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Chapter 7

Statistical Functionals and the Delta
Method

1 Estimates as Functionals of Fn or Pn
Often the quantity we want to estimate can be viewed as a functional T (F ) or T (P ) of the underlying
distribution function F or P generating the data. Then a simple nonparametric estimator is simply
T (Fn) or T (Pn) where Fn and Pn denote the empirical distribution function and empirical measure
of the data.

Notation. Suppose that X1, . . . , Xn are i.i.d. P on (X ,A). We let

Pn ≡
1

n

n∑
i=1

δXi ≡ the empirical measure of the sample,

where δx ≡ the measure with mass one at x (so δx(A) = 1A(x) for A ∈ A. When X = Rk, especially
when k = 1, we will write

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi) = Pn(−∞, x], F (x) = P (−∞, x].

Here is a list of examples.

Example 1.1 The mean T (F ) =
∫
xdF (x). T (Fn) =

∫
xdFn(x).

Example 1.2 The r-th moment: for r an integer, T (F ) =
∫
xrdF (x), and T (Fn) =

∫
xrdFn(x).

Example 1.3 The variance:

T (F ) = V arF (X) =

∫
(x−

∫
xdF (x))2dF (x) =

1

2

∫ ∫
(x− y)2dF (x)dF (y),

T (Fn) = V arFn(X) =

∫
(x−

∫
xdFn(x))2dFn(x) =

1

2

∫ ∫
(x− y)2dFn(x)dFn(y).

Example 1.4 The median: T (F ) = F−1(1/2). T (Fn) = F−1
n (1/2).

Example 1.5 The α−trimmed mean: T (F ) = (1 − 2α)−1
∫ 1−α
α F−1(u)du for 0 < α < 1/2.

T (Fn) = (1− 2α)−1
∫ 1−α
α F−1

n (u)du.
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4 CHAPTER 7. STATISTICAL FUNCTIONALS AND THE DELTA METHOD

Example 1.6 The Hodges-Lehmann functional: T (F ) = (1/2){F ? F}−1(1/2) where ? denotes
convolution. Then T (Fn) = (1/2){Fn ? Fn}−1(1/2) = median{(Xi +Xj)/2}.

Example 1.7 The Mann-Whitney functional. For X,Y independent with distribution functions
F and G respectively, T (F,G) =

∫
FdG = PF,G(X ≤ Y ). Then T (Fm,Gn) =

∫
FmdGn (based on

two independent samples X1, . . . , Xm i.i.d. F with empirical df Fm and Y1, . . . , Yn i.i.d. G with
empirical df Gn.

Example 1.8 Multivariate mean: for P on (Rk,Bk): T (P ) =
∫
xdP (x) (with values in Rk),

T (Pn) =
∫
xdPn(x) = n−1

∑n
i=1Xi.

Example 1.9 Multivariate cross second moments: for P on (Rk,Bk):

T (P ) =

∫
xxTdP (x) =

∫
x⊗2dP (x);

T (Pn) =

∫
xxTdPn(x) =

∫
x⊗2dPn(x) = n−1

n∑
i=1

XiX
T
i .

Note that T (P ) and T (Pn) take values in Rk×k.

Example 1.10 Multivariate covariance matrix: for P on (Rk,Bk):

T (P ) =

∫
(x−

∫
ydP (y))(x−

∫
ydP (y))TdP (x) =

1

2

∫ ∫
(x− y)(x− y)TdP (x)dP (y),

T (Pn) =

∫
(x−

∫
ydPn(y))(x−

∫
ydPn(y))TdPn(x)

=
1

2

∫ ∫
(x− y)(x− y)TdPn(x)dPn(y) = n−1

n∑
i=1

(Xi −Xn)(Xi −Xn)T .

Example 1.11 k−means clustering functional: T (P ) = (T1(P ), . . . , Tk(P ) where the Ti(P )’s min-
imize ∫

|x− t1|2 ∧ · · · ∧ |x− tk|2dP (x) =
k∑
i=1

∫
Ci

|x− ti|2dP (x)

where

Ci = {x ∈ Rm : ti minimizes |x− t|2 over {t1, . . . , tk}}.

Then T (Pn) = (T1(Pn), . . . , Tk(Pn)) where the Ti(Pn)’s minimize∫
|x− t1|2 ∧ · · · ∧ |x− tk|2dPn(x).

Example 1.12 The simplicial depth function: for P on Rk and x ∈ Rk, set T (P ) ≡ T (P )(x) =
PrP (x ∈ S(X1, . . . , Xk+1)) where X1, . . . , Xk+1 are i.i.d. P and S(x1, . . . , xk+1) is the simplex
in Rk determined by x1, . . . , xk+1; e.g. for k = 2, the simplex determined by x1, x2, x3 is just a
triangle. Then T (Pn) = PrPn(x ∈ S(X1, . . . , Xk+1)). Note that in this example T (P ) is a function
from Rk to R.
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Example 1.13 (Z-functional derived from likelihood). A maximum likelihood estimator: for P
on (X ,A), suppose that P = {Pθ : θ ∈ Θ ⊂ Rk} is a regular parametric model with vector scores
function l̇θ(·; θ). Then for general P , not necessarily in the model P, consider T defined by∫

l̇θ(x;T (P ))dP (x) = 0.(1)

Then ∫
l̇θ(x;T (Pn))dPn(x) = 0

defines T (Pn). For estimation of location in one dimension with l̇(x; θ) = ψ(x− θ) and ψ ≡ −f ′/f ,
these become∫

ψ(x− T (F ))dF (x) = 0 and

∫
ψ(x− T (Fn))dFn(x) = 0.

