,Λ0)[Λ− Λ0]

∣∣∣
= o(|β − β0|) +O(‖Λ− Λ0‖α),

∣∣∣S2(β,Λ)[h∗]− S2(β0,Λ0)[h∗]− Ṡ21(β0,Λ0)[h∗])(β − β0)− (Ṡ22(β0,Λ0)[h∗,Λ− Λ0]
∣∣∣

= o(|β − β0|) +O(‖Λ− Λ0‖α).
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A7. (Asymptotic normality of projected pseudo-score): With

m∗(β0,Λ0;x) ≡ m1(β0,Λ0;x)−m2(β0,Λ0;x)[h∗],

we have √
nPnm∗(β0,Λ0;X) −→d N(0, B),

where B = Em∗(β0,Λ0;X)⊗2 = Em∗(β0,Λ0;X)m∗(β0,Λ0;X)′.

Theorem 2.3.5. (Asymptotic Normality) Suppose that: assumptions A1-A7 hold.
Then

√
n(β̂n − β0) = A−1

√
nPnm∗(β0,Λ0;X) + op∗(1) −→d N

(
0, A−1B

(
A−1

)′)
.

P roof : A1 and A5 yield

√
n(S1n − S1)(β̂n, Λ̂n)−

√
n(S1n − S1)(β0,Λ0) = op∗(1).

Since S1n(β̂n, Λ̂n) = op∗(n
−1/2) by A4 and S1(β0,Λ0) = 0 by A2, it follows that

√
nS1(β̂n, Λ̂n) +

√
nS1n(β0,Λ0) = op∗(1).

Similarly, we have that

√
nS2(β̂n, Λ̂n)[h∗] +

√
nS2n(β0,Λ0)[h∗] = op∗(1).

Combining these equalities and A6 yields

Ṡ11(β0,Λ0)[β̂n − β0] + Ṡ12(β0,Λ0)[Λ̂n − Λ0] + S1n(β0,Λ0)

+o(|β̂n − β0|) +O(‖Λ̂n − Λ0‖α) = op∗(n
−1/2), (3)

Ṡ21(β0,Λ0)[h∗][β̂n − β0] + Ṡ22(β0,Λ0)[h∗][Λ̂n − Λ0] + S2n(β0,Λ0)[h∗]

+o(|β̂n − β0|) +O(‖Λ̂n − Λ0‖α) = op∗(n
−1/2). (4)

Because αγ > 1/2, then the rate of convergence assumption 1 implies

√
nO(‖Λ̂n − Λ0‖α) = op∗(1).

Thus by A4 and (2.3.4) minus (2.3.5), it follows that

(Ṡ11(β0,Λ0)− Ṡ21(β0,Λ0)[h∗](β̂n − β0) + o(|β̂n − β0|)
= −(S1n(β0,Λ0)− S2n(β0,Λ0)[h∗]) + op∗(n

−1/2),
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i.e.
−(A+ o(1))(β̂n − β0) = −Pnm∗(β0,Λ0;X) + op∗(n

−1/2).

Hence

√
n(β̂n − β0) = (A+ o(1))−1

√
nPnm∗(β0,Λ0;X) + op∗(1)

→d N
(

0, A−1B
(
A−1

)′)
.

2

GMM-theorems: Hansen, Pakes and Pollard, Newey
Suppose that Θ ⊂ Rp and that Gn : Θ → Rq is a vector of random functions with

expected or limiting values G : Θ→ Rq satisfying G(θ0) = 0. Pakes and Pollard (1989)
study estimators θ̂n of θ defined by

θ̂n = argminθ∈Θ‖Gn(θ)‖

where ‖ · ‖ denotes the Euclidean norm in Rq. They also study estimators based on
minimizing quadratic forms; i.e. with the Euclidean norm replaced by

‖x‖2
A ≡ ‖Ax‖2 = 〈Ax,Ax〉 = 〈x,ATAx〉 = xTWx

where W ≡ ATA and where the nonsingular matrix A may be random and may
depend on θ. This case is treated in a separate step. After studying consistency
of such estimators separately, Pakes and Pollard (1989) prove the following theorem
concerning their “Generalized Method of Moments” estimator θ̂n.

