Statistics 581

Problem Set 5

Wellner; 10/24/2018

Reading: Course Notes, Chapter 2, pages 30-40;
Ferguson, ACLST, Chapters 13 and 14, pages 87 - 100;
vdVaart, Asymp. Stat., Sections 21.1-21.2, pages 304-310.
Due: Wednesday, October 31, 2018.
Reminder: Midterm exam, Friday, November 2, 2018

1. van der Vaart, problem 3.8, page 34, modified. Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Bernoulli}(p)$ with $0<p<1$.
(a) Find the limit distribution of $\sqrt{n}\left(\bar{X}_{n}^{-1}-p^{-1}\right)$.
(b) Show that $E\left|\bar{X}_{n}^{-1}\right|=\infty$ for every n.
(c) Connect the example in (a) to a result in the 581 Course Notes, Section 2.4.
2. van der Vaart, problem 3.6, page 34: Let X_{1}, \ldots, X_{n} be i.i.d. with expectation μ and variance 1. Find constants a_{n} and b_{n} such that $a_{n}\left(\bar{X}_{n}^{2}-b_{n}\right)$ converges in distribution when $\mu=0$ or $\mu \neq 0$.
3. van der Vaart, problem 19.4, page 290: Suppose that X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} are independent samples from distribution functions F and G respectively. The Kolmogorov-Smirnov statistic for testing the null hypothesis $H: F=G$ versus $K: F \neq G$ is the supremum distance $K_{m, n} \equiv\left\|\mathbb{F}_{m}-\mathbb{G}_{n}\right\|_{\infty}$ between the empirical distributions of the two samples.
(a) Find the limiting distribution of $\sqrt{m n / N} K_{m, n}$ under the null hypothesis. Do this first assuming that $\lambda_{N} \equiv m / N \equiv m /(m+n) \rightarrow \lambda \in[0,1]$ as $m \wedge n \rightarrow \infty$. What can you say if the latter hypothesis is dropped?
(b) Show that the Kolmogorov - Smirnov test is asymptotically consistent against every alternative $F \neq G$.
(c) Find the asymptotic power function as a function of $\left(\Delta_{F}, \Delta_{G}\right)$ for alternatives $\left(F_{m}, G_{n}\right)$ where $\left\{F_{m}\right\}$ and $\left\{G_{n}\right\}$ satisfy, much as in our discussion in class on 26 October, $\left.\| F_{m}-F_{0}\right\}_{\infty} \rightarrow 0,\left\|G_{n}-F_{0}\right\|_{\infty} \rightarrow 0$ and, for functions $\Delta_{F}, \Delta_{G}:[0,1] \rightarrow \mathbb{R}$, $\left\|\sqrt{m}\left(F_{m}-F_{0}\right)-\Delta_{F}\left(F_{0}\right)\right\|_{\infty} \rightarrow 0$ and $\left\|\sqrt{n}\left(G_{n}-F_{0}\right)-\Delta_{G}\left(F_{0}\right)\right\|_{\infty} \rightarrow 0$.
4. Suppose that X_{1}, \ldots, X_{n} are i.i.d. $\operatorname{Cauchy}(0,1)$; so the density of each X_{i} with respect to Lebesgue measure on R is $f(x)=\pi^{-1}\left(1+x^{2}\right)^{-1}, x \in R$.
(a) Compute the distribution function F of the X_{i} 's.
(b) Compute and plot the inverse distribution function F^{-1} corresponding to F.
(c) For what values of $r>0$ is $E\left|X_{1}\right|^{r}<\infty$?
(d) Find the distribution function of $M_{n} \equiv \max _{1 \leq i \leq n} X_{i}$.
(e) For what values of r is $E\left|M_{n}\right|^{r}<\infty$?
(f) Find a sequence of constants b_{n} so that $M_{n} / b_{n} \rightarrow_{d}$ and find the limiting distribution. [Hint: see Ferguson, ACLST, Theorem 14, page 95.]
(g) Find the densities of M_{n} / b_{n} with b_{n} as in (f). Do these densities converge pointwise to a limit density? If so, what can you conclude from Scheffés theorem?
5. Suppose that X_{1}, \ldots, X_{n} are i.i.d. with the Weibull distribution F_{θ} given by

$$
1-F_{\theta}(x)=\exp \left(-(x / \alpha)^{\beta}\right), \quad x \geq 0
$$

where $\theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)$.
(a) Find the inverse (or quantile function) $F_{\theta}^{-1}(u)$ corresponding to F_{θ} in terms of α, β, and $u \in(0,1)$, and show that

$$
\log F_{\theta}^{-1}(u)=\log \alpha+\frac{1}{\beta} \log \log \left(\frac{1}{1-u}\right) .
$$