We expect that often the value T (P ) ∈ Θ satisfying (1) also satisfies

T (P ) = argminθ∈ΘK(P, Pθ).

Here is a heuristic argument showing why this should be true: Note that for many cases we have

θ̂n = argmaxθn
−1ln(θ) = argmaxθPn(log pθ)

→p argmaxθP (log θ) = argmaxθ

∫
log pθ(x)dP (x).

Now

P (log pθ) = P (log p) + P log

(
pθ
p

)
= P (log p)− P log

(
p

pθ

)
= P (log p)−K(P, Pθ).

Thus

argmaxθ

∫
log pθ(x)dP (x) = argminθK(P, Pθ) ≡ θ(P ).

If we can interchange differentiation and integration it follows that

∇θK(P, Pθ) =

∫
p(x)l̇θ(x; θ)dµ(x) =

∫
l̇θ(x; θ)dP (x),

so the relation (1) is obtained by setting this gradient vector equal to 0.

Example 1.14 A bootstrap functional: let T (F ) be a functional with estimator T (Fn), and con-
sider estimating the distribution function of

√
n(T (Fn)− T (F )),

Hn(F ; ·) = PF (
√
n(T (Fn)− T (F )) ≤ ·).

A natural estimator is Hn(Fn, ·).
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2 Continuity of Functionals of F or P

One of the basic properties of a functional T is continuity (or lack thereof). One important sense
in which we might want our functionals T to be continuous is in the sense of weak convergence.

Definition 2.1 A. T : F → R is weakly continuous at F0 if Fn ⇒ F0 implies T (Fn) → T (F0).
T : F → R is weakly lower-semicontinuous at F0 if Fn ⇒ F0 implies lim infn→∞ T (Fn) ≥ T (F0).
B. T : P → R is weakly continuous at P0 ∈ P if Pn ⇒ P0 implies T (Pn)→ T (P0).

Example 2.1 T (F ) =
∫
xdF (x) is weakly discontinuous at every F0: if Fn = (1−n−1)F0+n−1δan ,

then Fn ⇒ F0 since, for bounded ψ∫
ψdFn = (1− n−1)

∫
ψdF0 + n−1ψ(an)→

∫
ψdF0.

But

T (Fn) = (1− n−1)T (F0) + n−1an →∞

if we choose an so that n−1an →∞.

Example 2.2 T (F ) = (1 − 2α)−1
∫ 1−α
α F−1(u)du with 0 < α < 1/2 is continuous at every F0:

Fn ⇒ F0 implies that F−1
n (t)→ F−1

0 (t) a.e. Lebesgue. Hence

T (Fn) = (1− 2α)−1

∫ 1−α

α
F−1
n (u)du

→ (1− 2α)−1

∫ 1−α

α
F−1

0 (u)du = T (F0)

by the dominated convergence theorem.

Example 2.3 T (F ) = F−1(1/2) is continuous at every F0 such that F−1
0 is continuous at 1/2.

Example 2.4 (A lower-semicontinuous functional T ). Let

T (F ) = V arF (X) =

∫
(x− EFX)2dF (x) =

1

2
EF (X −X ′)2

where X,X ′ ∼ F are independent; recall example 1.3. If Fn →d F , then lim infn→∞ T (Fn) ≥ T (F );
this follows from Skorokhod and Fatou.

Here is the basic fact about empirical measures that makes weak continuity of a functional T
useful:

Theorem 2.1 (Varadarajan). If X1, . . . , Xn are i.i.d. P on a separable metric space (S, d), then
Pr(Pn ⇒ P ) = 1.

Proof. For each fixed bounded and continuous function ψ we have

Pnψ ≡
∫
ψdPn =

1

n

n∑
i=1

ψ(Xi)→a.s. Pψ ≡
∫
ψdP
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by the ordinary strong law of large numbers. The proof is completed by noting that the collection
of bounded continuous functions on a separable metric space (S, d) is itself separable. See Dudley
(1989, 2002), sections 11.2 and 11.4. 2

Combining Varadarajan’s theorem with weak continuity of T yields the following simple result.

Proposition 2.1 Suppose that:
(i) (X ,A) = (S,BBorel) where (S, d) is a separable metric space and BBorel denotes its usual Borel
sigma - field.
(ii) T : P → R is weakly continuous at P0 ∈ P.
(iii) X1, . . . , Xn are i.i.d. P0.
Then Tn ≡ T (Pn)→a.s. T (P0).

Proof. By Varadarajan’s theorem 2.1, Pn ⇒ P0 a.s. Fix ω ∈ A with Pr(A) = 1 so that
Pωn ⇒ P0. Then by weak continuity of T , Tn(Pωn)→ T (P0). 2

A difficulty in using this theorem is typically in trying to verify weak-continuity of T . Weak
continuity is a rather strong hypothesis, and many interesting functions fail to have this type of
continuity. The following approach is often useful.

Definition 2.2 Let F ⊂ L1(P ) be a collection of integrable functions. Say that Pn → P with
respect to ‖ · ‖F if ‖Pn − P‖F ≡ supf∈F |Pn(f)− P (f)| → 0. Furthermore, we say that T : P → R
is continuous with respect to ‖ · ‖F if ‖Pn − P‖F → 0 implies that T (Pn)→ T (P ).