Theorem 2.4.1. (Asymptotic Normality of GMM estimators) Suppose that:

A1. θ̂n →p θ0 with G(θ0) = 0 in Rq. Also assume that

‖Gn(θ̂n)‖ = op(n
−1/2) + inf

θ
‖Gn(θ)‖.

A2. G is differentiable at θ0 with derivative matrix Γ = Ġ (p× q).

A3. For every δn → 0

sup
‖θ−θ0‖≤δn

√
n‖Gn(θ)−G(θ)− (Gn(θ0)−G(θ0))‖

1 +
√
n(‖Gn(θ)‖+ ‖G(θ)‖)

= op(1).

A4.
√
nGn(θ0)→d Z ∼ Nq(0, V ).

A5. θ0 is an interior point of θ.
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Then

√
n(θ̂n − θ0)→d (ΓTΓ)−1ΓTZ ∼ Np(0, (Γ

TΓ)−1(ΓTV Γ)(ΓTΓ)−1).

Now suppose that {An(θ) : θ ∈ Θ} is a family of nonsingular random matrices for
which there is a nonsingular, nonrandom matrix A such that

sup
‖θ−θ0‖≤δn

‖An(θ)− A‖ = op(1). (5)

whenever δn is a sequence of positive numbers that converges to zero. If conditions A2,
A3, and A4 of Theorem 2.4.1 are satisfied by Gn and G, then they are also satisfied if
Gn is replaced by An(θ)Gn(θ), G(θ) is replaced by AG(θ), V is replaced by AV AT , and
Γ is replaced by AΓ = AĠ. Thus we have the following corollary of Theorem 2.4.1:

Corollary: Suppose that the hypothesis A1 of Theorem 2.4.1 is replaced by: θ̂n →p θ0

where AG(θ0) = 0 and θ̂n satisfies

‖G̃n(θ̂n)‖ = op(n
−1/2) + inf

θ
‖G̃n(θ)‖

with G̃n(θ) ≡ An(θ)Gn(θ). Suppose further that A2-A5 of Theorem 2.4.1 hold and the
matrices An(θ) satisfy (5) with A nonsingular. Then, with W ≡ ATA,

√
n(θ̂n − θ0) →d ((AΓ)T (AΓ))−1(AΓ)TAZ = (ΓTWΓ)−1ΓTWZ

∼ Np(0, (Γ
TWΓ)−1(ΓTWVWΓ)(ΓTWΓ)−1).

Remark 1: The asymptotic covariance appearing in the corollary agree with the
asymptotic covariance of the GMM estimators studied by Hansen (1982) and general-
ized by Newey (1994) to handle nuisance parameters. Note that it is of the “sandwich”
form C−1BC−1 for matrices B and C.

Remark 2: Note that if W = V −1, then the covariance matrix in the corollary
becomes simply (ΓTV −1Γ)−1, and in fact this is the minimal value over choices of A (or
W ) as has been noted by many authors. This is also exactly the form of the covariance
of Empirical Likelihood and Generalized Empirical Likelihood estimators as shown by
Qin and Lawless (1994), Newey and Smith (2004), and others under stronger regularity
conditions.

Remark 3: Chamberlain (1987) shows that (ΓTWΓ)−1 is the efficiency bound for
estimation of θ in the constraint-defined model P = {P : G(θ) = 0, θ ∈ Rp}.
(Alternative proof via BKRW methods?) Note that since the dimension p of θ is
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smaller than q, the dimension of the vector G of constraints, P is a proper subset of
the family of all distributions P on X (at least under a non-degeneracy assumption on
{G(θ) : θ ∈ Θ}).

Now our goal is to develop an analogue of the theorem of Pakes and Pollard (1989)
for the empirical likelihood estimators of Qin and Lawless (1994). A start in this
direction has been given by Lopez et al. (2009); these authors establish a likelihood
ratio type limit theorem without imposing smoothness conditions on the functions g
involved in the constraints. To do this they use methods due to Sherman (1993) and
Pollard (1989).

Further questions:

1. Behavior of the (generalized) empirical likelihood ratio statistics and estimators
under local alternatives?

2. Behavior of the (generalized) empirical likelihood statistics and estimators under
fixed alternatives?

3. Infinite-dimensional version of empirical likelihood (analogous to infinite-dimensional
Z−theorem? Can we handle infinite-dimensional constraints of the type “known
marginal(s)”?
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