Statistics 581, Problem Set 2

Wellner; 10/3/2018
Reading: Course Notes: Chapter 2, pages 1-22.
Ferguson, pages 8-35.
van der Vaart, Sections 2.2-2.9 (pages 12-24).
Due: Wednesday, October 10, 2018.

1. Suppose that X_{1}, X_{2}, \ldots is a sequence of random variables such that $X_{1} \sim \operatorname{Uniform}(0,1)$, and for $n=1,2, \ldots$ the conditional distribution of X_{n+1} given X_{1}, \ldots, X_{n} is uniform on $\left[0, c X_{n}\right]$ for a number $c \in(\sqrt{3}, 2)$.
(a) Compute $E\left(X_{n}^{r}\right)$ for $r>0$.
(b) Show that X_{n} converges to 0 in mean, but X_{n} does not converge to 0 in quadratic mean.
(c) Does $X_{n} \rightarrow_{a . s .} 0$?
2. Wellner 581 Course Notes, Chapter 1, Exercise 4.1, page 19. (Show just the first equality in each case; we will do the second equalities later.)
3. Ferguson, ACILST, \#4, page 6 :
(a) Give an example of random variables X_{n} such that $E\left|X_{n}\right| \rightarrow 0$ and $E\left|X_{n}\right|^{2} \rightarrow 1$.
(b) Give an example of a sequence of random variables X_{n} such that $X_{n} \rightarrow_{p} 0$ and $E X_{n} \rightarrow 0$, but $X_{n} \rightarrow_{a . s .} 0$ fails.
(c) Suppose that Y has a standard Cauchy distribution with density $f(y)=\left(\pi\left(1+y^{2}\right)\right)^{-1}$. Find a sequence of random variables Y_{n} such that $Y_{n} \rightarrow_{2} Y$, but Y_{n} does not converge to Y almost surely.
4. vdV, Asymp. Statist., problem 5, page 24: Find an example of a sequence $\left(X_{n}, Y_{n}\right)$ such that $X_{n} \rightarrow_{d} X, Y_{n} \rightarrow_{d} Y$, but $\left(X_{n}, Y_{n}\right)$ does not converge in distribution.
5. (See vdV, Asymp. Stat., section 11.1, pages 153-156.)

Suppose that Y is a random variable with $E\left(Y^{2}\right)<\infty$, let X be another random variable on the same probability space as Y, and consider finding a (measurable) function g of X with $E g^{2}(X)<\infty$ so that $E(Y-g(X))^{2}$ is "small".
(a) Show that

$$
\inf _{g: \mathbb{R} \rightarrow \mathbb{R}, E g^{2}(X)<\infty} E(Y-g(X))^{2}=E(Y-E(Y \mid X))^{2}
$$

so that the minimizer is exactly $g_{0}(X) \equiv E(Y \mid X)$.
(b) Show that $E\{(Y-E(Y \mid X)) g(X)\}=0$ for all $g(X) \in L_{2}(P)$.
(c) Interpret the results in (a) and (b) geometrically (i.e. in the Hilbert
space $L_{2}(P)$ of square integrable random variables with the inner product $\langle X, Y\rangle \equiv E(X Y)$.

6. Optional Bonus Problem 1:

Suppose that Y is a random variable with $E\left(Y^{2}\right)<\infty$.
(a) Show that

$$
\operatorname{Var}(Y)=E\{\operatorname{Var}(Y \mid X)\}+\operatorname{Var}\{E(Y \mid X)\} ;
$$

i.e.

$$
E(Y-E Y)^{2}=E\left\{E\left[(Y-E(Y \mid X))^{2} \mid X\right]\right\}+E\left\{[E(Y \mid X)-E(Y)]^{2}\right\}
$$

(b) Interpret (a) geometrically.
(c) Suppose that $Y \sim \chi_{n}^{2}(\delta)$. Compute $E(Y)$ and $\operatorname{Var}(Y)$.

Hint: Use $E(Y)=E\{E(Y \mid X)\}$ and (a).
(d) Show that

$$
\frac{\chi_{n}^{2}(\delta)-(n+\delta)}{\sqrt{2 n+4 \delta}} \rightarrow_{d} N(0,1)
$$

as either $n \rightarrow \infty$ or $\delta \rightarrow \infty$.
7. Optional Bonus Problem 2: Suppose that $\xi_{1}, \ldots \xi_{n}$ are i.i.d. Uniform $(0,1)$, and let $U_{(0)} \equiv 0 \leq U_{(1)} \leq \cdots \leq U_{(n)} \leq 1 \equiv U_{(n+1)}$ denote the order statistics of the X_{i} 's. Let $D_{j} \equiv X_{(j)}-X_{(j-1)}$ for $j=1, \ldots, n+1$ denote the spacings.
(a) Show that $\left(D_{1}, \ldots, D_{n+1}\right) \stackrel{d}{=}\left(Y_{1}, \ldots, Y_{n+1}\right) / S_{n+1}$ where $S_{n+1} \equiv$ $\sum_{j=1}^{n+1} Y_{i}$ and Y_{1}, \ldots, Y_{n+1} are i.i.d. exponential(1) random variables.
(b) Show that for any fixed $k \geq 1$ we have

$$
\left(n D_{1}, \ldots, n D_{k}\right) \rightarrow_{d}\left(Y_{1}, \ldots, Y_{k}\right)
$$

(c) Find the joint density of $\left(U_{(1)}, U_{(2)}\right)$.
(d) Using the density you found in (c), show that the joint density of $n\left(U_{(1)}, U_{(2)}\right)$ converges pointwise to the joint density of $\left(Y_{1}, Y_{1}+Y_{2}\right)$ for two independent exponential random variables Y_{1} and Y_{2}.
8. Optional Bonus Problem 3: Wellner 581 Course Notes, Chapter 1, Exercise 3.2, page 16.