Definition 2.3 If F ⊂ L1(P ) is a collection of integrable functions with ‖Pn − P‖∗F → 0, we then
say that F is a Glivenko-Cantelli class for P and write F ∈ GC(P ).

Theorem 2.2 Suppose that:
(i) F ∈ GC(P ); i.e. ‖Pn − P‖∗F →a.s. 0.
(ii) T is continuous with respect to ‖ · ‖F .
Then T (Pn)→a.s. T (P ).

An immediate corollary of this theorem is as follows:

Corollary 1 Suppose that (X ,A) = (R,B) and F = {1(−∞,t] : t ∈ R}. Then ‖Pn−P‖F = ‖Fn−
F‖∞, the Kolmogorov distance between the distribution functions Fn and F . In this special case
we have ‖Fn − F‖∞ →a.s. 0 always by the one-dimensional (classical) Glivenko-Cantelli theorem.
If T is continuous with respect to ‖ · ‖∞ on distribution functions, then T (Fn)→a.s. T (F ).
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3 Metrics for Probability Distributions F and P

We have already encountered the total variation and Hellinger metrics in the course of studying
Scheffé’s lemma, Bayes estimators, and tests of hypotheses. As we will see, as useful as these metrics
are, they are too strong: the empirical measure Pn fails to converge to the true P in either the total
variation or Hellinger distance in general. In fact this fails to hold in general for the Prohorov and
dual bounded Lipschitz metrics which we introduce below, as has been shown by Dudley (1969),
Kersting (1978), and Bretagnolle and Huber-Carol (1977); also see the remarks in Huber (1981),
page 39. Nonetheless, it will be helpful to have in mind some some useful metrics for probability
measures P and df’s F , and their properties.

Definition 3.1 The Kolmogorov or supremum metric between two distribution functions F and
G is

dK(F,G) ≡ ‖F −G‖∞ ≡ sup
x∈Rk

|F (x)−G(x)|.

Definition 3.2 The Lévy metric between two distribution functions F and G is

dL(F,G) ≡ inf{ε > 0 : G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε for all x ∈ R}.

Definition 3.3 The Prohorov metric between two probability measures P , Q on a metric space
(S, d) is

dpr(P,Q) = inf{ε > 0 : P (B) ≤ Q(Bε) + ε for all Borel sets B}

where Bε ≡ {x : infy∈B d(x, y) ≤ ε}.

To define the next metric for P , Q on a metric space (S, d) for any real-valued function f on S, set
‖f‖L ≡ supx 6=y |f(x)− f(y)|/d(x, y), and denote the usual supremum norm by ‖f‖∞ ≡ supx |f(x)|.
Finally, set ‖f‖BL ≡ ‖f‖L + ‖f‖∞.

Definition 3.4 The dual - bounded Lipschitz metric dBL∗ is defined by

dBL∗(P,Q) ≡ sup{|
∫
fdP −

∫
fdQ| : ‖f‖BL ≤ 1}.

Definition 3.5 The total variation metric dTV is defined by

dTV (P,Q) ≡ sup{|P (A)−Q(A)| : A ∈ A} =
1

2

∫
|p− q|dµ

where p ≡ dP/dµ, q = dQ/dµ for some measure µ dominating both P and Q (e.g. µ = P +Q).

Definition 3.6 The Hellinger metric H is defined by

H2(P,Q) =
1

2

∫
{√p−√q}2dµ = 1−

∫
√
pqdµ ≡ 1− ρ(P,Q)

where µ is any measure dominating both P and Q. The quantity ρ(P,Q) ≡
∫ √

pqdµ is called the
affinity between P and Q.

The following basic theorem establishes relationships between these metrics:
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Theorem 3.1 A. dPr(P,Q)2 ≤ dBL∗(P,Q) ≤ 2dPr(P,Q).
B. H2(P,Q) ≤ dTV (P,Q) ≤ H(P,Q){2−H2(P,Q)}1/2.
C. dPr(P,Q) ≤ dTV (P,Q).
D. For distributions P , Q on the real line, dL ≤ dK ≤ dTV .

Proof. We proved B in chapter 2. For A, see Dudley (1989) section 11.3, problem 5, and section
11.6, corollary 11.6.5. Also see Huber (1981), corollary 2.4.3, page 33. Another useful reference is
Whitt (1974). 2

Theorem 3.2 (Strassen). The following are equivalent:
(a) dPr(P,Q) ≤ ε.
(b) There exist X ∼ P , Y ∼ Q defined on a common probability space (Ω,F , P r) such that
Pr(d(X,Y ) ≤ ε) ≥ 1− ε.

Proof. (b) implies (a) is easy: for any Borel set B,

[X ∈ B] = [X ∈ B, d(X,Y ) ≤ ε] ∪ [X ∈ B, d(X,Y ) > ε]

⊂ [X ∈ Bε] ∪ [d(X,Y ) > ε],

so that P (B) ≤ Q(Bε) + ε.
For the proof of (a) implies (b) see Strassen (1965), Dudley (1968), or Schay (1974). A nice

treatment of Strassen’s theorem is given by Dudley (1989, 2002). 2

An important additional family of metrics, the Wasserstein metrics are defined as follows. Let
(M,d) be a separable metric space. For r ≥ 1, let Pr(M) denote the collection of all probability
measures P on M with finite rth moment: for some x0 ∈ M ,

∫
M d(x, x0)rdP (x) < ∞. Then the

Wr Wasserstein distance between two probability measures P and Q in Pr(M) is defined by

Wr(P,Q) ≡
(

inf
π∈Π(P,Q)

∫
M×M

d(x, y)rdπ(x, y)

)1/r

= inf
π∈Π(P,Q)

{Eπd(X,Y )r}1/r

where Π(P,Q) denotes the collection of all probability measures on M ×M with marginals P and
Q respectively. For the Wasserstein metrics we have the following useful proposition:

Proposition 3.1 Let Pn, P ∈ Pr(M). Then Wr(Pn, P )→ 0 is equivalent to each of the following:
(1) Pn ⇒ P and

∫
d(x, x0)rdPn(x)→

∫
d(x, x0)rdP (x).

