Statistics 581 Problem Set 5

Wellner; 10/24/2018

Reading: Course Notes, Chapter 2, pages 30-40; Ferguson, ACLST, Chapters 13 and 14, pages 87 - 100; vdVaart, Asymp. Stat., Sections 21.1-21.2, pages 304-310.

Due: Wednesday, October 31, 2018.

Reminder: Midterm exam, Friday, November 2, 2018

- 1. van der Vaart, problem 3.8, page 34, modified. Let X_1, \ldots, X_n be i.i.d. Bernoulli(p) with 0 .
 - (a) Find the limit distribution of $\sqrt{n}(\overline{X}_n^{-1} p^{-1})$.
 - (b) Show that $E|\overline{X}_n^{-1}| = \infty$ for every n.
 - (c) Connect the example in (a) to a result in the 581 Course Notes, Section 2.4.
- 2. van der Vaart, problem 3.6, page 34: Let X_1, \ldots, X_n be i.i.d. with expectation μ and variance 1. Find constants a_n and b_n such that $a_n(\overline{X}_n^2 b_n)$ converges in distribution when $\mu = 0$ or $\mu \neq 0$.
- 3. van der Vaart, problem 19.4, page 290: Suppose that X_1, \ldots, X_m and Y_1, \ldots, Y_n are independent samples from distribution functions F and G respectively. The Kolmogorov-Smirnov statistic for testing the null hypothesis H : F = G versus $K : F \neq G$ is the supremum distance $K_{m,n} \equiv \|\mathbb{F}_m \mathbb{G}_n\|_{\infty}$ between the empirical distributions of the two samples.

(a) Find the limiting distribution of $\sqrt{mn/N}K_{m,n}$ under the null hypothesis. Do this first assuming that $\lambda_N \equiv m/N \equiv m/(m+n) \rightarrow \lambda \in [0,1]$ as $m \wedge n \rightarrow \infty$. What can you say if the latter hypothesis is dropped?

(b) Show that the Kolmogorov - Smirnov test is asymptotically consistent against every alternative $F \neq G$.

(c) Find the asymptotic power function as a function of (Δ_F, Δ_G) for alternatives (F_m, G_n) where $\{F_m\}$ and $\{G_n\}$ satisfy, much as in our discussion in class on 26 October, $||F_m - F_0|_{\infty} \to 0$, $||G_n - F_0||_{\infty} \to 0$ and, for functions $\Delta_F, \Delta_G : [0, 1] \to \mathbb{R}$, $||\sqrt{m}(F_m - F_0) - \Delta_F(F_0)||_{\infty} \to 0$ and $||\sqrt{n}(G_n - F_0) - \Delta_G(F_0)||_{\infty} \to 0$.

- 4. Suppose that X_1, \ldots, X_n are i.i.d. Cauchy(0, 1); so the density of each X_i with respect to Lebesgue measure on R is $f(x) = \pi^{-1}(1+x^2)^{-1}$, $x \in R$.
 - (a) Compute the distribution function F of the X_i 's.
 - (b) Compute and plot the inverse distribution function F^{-1} corresponding to F.
 - (c) For what values of r > 0 is $E|X_1|^r < \infty$?
 - (d) Find the distribution function of $M_n \equiv \max_{1 \le i \le n} X_i$.
 - (e) For what values of r is $E|M_n|^r < \infty$?

(f) Find a sequence of constants b_n so that $M_n/b_n \rightarrow_d$ and find the limiting distribution. [Hint: see Ferguson, ACLST, Theorem 14, page 95.]

(g) Find the densities of M_n/b_n with b_n as in (f). Do these densities converge pointwise to a limit density? If so, what can you conclude from Scheffé's theorem?

5. Suppose that X_1, \ldots, X_n are i.i.d. with the Weibull distribution F_{θ} given by

$$1 - F_{\theta}(x) = \exp(-(x/\alpha)^{\beta}), \qquad x \ge 0$$

where $\theta = (\alpha, \beta) \in (0, \infty) \times (0, \infty)$.

(a) Find the inverse (or quantile function) $F_{\theta}^{-1}(u)$ corresponding to F_{θ} in terms of α, β , and $u \in (0, 1)$, and show that

$$\log F_{\theta}^{-1}(u) = \log \alpha + \frac{1}{\beta} \log \log \left(\frac{1}{1-u}\right)$$

(b) Fix $t \in (0, 1/2)$. Use the *t*-th and (1 - t)-th quantiles of the X_i 's, namely $\mathbb{F}_n^{-1}(t)$ and $\mathbb{F}_n^{-1}(1-t)$, to obtain simple consistent estimators $\hat{\alpha}_n$ and $\hat{\beta}_n$ of α and β . Prove that your estimators are consistent.

(c) Prove that your estimators $\hat{\alpha}_n$ and β_n satisfy

$$\sqrt{n} \left(\begin{array}{c} \hat{\alpha}_n - \alpha \\ \hat{\beta}_n - \beta \end{array} \right) \to_d N_2(0, \Sigma)$$

and identify Σ as a function of α , β , and t.

(d) How would you choose t to minimize the asymptotic variance of $\hat{\beta}_n$?

6. Optional bonus problem 1: Suppose that X_1, \ldots, X_n are i.i.d. F on R. Let $\mathbb{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i)$ be the empirical d.f. of the sample. Let $\alpha \in (0, 1)$. The goal of the following problem is to find a number c so that

(1) $P_F\{c\mathbb{F}_n(x) \le F(x) \text{ for all } -\infty < x < \infty\} = 1 - \alpha,$

i.e. so that $c\mathbb{F}_n(x)$ is a lower $1-\alpha$ confidence bound for F if F. Let

 $A_n(c,F) = \{\mathbb{F}_n(x) \le F(x)/c \text{ for all } -\infty < x < \infty\}.$

(a) Show that $P_F(A_n(c, F)) = P(B_n(c))$ where, for \mathbb{G}_n the empirical distribution function of ξ_1, \ldots, ξ_n i.i.d. Uniform(0, 1) random variables,

 $B_n(c) = \{ \mathbb{G}_n(x) \le x/c \text{ for all } 0 < x \le 1 \} .$

(b) Re-express the event $B_n(c)$ in terms of the order statistics $0 \le \xi_{(1)} \le \ldots \le \xi_{(n)} \le 1$ of the Uniform(0, 1) sample. [Hint: draw a picture first!]

(c) Compute $P(B_n(c))$ using the re-expression of the event $B_n(c)$ you found in (b) and the joint density of the uniform order statistics for n = 1, n = 2, and n = 3.

(d) Extend the calculations in (b) to a general n.

(e) Find c explicitly as a function of α and give the resulting lower confidence bound.

7. Optional bonus problem 2: van der Vaart, problem 19.10, page 290, modified.

Suppose that X_1, \ldots, X_n are i.i.d. F with $E|X_1|^2 < \infty$ and such that F has a density f satisfying $f(F^{-1}(1/2)) > 0$.

(a) Find the asymptotic joint distribution of \overline{X}_n and $\mathbb{F}_n^{-1}(1/2)$. Hint: use asymptotic linearity.

(b) Find the asymptotic distribution of the mean absolute deviation from the median: i.e. with $m(F) \equiv F^{-1}(1/2)$ and $A(F) \equiv E|X - m(F)|$, find the limiting distribution of $\sqrt{n}(A(\mathbb{F}_n) - A(F))$.