
Statistics 581, Problem Set 10

Wellner; 11/28/2018

Reading: Course Notes, Chapter 4, Sections 1-4;
Ferguson, ACLST, Chapters 20, Chapter 22, and Chapter 16
vdV, Asymp. Statist., sections 5.6 and 5.7, pages 67 - 75.

Due: Wednesday, December 5, 2018.
Reminder: Final Exam; Monday, December 10, 2018: 8:30-10:20, DEN 112

1. Ferguson, ACLST, page 150, problem 3. Does the theory in our Chapter 4 (or
Ferguson’s Chapter 22) apply directly? Does the local asymptotic power of your
test depend on the common value of θj in the null hypothesis?

2. Ferguson, ACLST, page 149, problem 2 modified as follows:
(a) Find the LR test statistic of the null hypothesis H0 : µ = cθ for any fixed
number c > 0, and find the asymptotic distribution of the LR statistic under H0.
(b) Does the theory of our chapter 4 (or Ferguson’s chapter 22 ) apply directly?
(c) Does the local asymptotic power of your test depend on c?

3. Ferguson, ACLST, page 118, problem 3. (See also Example 4.3.7, page 21, Chapter
4 notes.) [Neyman and Scott (1948)] Suppose we have a sample of size d from each
of n normal populations with common unknown variance but possibly different
unknown means Xi,j ∼ N(µi, σ

2), i = 1, . . . , n, j = 1, . . . , d where all the Xi,j are
independent.
(a) Find the maximum-likelihood estimate of σ2.
(b) Show that for d fixed the MLE of σ2 is not consistent as n → ∞. Why don’t
either of Theorem 17 (Ferguson) or our Theorem 4.1.2 apply?
(c) Find a consistent estimate of σ2.

4. Consider the Weibull family of example 3.2.5 and problem set #6, problem 1: P =
{Pθ : θ ∈ Θ} with Θ ⊂ R+2 given by the (Lebesgue) densities

pθ(x) =
β

α

(x
α

)β−1
exp

(
−
(x
α

)β)
1[0,∞)(x)

where θ ≡ (α, β) ∈ (0,∞) × (0,∞) ⊂ R2. Suppose that X,X1, . . . , Xn are i.i.d.
with density function pθ.
(a) If X ∼ Pθ ∈ P , show that the distributions of logX form a location and scale
family from a Gumbel (extreme value) density on R. (This amounts to a rephrasing
of the statement of a problem in an earlier problem set.)
(b) Use the result of (a) to construct method of moments estimators or quantile
based estimators θn of θ = (α, β).
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(c) Show that the method of moments or quantile estimators θn of θ are
asymptotically normal, and find the asymptotic distribution; i.e. show that

√
n(θn − θ)→d N2(0,Σ) for some Σ.

[We will use these estimators as “starting points” approximate (or one-step)
maximum likelihood estimators in the next problem .]

5. (Problem 4, continued).
(a) Does a maximum likelihood estimate of θ̂ = (α̂, β̂) exist? Is it unique? (See
Lehmann and Casella, Example 6.1, page 468.)
(b) Compute an approximate (one - step) maximum likelihood estimate θ̌ of θ using
the method of moment (or quantile) estimators θn as the preliminary estimators
based on the following data (with n = 12):

1, 1, 2, 3, 14, 27, 41, 55, 66, 113, 320, 413.

[These are failure times in seconds for “breakdown” of an insulating fluid between
two electrodes subject to a voltage of 40 kV. – from Nelson, Applied Life Data
Analysis, page 252, modified slightly.]
(c) Compute the maximum likelihood estimator θ̂n, and compare it with the one
step estimator computed in (b).

6. Optional bonus problem 1:
(a) Ferguson, ACLST, page 139, problem 3.
(b) What if Ferguson’s density f(x|θ) with θ ∈ (0, 1) is replaced by θ = (γ, η) ∈
(0, 1)× (0,∞) and

f(x|θ) ≡ f(x|γ, η) = {(1− γ)e−x + γη2x exp(−ηx)}1[0,∞)(x)?

Can you estimate γ and η by the method of moments? Can you improve method of
moment estimators via one-step estimators?

7. Optional bonus problem 2: Suppose that (as in Lemma 5.2, page 38, Chapter
3 Notes) P and Q are two probability measures on a measurable space (X ,A) with
densities p and q with respect to a σ−finite dominating measure µ, and P n and Qn

denote the corresponding product measures on (X n,An) (of X1, . . . , Xn i.i.d. as P
or Q respectively).
(a) What is the relationship between K(P n, Qn) and K(P,Q), if any?
(b) If P is the Normal(0, σ2) distribution and Q is the Normal(µ, σ2) distribution,
compute K(P,Q), ρ(P,Q) =

∫ √
pqdµ, and H2(P,Q).

(c) Use the results of (a) and (b) together with Lemma 5.2 to calculate K(P n, Qn),
ρ(P n, Qn), and H2(P n, Qn) when P and Q are as in (b).
(d) Find a sequence µn so that, with Qn being the Normal distribution with mean
µn, the quantities K(P n, Qn

n), ρ(P n, Qn
n), and H2(P n, Qn

n) converge to finite limits
as n→∞.
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8. Optional bonus problem 3:
(a) Prove the following inequality relating the Hellinger distance H2(P,Q) to
K(P,Q): 2H2(P,Q) ≤ K(P,Q). Since dTV (P,Q) ≤

√
2H(P,Q) this implies

that dTV (P,Q) ≤
√
K(P,Q). Hint: Start with K(P,Q) and use the inequality

− log(1 + x) ≥ −x for all x > −1.
(b) Suppose that P and Q have densities p and q with respect to a common
dominating measure µ. Show that K(P,Q) =

∫
pq>0

p log(p/q)dµ. (c) Let h(x) ≡
x log x − x + 1 for x ≥ 0 with h(0) = 1. show that h(1) = 0, h′(1) = 0,
h′′(x) = 1/x ≥ 0, and h(x) ≥ 0 for all x ≥ 0. Moreover, show that

2

3
(2 + x)h(x) ≥ (x− 1)2 for all x ≥ 1.

(d) Use the inequality in the display above to prove Pinsker’s inequality:
dTV (P,Q) ≤

√
K(P,Q)/2. Hint: Note that if P ≺ Q (P is absolutely continuous

with respect to Q), then dTV (P,Q) =
∫
q>0
|(p/q) − 1|qdµ; then use the inequality

in (a) together with the Cauchy-Schwarz inequality. The inequality in (a) can be
rewritten as ψ(x) ≥ 1/(1 + x/3) where ψ(x) ≡ (2/x2)h(1 + x) which arises in
exponential bounds for the Binomial distribution; see e.g. Shorack & W (1986,
2009) Proposition 11.1.1, page 441.
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