(2) Pn ⇒ P and d(x, x0)r is uniformly Pn−integrable.
(3)

∫
φdPn →

∫
φdP for every continuous φ such that φ(x) = O(d(x, x0)r) at infinity.

Proof. See Villani (2009), Theorem 6.9, page 96. 2

These metrics become useful if we can connect them to the behavior of the empirical measures
{Pn}. That is the content of the next proposition:

Proposition 3.2 Let X1, . . . , Xn, . . . be i.i.d. P ∈ Pr(M) with empirical measures Pn for n ≥ 1.
Then Wr(Pn, P )→a.s. 0.
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Proof. This follows immediately via Proposition 3.1 together with Varadarajan’s theorem and
the strong law of large numbers applied to Pnd(x, x0)r. 2

Bickel and Freedman (1981) make use of Propositions 3.1 and 3.2 in their treatment of Efron’s
bootstrap. Villani (2003), (2009) gives a thorough treatment of Wasserstein metrics and connections
with concentration of measure and isoperimetric inequalities. Bobkov and Ledoux (2014) give a
very thorough treatment of the behavior of Wr(Pn, P ) when the sample space is the real line R.
We will return to this in Section 7.4.

Here is a result comparable to Theorem 2.2.

Theorem 3.3 Suppose that T is continuous at P ∈ Pr(M) with respect to the Wasserstein metric
Wr. Then T (Pn)→a.s. T (P ).

Proof. This is an immediate consequence of Proposition 3.2. 2
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4 Differentiability of Functionals T of F or P

To be able to prove more than consistency, we will need stronger properties of the functional T ,
namely differentiability.

Definition 4.1 T is Gateaux differentiable at F if there exists a linear functional Ṫ (F ; ·) such that
for Ft = (1− t)F + tG,

lim
t→0

T (Ft)− T (F )

t
= Ṫ (F ;G− F ) =

∫
ψ(x)d(G(x)− F (x))

=

∫
ψF (x)dG(x)

where ψF (x) = ψ −
∫
ψdF (x) has mean zero under F . Or, T : P → R is Gateaux - differentiable

at P if there exists Ṫ (P ; ·) bounded and linear such that for Pt ≡ (1− t)P + tQ

lim
t→0

T (Pt)− T (P )

t
= Ṫ (P ;Q− P ) =

∫
ψ(x)d(Q(x)− P (x))

=

∫
ψP (x)dQ(x).

Definition 4.2 T has the influence function or influence curve IC(x;T, F ) at F if, with Ft ≡
(1− t)F + tδx,

lim
t→0

T (Ft)− T (F )

t
= IC(x;T, F ) = ψF (x).

Example 4.1 Probability of a set: suppose that T (F ) = F (A) for a fixed measurable set A. Then

T (Ft)− T (F )

t
=

∫
{1A(x)−

∫
1A(y)dF (y)}dG(x) =

∫
ψF (x)dG(x)

where ψF (x) = 1A(x)− F (A).

Example 4.2 The mean: T (F ) =
∫
xdF (x). Then

T (Ft)− T (F )

t
=

∫
{x− T (F )}dG(x) =

∫
ψF (x)dG(x)

where ψF (x) = x− T (F ). Note that the influence function ψF (x) for the probability functional is
bounded, but that the influence function ψF (x) for the mean functional is unbounded.

Example 4.3 The variance: T (F ) = V arF (X) =
∫

(x− µ(F ))2dF (x). Now

d

dt
T (Ft)|t=0 =

d

dt

∫
(x− µ(Ft))

2dFt(x)

=

∫
(x− µ(F ))2d(G− F )(x) + 2

∫
(x− µ(F ))(−1)µ̇(F ;G− F )dF (x)

=

∫
(x− µ(F ))2d(G− F )

=

∫
{(x− µ(F ))2 − σ2

F }dG(x).

Hence IC(x; T, F ) = ψF (x) = (x− µ(F ))2 − σ2
F .
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Example 4.4 T (F ) = F−1(1/2), and suppose that F has density f which is positive at F−1(1/2).
Then, with Ft ≡ (1− t)F + tG,

d

dt
T (Ft)

∣∣∣
t=0

=
d

dt
F−1
t (1/2)

∣∣∣
t=0

.

Note that Ft(F
−1
t (1/2)) = 1/2, and hence

0 =
d

dt
Ft(F

−1
t (1/2))

∣∣∣
t=0

=
d

dt
{F (F−1

t (1/2)) + t(G− F )(F−1
t (1/2))}

∣∣∣
t=0

= f(F−1(1/2))Ṫ (F ;G− F ) + (G− F )(F−1(1/2)) + 0,

so that

Ṫ (F ;G− F ) = − (G− F )(F−1(1/2))

f(F−1(1/2))

= −
∫

(1(−∞,F−1(1/2)](x)− 1/2)dG(x)

f(F−1(1/2))
.

