Statistics 581, Problem Set 10

Wellner; 11/28/2018

Reading: Course Notes, Chapter 4, Sections 1-4;
Ferguson, ACLST, Chapters 20, Chapter 22, and Chapter 16
vdV, Asymp. Statist., sections 5.6 and 5.7, pages 67-75.
Due: Wednesday, December 5, 2018.
Reminder: Final Exam; Monday, December 10, 2018: 8:30-10:20, DEN 112

1. Ferguson, ACLST, page 150, problem 3. Does the theory in our Chapter 4 (or Ferguson's Chapter 22) apply directly? Does the local asymptotic power of your test depend on the common value of θ_{j} in the null hypothesis?
2. Ferguson, ACLST, page 149, problem 2 modified as follows:
(a) Find the LR test statistic of the null hypothesis $H_{0}: \mu=c \theta$ for any fixed number $c>0$, and find the asymptotic distribution of the LR statistic under H_{0}.
(b) Does the theory of our chapter 4 (or Ferguson's chapter 22) apply directly?
(c) Does the local asymptotic power of your test depend on c ?
3. Ferguson, ACLST, page 118, problem 3. (See also Example 4.3.7, page 21, Chapter 4 notes.) [Neyman and Scott (1948)] Suppose we have a sample of size d from each of n normal populations with common unknown variance but possibly different unknown means $X_{i, j} \sim N\left(\mu_{i}, \sigma^{2}\right), i=1, \ldots, n, j=1, \ldots, d$ where all the $X_{i, j}$ are independent.
(a) Find the maximum-likelihood estimate of σ^{2}.
(b) Show that for d fixed the MLE of σ^{2} is not consistent as $n \rightarrow \infty$. Why don't either of Theorem 17 (Ferguson) or our Theorem 4.1.2 apply?
(c) Find a consistent estimate of σ^{2}.
4. Consider the Weibull family of example 3.2 .5 and problem set $\# 6$, problem 1: $\mathcal{P}=$ $\left\{P_{\theta}: \theta \in \Theta\right\}$ with $\Theta \subset R^{+2}$ given by the (Lebesgue) densities

$$
p_{\theta}(x)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left(-\left(\frac{x}{\alpha}\right)^{\beta}\right) 1_{[0, \infty)}(x)
$$

where $\theta \equiv(\alpha, \beta) \in(0, \infty) \times(0, \infty) \subset R^{2}$. Suppose that X, X_{1}, \ldots, X_{n} are i.i.d. with density function p_{θ}.
(a) If $X \sim P_{\theta} \in \mathcal{P}$, show that the distributions of $\log X$ form a location and scale family from a Gumbel (extreme value) density on R. (This amounts to a rephrasing of the statement of a problem in an earlier problem set.)
(b) Use the result of (a) to construct method of moments estimators or quantile based estimators $\bar{\theta}_{n}$ of $\theta=(\alpha, \beta)$.
(c) Show that the method of moments or quantile estimators $\bar{\theta}_{n}$ of θ are asymptotically normal, and find the asymptotic distribution; i.e. show that

$$
\sqrt{n}\left(\bar{\theta}_{n}-\theta\right) \rightarrow_{d} N_{2}(0, \Sigma) \quad \text { for some } \quad \Sigma
$$

[We will use these estimators as "starting points" approximate (or one-step) maximum likelihood estimators in the next problem .]
5. (Problem 4, continued).
(a) Does a maximum likelihood estimate of $\hat{\theta}=(\hat{\alpha}, \hat{\beta})$ exist? Is it unique? (See Lehmann and Casella, Example 6.1, page 468.)
(b) Compute an approximate (one - step) maximum likelihood estimate $\check{\theta}$ of θ using the method of moment (or quantile) estimators $\bar{\theta}_{n}$ as the preliminary estimators based on the following data (with $n=12$):

$$
1,1,2,3,14,27,41,55,66,113,320,413
$$

[These are failure times in seconds for "breakdown" of an insulating fluid between two electrodes subject to a voltage of 40 kV . - from Nelson, Applied Life Data Analysis, page 252, modified slightly.]
(c) Compute the maximum likelihood estimator $\hat{\theta}_{n}$, and compare it with the one step estimator computed in (b).

