Statistics 581, Practice Final Exam Wellner; 11/28/2018

This exam is to be taken without the use of any books or notes.

- 1. (48) points) **Define** each of the following terms. In each case, provide an appropriate context for your definition.
 - (a) The information matrix for θ in a regular parametric model $\mathcal{P} = \{P_{\theta}: \ \theta \in \Theta \subset R^k\}.$
 - (b) The efficient score function for a parameter θ_1 when $\theta = (\theta_1, \theta_2)$.
 - (c) The efficient influence function l_1 for a parameter θ_1 when $\theta = (\theta_1, \theta_2)$.
 - (d) The efficient influence function for \tilde{l}_{ν} for a differentiable parameter $q(\theta) = \nu(P_{\theta})$ in a regular parametric model \mathcal{P} .
 - (e) An asymptotically linear estimator T_n of a parameter $\nu(P)$ with influence function ψ .
 - (f) A locally regular estimator T_n of a parameter $\nu(P_{\theta})$.
- 2. (32 points) **State** four of the following six results, providing the appropriate (brief) context for your statement:
 - (a) The (elementary) Skorokhod theorem.
 - (b) The multiparameter Cramér Rao inequality (for an unbiased estimator) $T = T(\underline{X})$ of a real-valued parameter $q(\theta) = \nu(P_{\theta})$.
 - (c) A result about the finite-dimensional limiting distributions of the sample quantile process $\{\sqrt{n}(\mathbb{F}_n^{-1}(t) F^{-1}(t)): 0 < t < 1\}$ specifying the assumption(s) carefully.
 - (d) The Glivenko-Cantelli theorem.
 - (e) LAN (Local Asymptotic Normality) of the local log likelihood ratios for a regular parametric model satisfying the Cramér hypotheses).
 - (f) The asymptotic behavior of the likelihood ratio statistic $2 \log \lambda_n$ for testing a simple null hypothesis $\theta = \theta_0$ versus $\theta \neq \theta_0$ under a fixed alternative P_{θ} with $\theta \neq \theta_0$.
- 3. (40 points) Suppose that $\mathcal{P} = \{P_{\theta} : \theta \in (0, 1)\}$ where P_{θ} has density with respect to Lebesgue measure λ on [0, 1] given by

$$p_{\theta}(x) = 2\left\{\frac{x}{\theta}\mathbf{1}_{[0,\theta]}(x) + \frac{1-x}{1-\theta}\mathbf{1}_{(\theta,1]}(x)\right\}.$$

We showed in problem 5 of problem set # 9 that

$$\dot{\mathbf{l}}_{\theta}(x) = -\frac{1}{\theta} \mathbf{1}_{[0,\theta]}(x) + \frac{1}{1-\theta} \mathbf{1}_{(\theta,1]}(x),$$
$$I(\theta) = \frac{1}{\theta} + \frac{1}{1-\theta} = \frac{1}{\theta(1-\theta)},$$

and that if X_1, \ldots, X_n are i.i.d. P_{θ} with $\theta \in (0, 1)$, then a \sqrt{n} -consistent preliminary estimator of θ is given by $\overline{\theta}_n = 3\overline{X}_n - 1$ which satisfies

$$\sqrt{n}(\overline{\theta}_n - \theta) \rightarrow_d N(0, (1 - \theta + \theta^2)/2).$$

- (a) Use the above facts to suggest a one-step estimator $\dot{\theta}_n$ of θ .
- (b) Show that the estimator $\check{\theta}_n$ you proposed in (a) can be written as

$$\check{\theta}_n = \overline{\theta}_n - (\mathbb{F}_n(\overline{\theta}_n) - \overline{\theta}_n)$$

where $\mathbb{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{1}_{[X_i \leq x]}$ is the empirical distribution of the X_i 's.

(c) Show by a direct argument using the result of (b) that $\check{\theta}_n \to_p \theta$. Hints: Calculate the distribution function F_{θ} corresponding to the density p_{θ} , show that $F_{\theta}(\theta) = \theta$, and use the Glivenko-Cantelli theorem.