Hence

ψF (x) = IC(x;T, F ) = − 1

f(F−1(1/2))
{1(−∞,F−1(1/2)](x)− 1/2}.

Example 4.5 The p−th quantile, T (F ) = F−1(p). By a calculation similar to that for the median,

Ṫ (F ;G− F ) = − (G− F )(F−1(p))

f(F−1(p))

= −
∫

(1(−∞,F−1(p)](x)− p)dG(x)

f(F−1(p))

and

ψF (x) = IC(x;T, F ) = − 1

f(F−1(p)
{1(−∞,F−1(p)](x)− p}.

Now we need to consider other types of derivatives: in particular the stronger notions of deriva-
tive which we will discuss below are those of Fréchet and Hadamard derivatives.

Definition 4.3 A functional T : F → R is Fréchet - differentiable at F ∈ F with respect to d∗ if
there exists a continuous linear functional Ṫ (F ; ·) from finite signed measures in R such that

|T (G)− T (F )− Ṫ (F ;G− F )|
d∗(G,F )

→ 0 as d∗(F,G)→ 0.(1)

Here are some properties of Fréchet - differentiation:

Theorem 4.1 Suppose that d∗ is a metric for weak convergence (i.e. the Lévy metric for df’s on
the line; or the Prohorov or dual-bounded Lipschitz metric for measures on a metric space (S, d)).
Then:
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A. If Ṫ exists in the Fréchet sense, then it is unique, and T is Gateaux differentiable with Gateaux
derivative Ṫ .

B. If T is Fréchet differentiable at F , then T is continuous at F .

C. Ṫ (F ;G−F ) =
∫
ψd(G−F ) =

∫
(ψ−

∫
ψdF )dG where the function ψ is bounded and continuous.

Proof. See Huber (1981), proposition 5.1, page 37. 2

Fréchet differentiability leads to an easy proof of asymptotic normality if the metric d∗ is
“compatible with the empirical df or empirical measure”.

Theorem 4.2 Suppose that T is Fréchet differentiable at F with respect to d∗ and that

√
nd∗(Fn, F ) = Op(1).(2)

Then

√
n(T (Fn)− T (F )) =

∫
ψFd{

√
n(Fn − F )}+ op(1)

=
1√
n

n∑
i=1

ψF (Xi) + op(1)

→d N(0, Eψ2
F (X)).

Proof. By Fréchet differentiability of T at F ,

√
n(T (Fn)− T (F )) =

√
n

∫
ψFdFn +

√
no(d∗(Fn, F ))

=
√
n

∫
ψFdFn +

o(d∗(Fn, F ))

d∗(Fn, F )

√
nd∗(Fn, F )

=
√
n

∫
ψFdFn + o(1)Op(1)

by (2) and (1). 2

Note that if d∗ is the Lévy metric dL or the Kolmogorov metric dK on the line, then (2) is
satisfied:

√
ndL(Fn, F ) ≤

√
ndK(Fn, F ) =

√
n‖Fn − F‖∞

d
= ‖Un(F )‖∞ →d ‖U(F )‖∞.

Unfortunately, if d∗ = dPr or d∗ = dBL, then
√
nd∗(Fn, F ) is notOp(1) in general; see Dudley (1969),

Kersting (1978), and Huber-Carol (1977). Thus we are lead to consideration of other metrics such
as the Kolmogorov metric and generalizations thereof for problems concerning functionals T (P ) of
probability distributions P . While some functionals T are Fréchet differentiable with respect to
the supremum or Kolmogorov metric, we can make more functionals differentiable by considering
a somewhat weaker notion of differentiability as follows:
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Definition 4.4 A functional T : F → R is Hadamard differentiable at F with respect to the
Kolmogorov distance dK = ‖ · ‖∞ (or compactly differentiable with respect to dK) if there exists
Ṫ (F ; ·) continuous and linear satisfying

|T (Ft)− T (F )− Ṫ (F ;Ft − F )|
|t|

= o(1)

for all {Ft} satisfying ‖t−1(Ft − F )−∆‖∞ → 0 for some function ∆.

The motivation for this definition is simply that we can write

√
n(T (Fn)− T (F )) =

T (F + n−1/2n1/2(Fn − F ))− T (F )

n−1/2

where
√
n(Fn − F )

d
= Un(F )⇒ U(F ). Hence we can easily deduce the following theorem.

Theorem 4.3 Suppose that T : F → R is Hadamard - differentiable at F with respect to ‖ · ‖∞.
Then

√
n(T (Fn)− T (F ))→d N(0, E(Ṫ 2(F ; 1(−∞,·](X)− F ))).

Moreover,

√
n(T (Fn)− T (F ))− Ṫ (F ;

√
n(Fn − F )) = op(1).

Proof. This is easily proved using a Skorokhod construction of the empirical process, or by the
extended continuous mapping theorem. Gill (1989) used the Skorokhod approach; Wellner (1989)
pointed out the extended continuous mapping proof. 2

One way of treating all the kinds of differentiability we have discussed so far is as follows. Define

T (Ft)− T (F )− Ṫ (F ;Ft − F ) ≡ Rem(F + th);

Here h = t−1(Ft − F ). Let S be a collection of subsets of the metric space (F , d∗). Then T is
S−differentiable at F with derivative Ṫ if for all S ∈ S

Rem(F + th)

t
→ 0 as t→ 0 uniformly in h ∈ S.