6. Optional bonus problem 1:

(a) Ferguson, ACLST, page 139, problem 3.
(b) What if Ferguson's density $f(x \mid \theta)$ with $\theta \in(0,1)$ is replaced by $\theta=(\gamma, \eta) \in$ $(0,1) \times(0, \infty)$ and

$$
f(x \mid \theta) \equiv f(x \mid \gamma, \eta)=\left\{(1-\gamma) e^{-x}+\gamma \eta^{2} x \exp (-\eta x)\right\} 1_{[0, \infty)}(x) ?
$$

Can you estimate γ and η by the method of moments? Can you improve method of moment estimators via one-step estimators?
7. Optional bonus problem 2: Suppose that (as in Lemma 5.2, page 38, Chapter 3 Notes) P and Q are two probability measures on a measurable space $(\mathcal{X}, \mathcal{A})$ with densities p and q with respect to a σ-finite dominating measure μ, and P^{n} and Q^{n} denote the corresponding product measures on $\left(\mathcal{X}^{n}, \mathcal{A}_{n}\right)$ (of X_{1}, \ldots, X_{n} i.i.d. as P or Q respectively).
(a) What is the relationship between $K\left(P^{n}, Q^{n}\right)$ and $K(P, Q)$, if any?
(b) If P is the $\operatorname{Normal}\left(0, \sigma^{2}\right)$ distribution and Q is the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, compute $K(P, Q), \rho(P, Q)=\int \sqrt{p q} d \mu$, and $H^{2}(P, Q)$.
(c) Use the results of (a) and (b) together with Lemma 5.2 to calculate $K\left(P^{n}, Q^{n}\right)$, $\rho\left(P^{n}, Q^{n}\right)$, and $H^{2}\left(P^{n}, Q^{n}\right)$ when P and Q are as in (b).
(d) Find a sequence μ_{n} so that, with Q_{n} being the Normal distribution with mean μ_{n}, the quantities $K\left(P^{n}, Q_{n}^{n}\right), \rho\left(P^{n}, Q_{n}^{n}\right)$, and $H^{2}\left(P^{n}, Q_{n}^{n}\right)$ converge to finite limits as $n \rightarrow \infty$.

8. Optional bonus problem 3:

(a) Prove the following inequality relating the Hellinger distance $H^{2}(P, Q)$ to $K(P, Q): 2 H^{2}(P, Q) \leq K(P, Q)$. Since $d_{T V}(P, Q) \leq \sqrt{2} H(P, Q)$ this implies that $d_{T V}(P, Q) \leq \sqrt{K(P, Q)}$. Hint: Start with $K(P, Q)$ and use the inequality $-\log (1+x) \geq-x$ for all $x>-1$.
(b) Suppose that P and Q have densities p and q with respect to a common dominating measure μ. Show that $K(P, Q)=\int_{p q>0} p \log (p / q) d \mu$. (c) Let $h(x) \equiv$ $x \log x-x+1$ for $x \geq 0$ with $h(0)=1$. show that $h(1)=0, h^{\prime}(1)=0$, $h^{\prime \prime}(x)=1 / x \geq 0$, and $h(x) \geq 0$ for all $x \geq 0$. Moreover, show that

$$
\frac{2}{3}(2+x) h(x) \geq(x-1)^{2} \text { for all } x \geq 1
$$

(d) Use the inequality in the display above to prove Pinsker's inequality: $d_{T V}(P, Q) \leq \sqrt{K(P, Q) / 2}$. Hint: Note that if $P \prec Q(P$ is absolutely continuous with respect to $Q)$, then $d_{T V}(P, Q)=\int_{q>0}|(p / q)-1| q d \mu$; then use the inequality in (a) together with the Cauchy-Schwarz inequality. The inequality in (a) can be rewritten as $\psi(x) \geq 1 /(1+x / 3)$ where $\psi(x) \equiv\left(2 / x^{2}\right) h(1+x)$ which arises in exponential bounds for the Binomial distribution; see e.g. Shorack \& W (1986, 2009) Proposition 11.1.1, page 441.

