Statistics 581, Problem Set 1
 Wellner; 9/26/2018

Reading: Ferguson, ACILST: Chapter 1, pages 3-7;
Van der Vaart: Chapter 2, pages 2 - 12;
581-Course Notes: skim Chapter 0; read Chapter 1.
Optional further reading: Lehmann \& Casella, TPE, pages 1-32.
Due: Wednesday, October 3, 2018.

1. (a) The case $r=1$ of Chebychev's Inequality is known as Markov's Inequality and is usually written $P(|X| \geq \epsilon) \leq E(|X|) / \epsilon$ for an arbitrary random variable X and $\epsilon>0$. For every $\epsilon>1$, find a distribution for X with $E(X)=0$ and $E|X|=1$ that gives equality in Markov's inequality.
(b) Prove for an arbitrary random variable X and $\epsilon>0$

$$
P(|X| \geq \epsilon) \leq E\left\{\frac{\cosh (X)-1}{\cosh (\epsilon)-1}\right\}
$$

2. Let X and Y be i.i.d. Uniform $(0,1)$ random variables Define $U=$ $X-Y, V=\max (X, Y)=X \vee Y$.
(i) What is the range of (U, V) ?
(ii) Find the joint density function $f_{U, V}(u, v)$ of the pair (U, V). Are U and V independent?
3. Ferguson, ACILST, $\# 6$, page 7. (This is known as the Pólya-Cantelli lemma; see Chapter 2, Proposition 2.11, page 10.) Give an example of the use of this lemma. (See Lemma 2.11, p. 12, Asymp. Statist. for a multivariate version of this.)
4. Suppose that for $\theta \in R$,

$$
f_{\theta}(u, v)=\{1+\theta(1-2 u)(1-2 v)\}_{[0,1]^{2}}(u, v)
$$

(a) For what values of θ is f_{θ} a density function on $[0,1]^{2}$?
(b) For the set of θ 's you identified in (a), find the corresponding distribution function F_{θ} and show that it has Uniform $(0,1)$ marginal distributions.
(c) If $(U, V) \sim F_{\theta}$, compute the correlation $\rho(U, V) \equiv \rho$. Does this show any difficulty with this family of distributions as a model of dependence?
5. (a) Lehmann \& Casella, TPE, problem 3.5, page 64.

Let S be the support of a distribution on a Euclidean space $(\mathcal{X}, \mathcal{A})$. Then, (i) S is closed; (ii) $P(S)=1$; (iii) S is the intersection of all closed sets C with $P(C)=1$. (The support S of a distribution P on $(\mathcal{X}, \mathcal{A})$ is the set of all points x for which $P(A)>0$ for all open rectangles $A=\left\{\left(x_{1}, \ldots, x_{n}\right): a_{i}<x<b_{i}, i=1, \ldots, n\right\}$ for numbers $a_{i}<b_{i}$ in R.)
(b) Lehmann \& Casella, TPE, problem 3.6, page 64.

Show that if P and Q are two probability measures over the same Euclidean space which are equivalent (i.e. P is absolutely continuous with respect to Q and Q is absolutely continuous with respect to P), then they have the same support.
(c) Lehmann \& Casella, TPE, problem 3.7, page 64.

Let P and Q assign probabilities

$$
\begin{aligned}
& P: \quad P(X=1 / n)=p_{n}>0, \quad n=1,2, \ldots \quad\left(\sum_{n} p_{n}=1\right), \\
& Q: \quad P(X=0)=1 / 2 ; \quad P(X=1 / n)=q_{n}>0, \quad n=1,2, \ldots\left(\sum_{n} q_{n}=1 / 2\right) .
\end{aligned}
$$

Then, show that P and Q have the same support but are not equivalent.
6. Bonus problem 1: Suppose that $X \sim \operatorname{Uniform}(0,1)$ and $Y=1-X$. Find the joint distribution function $F(x, y)=F_{X, Y}(x, y)$ of (X, Y).
Does this distribution function have a joint density with respect to Lebesgue measure?

7. Bonus problem 2:

(a) Let Z_{1}, \ldots, Z_{n} be i.i.d. $N(0,1)$ random variables, and let

$$
\underline{U}_{n}=\frac{\left(Z_{1}, \ldots, Z_{n}\right)}{\sqrt{\sum_{i=1}^{n} Z_{i}^{2}}}=\frac{\underline{Z}}{\|\underline{Z}\|}
$$

so that $\left\|\underline{U}_{n}\right\|=1$. Let Γ be an orthogonal transformation of \mathbb{R}^{n}. Show that $\Gamma \underline{U}_{n}$ has the same distribution as \underline{U}_{n} for every orthogonal Γ. Thus \underline{U}_{n} is uniformly distributed over the unit sphere S^{n-1} in \mathbb{R}^{n}.
(b) Let \underline{U}_{n} be distributed uniformly over the unit sphere S^{n-1}. Show that $\sqrt{n}\left(U_{n, 1}, U_{n, 2}\right) \rightarrow_{d}\left(Z_{1}, Z_{2}\right)$ where Z_{1}, Z_{2} are independent $N(0,1)$ random variables.