(d) Show by a direct argument using the result of (b) that $\sqrt{n}(\check{\theta}_n - \theta) \rightarrow_d N(0, I(\theta)^{-1})) = N(0, \theta(1 - \theta))$. Hint: Use Donsker's theorem and the deltamethod applied to $g(x) = F_{\theta}(x) - x$.

(e) Compare the asymptotic variance of the preliminary estimator $\overline{\theta}_n$ to the asymptotic variance of the one- step estimator $\check{\theta}_n$.

4. (40 points) Suppose that X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$, and let $\theta = (\mu, \sigma^2) \in \Theta \equiv \mathbb{R} \times (0, \infty)$. Consider testing $H : \sigma^2 = \sigma_0^2$ where σ_0^2 is a known constant, versus $K : \sigma^2 \neq \sigma_0^2$.

(a) What are the score functions for μ and σ^2 , and information matrix for θ in this model?

(b) What is the maximum likelihood estimator $\widehat{\theta}_n$ of $\theta = (\mu, \sigma^2)$ under $\theta \in \Theta$? What is the maximum likelihood estimator $\widehat{\theta}_n^0$ of $\theta = (\mu, \sigma^2)$ under $\theta \in \Theta_0$?

(c) Identify the null hypothesis H in terms of a subset Θ_0 of Θ .

(d) What are the likelihood ratio, Wald, and score (or Rao) statistics for testing H versus K? What is the limiting distribution of these three test statistics under the null hypothesis H?

(e) Suppose that X_1, \ldots, X_n are i.i.d. P_{θ} with $\theta \notin \Theta_0$. Find the limits of $n^{-1}2 \log \lambda_n, n^{-1}W_n, n^{-1}R_n$ (almost surely or in probability).

- 5. (48 points). (Poisson regression). Suppose that $(Y|Z) \sim \text{Poisson}(\lambda e^{\gamma Z})$, and $Z \sim \text{Bernoulli}(\eta)$ on $\{0, 1\}$ You may assume that η is known and that $0 < \eta < 1$. Thus Z is a "covariate" or "predictor variable", γ is a "regression parameter" which affects the intensity of the (conditionally) Poisson variable Y, and $\theta = (\lambda, \gamma)$.
 - (a) Find the information matrix for θ .

(b) Find the information and information bound for estimation γ if the parameter λ is unknown.

(c) Find the efficient score function and the efficient influence function for estimation of γ when λ is unknown. Interpret these geometrically in terms of the scores for γ and λ .

(d) If we observe $X_i = (Y_i, Z_i)$, i = 1, ..., n, i.i.d. P_{θ} , write down the likelihood equations for the maximum likelihood estimator $\hat{\theta}_n = (\hat{\lambda}_n, \hat{\gamma}_n)$. What do our theorems tell us about the asymptotic normality of $\hat{\theta}_n$?

6. (48 points). (Poisson regression, continued).

(a) Suggest three tests of the (composite!) null hypothesis $H : \gamma = 0$ versus $K : \gamma \neq 0$. What is the distribution of each of these three statistics under the null hypothesis and under local alternatives of the form $\gamma_n = tn^{-1/2}$?

(b) Consider estimation of the function

$$q(\theta) = \nu(P_{\theta}) = E_{\theta}(Y|Z=1).$$

Compute $q(\theta)$ explicitly as a function of $\theta = (\lambda, \gamma)$.

(c) Suggest a natural empirical estimator of this conditional expectation which does not rely on the Poisson model. If this estimator is called $\tilde{\nu}_n$, show that $\tilde{\nu}_n$ is asymptotically linear and find its influence function ψ explicitly.

(d) Find the efficient influence function \mathbf{l}_{ν} for estimation of $\nu(P_{\theta})$ assuming the Poisson model.

(e) Describe the relationship between ψ and \mathbf{l}_{ν} geometrically.