Statistics 581, Practice Midterm Exam

Wellner; 10/29/2018

This exam is to be taken without any books or notes.

1. (24 points) Define any three of the following five terms.
(a) A uniformly integrable sequence of random variables.
(b) Convergence in r th mean of a sequence of random variables.
(c) A normal random vector $Y=\left(Y_{1}, \ldots, Y_{n}\right)$.
(d) The inverse or quantile function F^{-1} of a distribution function F.
(e) The total variation distance between two probability measures P and Q on a measurable space $(\mathcal{X}, \mathcal{A})$.

Do either problem 2 or problem 3.
2. (40 points).
(a) State the ordinary (univariate) central limit theorem.
(b) State the Cramér-Wold device.
(c) State the multivariate central limit theorem.
(d) Use the ordinary (univariate) central limit theorem (a) and the Cramér-Wold device (b) to prove the multivariate central limit theorem (c).
3. (40 points). State and prove the Glivenko-Cantelli theorem.
4. (36 points). Let X_{1}, \ldots, X_{n} be i.i.d. with exponential density $p_{\theta}(x)=\theta \exp (-\theta x) 1_{[0, \infty)}(x)$.
(a) Find a constant c so that $c \mathbb{F}_{n}^{-1}(p) \rightarrow_{p} \theta^{-1}$.
(b) For the $c=c_{p}$ you found in (a), show that $\sqrt{n}\left(c \mathbb{F}_{n}^{-1}(p)-\theta^{-1}\right) \rightarrow_{d} N\left(0, \sigma^{2}\right)$ and find $\sigma^{2}=\sigma^{2}(p)$.
(c) Show that the asymptotic variance $\sigma^{2}(p)$ is minimized by p satisfying $2 p=$ $-\log (1-p)$.
5. (36 points)

Suppose that X, X_{1}, \ldots, X_{n} are i.i.d. Exponential (θ) random variables so that $P_{\theta}(X>x)=\exp (-\theta x)=1-F_{\theta}(x)$ for $x>0$.
(a) Fix $x_{0}>0$ and let $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1_{\left[X_{i} \leq x\right]}=n^{-1} \sum_{i=1}^{n} 1_{(-\infty, x]}\left(X_{i}\right)$ denote the empirical distribution function. Show that

$$
\sqrt{n}\binom{\bar{X}_{n}-1 / \theta}{\mathbb{F}_{n}\left(x_{0}\right)-F_{\theta}\left(x_{0}\right)} \rightarrow_{d} Y \sim N_{2}(0, \Sigma)
$$

and find Σ.
(b) Let $g(\theta) \equiv F_{\theta}\left(x_{0}\right)=1-\exp \left(-\theta x_{0}\right)$, and consider the two estimators of $F=F_{\theta}$ given by $T_{n, 1} \equiv g\left(\widehat{\theta}_{n}\right)$ and $T_{n, 2} \equiv \mathbb{F}_{n}\left(x_{0}\right)$ where $\widehat{\theta}_{n} \equiv 1 / \bar{X}_{n}$. Show that

$$
\sqrt{n}\binom{T_{n, 1}-F_{\theta}\left(x_{0}\right)}{T_{n, 2}-F_{\theta}\left(x_{0}\right)} \rightarrow_{d} \tilde{Y}
$$

and find the distribution of \tilde{Y}.
(c) What is the advantage of $T_{n, 2}=\mathbb{F}_{n}\left(x_{0}\right)$ as an estimator even though it is inefficient when the exponential model holds?
6. (36 points).

Suppose that X, X_{1}, \ldots, X_{n} are i.i.d. with distribution function F given by $P(X>x)=1-F(x)=1 / x^{5}, x \geq 1, F(x)=0, x \leq 1$.
(a) For what values of $r>0$ is $E|X|^{r}<\infty$? If they are finite compute $\mu=E(X)$ and $\sigma^{2}=\operatorname{Var}(X)$.
(b) Compute $F^{-1}(t)=Q(t)$, the quantile function corresponding to F.
(c) Which of the following are true? (Briefly indicate why or why not.)
(i) $\sum_{i=1}^{n} X_{i}=O_{p}\left(n^{1 / 2}\right)$.
(ii) $n^{1 / 3}\left(\bar{X}_{n}-\mu\right)=o_{p}(1)$.
(iii) $n^{3 / 4}\left(\bar{X}_{n}-\mu\right)=O_{p}(1)$.
(iv) $g\left(n^{1 / 3}\left(\bar{X}_{n}-\mu\right)\right) \rightarrow_{p} 1 / 2$ where $g(x)=1 /\left(1+e^{-x}\right)$.
(v) $h\left(n^{1 / 2}\left(\bar{X}_{n}-\mu\right)\right)=O_{p}(1)$ with $h(x)=\log |x|$.
(vi) $\sqrt{n}\left(\mathbb{F}_{n}^{-1}(1 / 2)-F^{-1}(1 / 2)\right) \rightarrow_{d} N\left(0,(1 / 4) /\left[5(1 / 2)^{6 / 5}\right]^{2}\right)$.

