Statistics 581, Problem Set 2 Wellner; 10/3/2018

- Reading: Course Notes: Chapter 2, pages 1 22. Ferguson, pages 8-35. van der Vaart, Sections 2.2 - 2.9 (pages 12 - 24).
- Due: Wednesday, October 10, 2018.
 - Suppose that X₁, X₂,... is a sequence of random variables such that X₁ ~ Uniform(0, 1), and for n = 1, 2, ... the conditional distribution of X_{n+1} given X₁,..., X_n is uniform on [0, cX_n] for a number c ∈ (√3, 2).
 (a) Compute E(X^r_n) for r > 0.
 - (b) Show that X_n converges to 0 in mean, but X_n does not converge to 0 in quadratic mean.
 - (c) Does $X_n \to_{a.s.} 0$?
 - 2. Wellner 581 Course Notes, Chapter 1, Exercise 4.1, page 19. (Show just the first equality in each case; we will do the second equalities later.)
 - 3. Ferguson, ACILST, #4, page 6:
 (a) Give an example of random variables X_n such that E|X_n| → 0 and E|X_n|² → 1.
 (b) Give an example of a sequence of random variables X_n such that X_n →_p 0 and EX_n → 0, but X_n →_{a.s.} 0 fails.
 (c) Suppose that Y has a standard Cauchy distribution with density f(y) = (π(1 + y²))⁻¹. Find a sequence of random variables Y_n such that Y_n →₂ Y, but Y_n does not converge to Y almost surely.
 - 4. vdV, Asymp. Statist., problem 5, page 24: Find an example of a sequence (X_n, Y_n) such that $X_n \to_d X$, $Y_n \to_d Y$, but (X_n, Y_n) does not converge in distribution.
 - 5. (See vdV, Asymp. Stat., section 11.1, pages 153 156.) Suppose that Y is a random variable with E(Y²) < ∞, let X be another random variable on the same probability space as Y, and consider finding a (measurable) function g of X with Eg²(X) < ∞ so that E(Y - g(X))² is "small".
 (a) Show that

$$\inf_{g:\mathbb{R}\to\mathbb{R}, Eg^2(X)<\infty} E(Y - g(X))^2 = E(Y - E(Y|X))^2$$

so that the minimizer is exactly $g_0(X) \equiv E(Y|X)$. (b) Show that $E\{(Y - E(Y|X))g(X)\} = 0$ for all $g(X) \in L_2(P)$. (c) Interpret the results in (a) and (b) geometrically (i.e. in the Hilbert space $L_2(P)$ of square integrable random variables with the inner product $\langle X, Y \rangle \equiv E(XY)$.

6. Optional Bonus Problem 1:

Suppose that Y is a random variable with $E(Y^2) < \infty$. (a) Show that

$$Var(Y) = E\{Var(Y|X)\} + Var\{E(Y|X)\};$$

i.e.

$$E(Y - EY)^{2} = E\{E[(Y - E(Y|X))^{2}|X]\} + E\{[E(Y|X) - E(Y)]^{2}\}.$$

(b) Interpret (a) geometrically. (c) Suppose that $Y \sim \chi_n^2(\delta)$. Compute E(Y) and Var(Y). Hint: Use $E(Y) = E\{E(Y|X)\}$ and (a). (d) Show that

$$\frac{\chi_n^2(\delta) - (n+\delta)}{\sqrt{2n+4\delta}} \to_d N(0,1)$$

as either $n \to \infty$ or $\delta \to \infty$.

7. **Optional Bonus Problem 2:** Suppose that ξ_1, \ldots, ξ_n are i.i.d. Uniform(0, 1), and let $U_{(0)} \equiv 0 \leq U_{(1)} \leq \cdots \leq U_{(n)} \leq 1 \equiv U_{(n+1)}$ denote the order statistics of the X_i 's. Let $D_j \equiv X_{(j)} - X_{(j-1)}$ for $j = 1, \ldots, n+1$ denote the spacings.

(a) Show that $(D_1, \ldots, D_{n+1}) \stackrel{d}{=} (Y_1, \ldots, Y_{n+1})/S_{n+1}$ where $S_{n+1} \equiv \sum_{j=1}^{n+1} Y_i$ and Y_1, \ldots, Y_{n+1} are i.i.d. exponential(1) random variables. (b) Show that for any fixed $k \geq 1$ we have

$$(nD_1,\ldots,nD_k) \rightarrow_d (Y_1,\ldots,Y_k).$$

(c) Find the joint density of $(U_{(1)}, U_{(2)})$.

(d) Using the density you found in (c), show that the joint density of $n(U_{(1)}, U_{(2)})$ converges pointwise to the joint density of $(Y_1, Y_1 + Y_2)$ for two independent exponential random variables Y_1 and Y_2 .

8. **Optional Bonus Problem 3:** Wellner 581 Course Notes, Chapter 1, Exercise 3.2, page 16.