(b) Fix $t \in(0,1 / 2)$. Use the $t-$ th and $(1-t)-$ th quantiles of the X_{i} 's, namely $\mathbb{F}_{n}^{-1}(t)$ and $\mathbb{F}_{n}^{-1}(1-t)$, to obtain simple consistent estimators $\hat{\alpha}_{n}$ and $\hat{\beta}_{n}$ of α and β. Prove that your estimators are consistent.
(c) Prove that your estimators $\hat{\alpha}_{n}$ and $\hat{\beta}_{n}$ satisfy

$$
\sqrt{n}\binom{\hat{\alpha}_{n}-\alpha}{\hat{\beta}_{n}-\beta} \rightarrow_{d} N_{2}(0, \Sigma)
$$

and identify Σ as a function of α, β, and t.
(d) How would you choose t to minimize the asymptotic variance of $\hat{\beta}_{n}$?
6. Optional bonus problem 1: Suppose that X_{1}, \ldots, X_{n} are i.i.d. F on R. Let $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1_{(-\infty, x]}\left(X_{i}\right)$ be the empirical d.f. of the sample. Let $\alpha \in(0,1)$. The goal of the following problem is to find a number c so that

$$
\begin{equation*}
P_{F}\left\{c \mathbb{F}_{n}(x) \leq F(x) \text { for all }-\infty<x<\infty\right\}=1-\alpha, \tag{1}
\end{equation*}
$$

i.e. so that $c \mathbb{F}_{n}(x)$ is a lower $1-\alpha$ confidence bound for F if F. Let

$$
A_{n}(c, F)=\left\{\mathbb{F}_{n}(x) \leq F(x) / c \text { for all }-\infty<x<\infty\right\}
$$

(a) Show that $P_{F}\left(A_{n}(c, F)\right)=P\left(B_{n}(c)\right.$ where, for \mathbb{G}_{n} the empirical distribution function of ξ_{1}, \ldots, ξ_{n} i.i.d. Uniform $(0,1)$ random variables,

$$
B_{n}(c)=\left\{\mathbb{G}_{n}(x) \leq x / c \text { for all } 0<x \leq 1\right\}
$$

(b) Re-express the event $B_{n}(c)$ in terms of the order statistics $0 \leq \xi_{(1)} \leq \ldots \leq$ $\xi_{(n)} \leq 1$ of the Uniform $(0,1)$ sample. [Hint: draw a picture first!]
(c) Compute $P\left(B_{n}(c)\right)$ using the re-expression of the event $B_{n}(c)$ you found in (b) and the joint density of the uniform order statistics for $n=1, n=2$, and $n=3$.
(d) Extend the calculations in (b) to a general n.
(e) Find c explicitly as a function of α and give the resulting lower confidence bound.
7. Optional bonus problem 2: van der Vaart, problem 19.10, page 290, modified. Suppose that X_{1}, \ldots, X_{n} are i.i.d. F with $E\left|X_{1}\right|^{2}<\infty$ and such that F has a density f satisfying $f\left(F^{-1}(1 / 2)\right)>0$.
(a) Find the asymptotic joint distribution of \bar{X}_{n} and $\mathbb{F}_{n}^{-1}(1 / 2)$. Hint: use asymptotic linearity.
(b) Find the asymptotic distribution of the mean absolute deviation from the median: i.e. with $m(F) \equiv F^{-1}(1 / 2)$ and $A(F) \equiv E|X-m(F)|$, find the limiting distribution of $\sqrt{n}\left(A\left(\mathbb{F}_{n}\right)-A(F)\right)$.