Now different choices of S yield different degrees of “goodness” of the linear approximation of T
by Ṫ at F . The three most common choices are just those we have discussed:

A. When S = {all singletons of (F , d∗)}, T is called Gateaux or directionally differentiable.

B. When S = {all compact subsets of (F , d∗)}, T is called Hadamard or compactly differentiable.

C. When S = {all bounded subsets of F , d∗)}, T is called Fréchet (or boundedly) differentiable.

Here is a simple example of a function T defined on pairs of probability distributions (or, in
this case, distribution functions) which is compactly differentiable with respect to the familiar
supremum (or uniform or Kolomogorov) norm, but which is not Fréchet differentiable with respect
to this norm.
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Example 4.6 For distribution functions F , G on R, define T by

T (F,G) =

∫
FdG = P (X ≤ Y )

where X ∼ F , Y ∼ G are independent. Let ‖F̃ − F‖∞ ≡ supx |F̃ (x) − F (x)| ≡ ‖F̃ − F‖F where
F = {1(−∞,t] : t ∈ R}.

Proposition 4.1 A. T (F,G) is Hadamard differentiable with respect to ‖ · ‖∞ at every pair of
df’s (F,G) with derivative Ṫ given by

Ṫ ((F,G);α, β) =

∫
αdG−

∫
βdF.(3)

B. T (F,G) is not Fréchet differentiable with respect to ‖ · ‖∞.

Proof. The following proof of A is basically Gill’s (1989), lemma 3. For Ft → F and Gt → G,
define αt ≡ (Ft − F )/t and βt ≡ (Gt − G)/t; for Hadamard differentiability we have αt → α and
βt → β with resepct to ‖ · ‖∞ for some (bounded) functions α and β. Now

T (Ft, Gt)− T (F,G)

t
− Ṫ (αt, βt) = t

∫
αtdβt

=

∫
αd(Gt −G) +

∫
(αt − α)d(Gt −G).

Since Ṫ is continuous, it suffices to show that the right side converges to 0. The second term on
the right is bounded by

‖αt − α‖∞
{∫

dGt +

∫
dG

}
≤ 2‖αt − α‖∞ → 0.

Fix ε > 0. Since the limit function α in the first term is right-continuous with left limits, there is a
step function with a finite number m of jumps, α̃ say, which satisfies ‖α− α̃‖∞ < ε. Thus the first
term may be bounded as follows:∣∣∣∣ ∫ αd(Gt −G)

∣∣∣∣ ≤ ∣∣∣∣ ∫ (α− α̃)d(Gt −G)

∣∣∣∣+

∣∣∣∣ ∫ α̃d(Gt −G)

∣∣∣∣
≤ 2‖α− α̃‖∞ +

m∑
j=1

|α̃(xj−1)||(Gt −G)[xj−1, xj)|

≤ 2ε+ 2m‖α̃‖∞‖Gt −G‖∞ → 2ε.

Since ε is arbitrary, this completes the proof of A.
Here is the proof of B. If T were Fréchet - differentiable, it would have to be true that

T (Fn, Gn)− T (F,G)− Ṫ (Fn − F,Gn −G) = o(‖Fn − F‖∞ ∨ ‖Gn −G‖∞)(a)

for every sequence of pairs of d.f.’s {(Fn, Gn)} with ‖Fn−F‖∞ → 0 and ‖Gn−G‖∞ → 0. We now
exhibit a sequence {(Fn, Gn)} for which (a) fails.

By straightforward algebra using (3),

T (Fn, Gn)− T (F,G)− Ṫ (Fn − F,Gn −G) =

∫
(Fn − F )d(Gn −G).(b)
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Consider the d.f.’s Fn and Gn corresponding to the measures which put masses n−1 at 0, . . . , (n−
1)/n and 1/n, . . . , 1 respectively:

Fn = n−1
n−1∑
k=0

δk/n, and Gn = n−1
n∑
k=1

δk/n.

both of these sequences of df’s converge uniformly to the uniform(0, 1) df F (x) ≡ x ≡ G(x), and
furthermore ‖Fn − F‖∞ = ‖Gn −G‖∞ = 1/n. Now

(Fn − F )(x) =

n∑
k=1

(
k

n
− x
)

1[(k−1)/n,k/n)(x),

(Fn − F )(1) = 0, and

(Gn −G)(x) = (Fn − F )(x)− 1

n
=

n∑
k=1

(
k − 1

n
− x
)

1[(k−1)/n,k/n)(x)

with (Gn −G)(1) = 0. Thus, separating Gn −G into its discrete and continuous parts,∫
(Fn − F )d(Gn −G) =

n∑
k=1

(Fn − F )

(
k

n

)
(1/n) + n

∫ 1/n

0

(
1

n
− t
)
{−dt}

= n
1

n

1

n
− n

{
1

n

1

n
− 1

2

(
1

n

)2
}

=
1

2n
= O(1/n)

6= o(‖Fn − F‖∞ ∨ ‖Gn −G‖∞) = o(1/n).

Hence (a) fails and T is not Fréchet - differentiable. 2

Remark 4.1 The previous example was suggested by R. M . Dudley. Dudley (1992), (1994) has
studied other metrics, based p−variation norms, for which this T is almost Fréchet - differentiable,
and for which some functionals may be Fréchet differentiable even though Fréchet differentiability
with respect to ‖ · ‖∞ may fail.

