Statistics 581, Problem Set 6

Wellner; 10/31/2018

Reminder: Midterm exam: Friday, November 2.
Reading: Lecture Notes Chapter 3, sections 1-2;
Ferguson, ACILST, chapters 19-20, pages 126 - 139;
vdVaart, Asym. Stat., sections 8.1-8.3, pages 108-112.

Due: Wednesday, November 7, 2018.

- 1. A. Compute and plot the score for location -f'(x)/f(x) when:
 - (a) $f = \phi$, the standard normal density;
 - (b) $f(x) = \exp(-x)/(1 + \exp(-x))^2$ (logistic);
 - (c) $f(x) = (1/2) \exp(-|x|)$ (double exponential);
 - (d) $f(x) = t_k$, the *t*-density with *k*-degrees of freedom;
 - (e) $f(x) = \exp(-x) \exp(-\exp(-x));$

(f) $f(x) = 2\phi(x)\Phi(ax)$ where $\Phi(x)$ is the standard normal distribution function and a > 0;

(g) $f(x) = 1/(\pi(1+x^2))$, the standard Cauchy density.

B. A density f is called *log-concave* if $\log f$ is a concave function. Let s < 0. A density f is called *s*-*concave* if f^s is convex. Which of the densities in (a) - (f) are log-concave? Which of the densities in (a) - (f) are *s*-concave for some s < 0? Which of the densities in (a) - (f) are symmetric about 0?

- 2. Suppose that $Z \sim N(0,1)$ and, for $\mu \in R$ and $\sigma > 0$, that $X = \mu + \sigma Z \sim P_{\mu,\sigma} = N(\mu, \sigma^2)$.
 - (a) Compute the likelihood ratio

$$\frac{dP_{\mu,\sigma}}{dP_{0,\sigma}}(x) = \frac{\sigma^{-1}\phi((x-\mu)/\sigma)}{\sigma^{-1}\phi(x/\sigma)} \quad \text{and} \quad Y \equiv \log \frac{dP_{\mu,\sigma}}{dP_{0,\sigma}}(X) \,.$$

What is the distribution of Y under $P_{0,\sigma}$ and under $P_{\mu,\sigma}$? (b) Plot the function

$$l(\mu; X) \equiv \log \frac{dP_{\mu,\sigma}}{dP_{0,\sigma}}(X)$$

as a function of μ .

(c) Find the maximum value of the function $l(\mu; X)$ in (b) (as a function of μ) and the value of $\mu \equiv \hat{\mu}$ which achieves the maximum.

(d) What is the distribution of $\hat{\mu}$ under $P_{0,\sigma}$ and under $P_{\mu,\sigma}$? What is the distribution of $l(\hat{\mu}; X)$ under $P_{0,\sigma}$ and under $P_{\mu,\sigma}$?

3. Suppose that X, X_1, X_2, \ldots, X_n are independent Exponential(λ) random variables:

$$P(X \ge x) = \exp(-\lambda x), \qquad x > 0$$

(a) Show that the *r*-th moment of X, $\mu_r \equiv \mu_r(\lambda)$ is given by

$$\mu_r(\lambda) = EX^r = \frac{\Gamma(r+1)}{\lambda^r}.$$

(b) Use the moment calculation in (a) to show that

$$\frac{\mu_r(\lambda)}{\mu_{r+1}(\lambda)} = \frac{\lambda}{r+1}$$

and hence that the family of estimators $\{\hat{\lambda}_n^{(k)}\}_{k\geq 0}$ given by

$$\hat{\lambda}_{n}^{(k)} \equiv (k+1) \frac{\overline{X^{k}}_{n}}{\overline{X^{k+1}}_{n}} \equiv (k+1) \frac{n^{-1} \sum_{1}^{n} X_{i}^{k}}{n^{-1} \sum_{1}^{n} X_{i}^{k+1}}$$

are all consistent estimators of $\lambda: \hat{\lambda}_n^{(k)} \to_p \lambda$ for each $k = 0, 1, 2, \ldots$ (c) Show that

$$\sqrt{n}(\hat{\lambda}_n^{(k)} - \lambda) \to_d N(0, \sigma_k^2(\lambda)) \text{ as } n \to \infty$$

and compute $\sigma_k^2(\lambda)$ explicitly as a function of k and λ .

(d) What is the asymptotic relative efficiency of $\hat{\lambda}_n^{(k)}$ to $\hat{\lambda}_n \equiv \hat{\lambda}_n^{(0)} = 1/\overline{X}_n$ for k > 1?

(e) Now suppose that X, X_1, \ldots, X_n are i.i.d. with distribution function F on $(0, \infty)$ where F is not an exponential distribution function. Specify hypotheses on F (or X) which guarantee that $\hat{\lambda}_n^{(k)} \to_p$ some natural parameter, say $\lambda_k(F)$ defined in terms of F. What hypothesis will be needed to guarantee that $\sqrt{n}(\hat{\lambda}_n^{(k)} - \lambda_k(F)) \to_d N(0, V^2)$ for some V^2 ?

4. **Optional bonus problem 1:** Ferguson, ACILST, problem 6, page 93, plus the following:

(d) Construct a family of estimators $\tilde{\theta}_n$ of θ based on the sample quantile function $\mathbb{F}_n^{-1}(t)$. Show that your estimators are consistent and asymptotically normal. Give a formula for the asymptotic variance of your estimators.

5. Optional bonus problem 2: Consider a function $T : \mathcal{F} \to \mathbb{R}$ where \mathcal{F} is some (sub) class of distribution functions F (examples include the mean, $T(F) = \mu(F) = \int x dF(x)$, the variance $T(F) = \sigma^2(F) = \int (x - \int y dF(y))^2 dF(x)$, the median $T(F) = F^{-1}(1/2)$, linear combinations of order statistics $T(F) = \int_0^1 F^{-1}(u)w(u)du$, the mean residual life function at x > 0 $T(F) \equiv e(x, F) \equiv \int_{(x,\infty)} (1 - F(u))du/(1 - F(x)) = E(X - x | X > x)$, and so forth). [The mean residual life function gives the mean life conditional on surviving beyond x.] The "principle of substitution" says that T(F) can be estimated by $T(\widehat{F}_n)$ for some estimator \widehat{F}_n of F. If T is sufficiently "smooth", then frequently the empirical distribution function \mathbb{F}_n can be taken as the estimator \widehat{F}_n of F.

Give a treatment of consistency and asymptotic normality of the estimator $e(x, \mathbb{F}_n)$ of e(x, F) based on our results from Sections 2.4 and 2.6. You may assume that with $X \sim F$ on $(0, \infty)$ we have $E_F X < \infty$, $E_F X^2 < \infty$, and 1 - F(x) > 0 (as well as any other additional assumptions you need). What is the joint limiting distribution of $\sqrt{n}(e(x, \mathbb{F}_n) - e(x, F), e(y, \mathbb{F}_n) - e(y, F))$ for $0 < x < y < \infty$?