A particular refinement of Hadamard differentiability which is very useful is as follows: since the
limiting P−Brownian bridge process GP of the empirical process Gn ≡

√
n(Pn−P ) is in Cu(F , ρP )

with probability one for any F ∈ CLT (P ), we say that T is Hadamard differentiable tangentially
to Cu(F , ρP ) at P ∈ P if there is a continuous linear function Ṫ : Cu(F , ρP )→ B so that

T (Pt)− T (P )

t
→ Ṫ (∆0)

holds for any path {Pt} such that ∆t ≡ (Pt−P0)/t satisfies ‖∆t−∆0‖F → 0 with ∆0 ∈ Cu(F , ρP ).
Then a nice version of the delta-method for nonlinear functions T of Pn is given by the following
theorem:
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Theorem 4.4 Suppose that:
(i) T is Hadamard differentiable tangentially to Cu(F , ρP ) at P ∈ P.
(ii) F ∈ CLT (P ):

√
n(Pn − P ) ⇒ GP (where GP takes values in Cu(F , ρP ) by definition of

F ∈ CLT (P )).
Then

√
n(T (Pn)− T (P ))⇒ Ṫ (GP ).(4)

Proof. Define gn : P ⊂ `∞(F)→ B by

gn(x) ≡
√
n(T (P + n−1/2x)− T (P )).

Then, by (i), for {∆n} ⊂ `∞(F) with ‖∆n −∆0‖F → 0 and ∆0 ∈ Cu(F , ρP ),

gn(∆n)→ Ṫ (∆0) ≡ g(∆0).

Thus by the extended continuous mapping theorem in the Hoffmann - Jørgensen weak convergence
theory (see van der Vaart and Wellner (1996), Theorem 1.11.1, page 67), gn(Gn)⇒ g(GP ) = Ṫ (GP ),
and hence (4) holds. 2

The immediate corollary for the classical Mann-Whitney form of the Wilcoxon statistic given
in example 4.6 is:

Corollary 1 If X1, . . . , Xm are i.i.d. F and independent of Y1, . . . , Yn which are i.i.d. G, 0 <
PF,G(X ≤ Y ) < 1, and λN ≡ m/N ≡ m/(m+ n)→ λ ∈ (0, 1), then√

mn

N

{∫
FmdGn −

∫
FdG

}
=

√
mn

N
{T (Fm,Gn)− T (F,G)}

→d

√
1− λ

∫
U(F )dG−

√
λ

∫
V(G)dF

∼ N(0, σ2
λ(F,G))

where U and V are two independent Brownian bridge processes and

σ2
λ(F,G) = (1− λ)V ar(G(X)) + λV ar(F (Y )).

This is, of course, well-known, and can be proved in a variety of other ways (by treating
T (Fm,Gn) as a two-sample U−statistic, or a rank statistic, or by a direct analysis), but the proof
via the differentiable functional approach seems instructive and useful. (See e.g. Lehmann (1975),
Statistical Methods Based on Ranks, Section 5, pages 362 - 371, and especially example 20, page
365.)

Other interesting applications have been given by Grübel (1988) (who studies the asymptotic
theory of the length of the shorth); Pons and Turckheim (1989) (who study bivariate hazard
estimators and tests of independence based thereon), and Gill and Johansen (1990) (who prove
Hadamard differentiability of the “product integral”). Gill, van der Laan, and Wellner (1992)
give applications to several problems connected with estimation of bivariate distributions. Arcones
and Giné (1990) study the delta-method in connection with M− estimation and the bootstrap.
van der Vaart (1991b) shows that Hadamard differentiable functions preserve asymptotic efficiency
properties of estimators.
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5 High Order Derivatives

The following example illustrates the phenomena which we want to consider here in the simplest
possible setting:

Example 5.1 Suppose that X1, X2, . . . , Xn are i.i.d. Bernoulli(p). Then
√
n(Xn − p) →d Z ∼

N(0, p(1− p)), and, if g(p) = p(1− p),
√
n(g(Xn)− g(p))→d g

′(p)Z = (1− 2p)Z ∼ N(0, p(1− p)(1− 2p)2)

by the delta-method (or g-prime theorem). But if p = 1/2, since g′(1/2) = 0 this yields only

√
n(g(Xn)− 1/4)→d 0.

Thus we need to study the higher derivatives of g at 1/2. since g is, in fact, a quadratic, we have

g(p) = g(1/2) + 0 · (p− 1/2) +
1

2!
(−2)(p− 1/2)2 = 1/4− (p− 1/2)2.

Thus

n(g(Xn)− g(1/2)) = −n(Xn − 1/2)2 →d −Z2 ∼ −1

4
χ2

1.

This is a very simple example of a more general limit theorem which we will develop below.

Now consider a functional T : F → R as in sections 1 - 4.

Definition 5.1 T is k−th order Gateaux differentiable at F if, with Ft = F + t(G− F ),

dkT (F ; (G− F )) =
dk

dtk
T (Ft)

∣∣∣
t=0

exists.

Note that Ṫ (F ;G− F ) = d1(T ;G− F ) if it exists. It is usually the case that

dkT (F ;G− F ) =

∫
· · ·
∫
ψk(x1, . . . , xk)d(G− F )(x1) · · · d(G− F )(xk)

=

∫
· · ·
∫
ψk,F (x1, . . . , xk)dG(x1) · · · dG(xk);

here the function ψk,F is determined from ψk by a straightforward centering recipe:

ψ1,F (x) ≡ ψ1(x)−
∫
ψ1dF,

ψ2,F (x) ≡ ψ2(x1, x2)−
∫
ψ2(x1, x2)dF (x2)−

∫
ψ2(x1, x2)dF (x1)

+

∫ ∫
ψ2(x1, x2)dF (x1)dF (x2),
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and so forth; see Serfling section 6.3.2, lemma A, page 222. A consequence of this is that we can
write

nk/2dk(T (F ;Fn − F ) =

∫
· · ·
∫
ψk(x1, · · · , xk)d(Fn(x1)− F (x1)) · · · d(Fn(xk)− F (xk))

= nk/2
∫
· · ·
∫
ψk,F (x1, . . . , xk)dFn(x1) · · · dFn(xk)

=
1

nk/2

n∑
i1=1

· · ·
n∑

ik=1

ψk,F (Xi1 , . . . , Xik).

This is exactly nk/2 times a “V- statistic” of order k.

Also note that, by Taylor’s formula for a function of one real variable t, we have

T (Ft)− T (F ) =
k∑
j=1

1

j!
djT (F ;G− F ) +

1

(k + 1)!

dk+1

dtk+1
T (Ft)

∣∣∣
t=t∗

for some t∗ ∈ [0, t]. To analyze the asymptotic behavior of T in terms of d1T , d2T , . . ., it is typically
the first non-zero term dmT which dominates.

Serfling’s condition Am: suppose that

V arF (ψk,F (X1, . . . , Xk))

{
= 0 for k < m
> 0 for k = m.

Rmn ≡ T (Fn)− T (F )− 1

m!
dmT (F ;Fn − F )

satisfies nm/2Rmn = op(1).

This condition will be invoked with first m = 1 and then m = 2 in the following two theorems.

Theorem 5.1 (Serfling’s theorem A). Suppose that X1, . . . , Xn are i.i.d. F , and suppose that T
satisfies A1. Let µ(T, F ) = EFψ1,F (X1) = 0 and σ2(T, F ) = V ar(ψ1,F (X1)) and suppose that
σ2(T, F ) <∞. Then

√
n(T (Fn)− T (F ))→d N(0, σ2(T, F )).

Proof. Now by (ii) of condition A1,

√
n(T (Fn)− T (F )) = op(1) + n1/2d1T (F ;Fn − F )

= op(1) +
1√
n

n∑
i=1

ψ1,F (Xi)

→d N(0, σ2(T, F )).

This is essentially the same as in our earlier proofs of asymptotic normality using differentiability,
but here we are hypothesizing that the remainder term is asymptotically negligible (and thus the
real effort in using the theorem will be to verify the second part of A1). 2
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Theorem 5.2 (Serfling’s theorem B). Suppose that X1, . . . , Xn are i.i.d. F , and suppose that T
satisfies A2 with ψ2,F (x, y) = ψ2,F (y, x) and EFψ

2
2,F (X1, X2) < ∞, EF |ψ2,F (X1, X1)| < ∞, and

EFψ2,F (x,X2) = 0. Define A : L2(F )→ L2(F ) by

Ag(x) =

∫
ψ2,F (x, y)g(y)dF (y), g ∈ L2(F ),

and let {λk} be the eigenvalues of A. Then

n{T (Fn)− T (F )} →d
1

2

∞∑
k=1

λkZ
2
k

where Z1, Z2, . . . are i.i.d. N(0, 1).

Sketch of the proof: By condition A2 we can write

n(T (Fn)− T (F )) = n

{
T (Fn)− T (F )− 1

2!
d2(F ;Fn − F )

}
+
n

2!
d2(F ;Fn − F )

= op(1) +
n

2

∫ ∫
ψ2,F (x1, x2)dFn(x1)dFn(x2).(1)

Now denote the orthonormal eigenfunctions of the (Hilbert-Schmidt) operator A by {φk} and the
corresponding eigenvalues by {λk}: thus Aφk = λkφk. Then it is well-known that

ψ2,F (x, y) =
∞∑
k=1

λkφk(x)φk(y)

in the sense of L2(F × F ) convergence. Hence

n

∫ ∫
ψ2,F (x1, x2)dFn(x1)dFn(x2)

= n

∫ ∫ ∞∑
k=1

λkφk(x)φk(y)dFn(x)dFn(y)(2)

= n

∞∑
k=1

λk

{∫
φkdFn

}2

=

∞∑
k=1

λk

{
1√
n

n∑
i=1

φk(Xi)

}2

→d

∞∑
k=1

λkZ
2
k(3)

where the Zi’s are i.i.d. N(0, 1) since EFφk(Xi) = 0, EFψ
2
k(Xi) = 1, and EFφj(Xi)φk(Xi) = 0.

Combining (1) and (3) completes the heuristic proof. The reason that this is heuristic is because
of the infinite series appearing in (2) and (3). The complete proof entails consideration of finite
sums and the corresponding approximation arguments; see Serfling (1981), pages 195 - 199 for the
U− statistic case. But note that the V−statistic argument on page 227 just involves throwing the
diagonal terms back in, and is therefore really easier. 2

Remark 5.1 It seems to me that Serfling’s µ(T, F ) = 0 as formulated above. It also seems to me
that he has missed the factor of 1/2 appearing in the limit distribution.
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Remark 5.2 Gregory (1977) gives related but stronger results which do not require EFψ2,F (X1, X1) =∑∞
k=1 λk <∞ and apply to some interesting statistics with λk = 1/k. Note that the infinite series

∞∑
k=1

1

k
(Z2

k − 1)

defines a proper random variable since the summands have mean 0 and variances 2/k2; these
actually arise as limit distributions of the popular Shapiro - Wilk tests for normality; see e.g.
DeWet and Venter (1972), (1973).


