Statistics 581, Problem Set 6

Wellner; 10/31/2018

Reminder: Midterm exam: Friday, November 2.
Reading: Lecture Notes Chapter 3, sections 1-2;
Ferguson, ACILST, chapters 19-20, pages 126-139;
vdVaart, Asym. Stat., sections 8.1-8.3, pages 108-112.
Due: Wednesday, November 7, 2018.

1. A. Compute and plot the score for location $-f^{\prime}(x) / f(x)$ when:
(a) $f=\phi$, the standard normal density;
(b) $f(x)=\exp (-x) /(1+\exp (-x))^{2}$ (logistic);
(c) $f(x)=(1 / 2) \exp (-|x|)$ (double exponential);
(d) $f(x)=t_{k}$, the t-density with k-degrees of freedom;
(e) $f(x)=\exp (-x) \exp (-\exp (-x))$;
(f) $f(x)=2 \phi(x) \Phi(a x)$ where $\Phi(x)$ is the standard normal distribution function and $a>0$;
(g) $f(x)=1 /\left(\pi\left(1+x^{2}\right)\right)$, the standard Cauchy density.
B. A density f is called \log-concave if $\log f$ is a concave function. Let $s<0$. A density f is called s-concave if f^{s} is convex. Which of the densities in (a) - (f) are log-concave? Which of the densities in (a) - (f) are s-concave for some $s<0$? Which of the densities in (a) - (f) are symmetric about 0 ?
2. Suppose that $Z \sim N(0,1)$ and, for $\mu \in R$ and $\sigma>0$, that $X=\mu+\sigma Z \sim P_{\mu, \sigma}=$ $N\left(\mu, \sigma^{2}\right)$.
(a) Compute the likelihood ratio

$$
\frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(x)=\frac{\sigma^{-1} \phi((x-\mu) / \sigma)}{\sigma^{-1} \phi(x / \sigma)} \quad \text { and } \quad Y \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X) .
$$

What is the distribution of Y under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$?
(b) Plot the function

$$
l(\mu ; X) \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X)
$$

as a function of μ.
(c) Find the maximum value of the function $l(\mu ; X)$ in (b) (as a function of μ) and the value of $\mu \equiv \hat{\mu}$ which achieves the maximum.
(d) What is the distribution of $\hat{\mu}$ under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$? What is the distribution of $l(\hat{\mu} ; X)$ under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$?
3. Suppose that $X, X_{1}, X_{2}, \ldots, X_{n}$ are independent Exponential (λ) random variables:

$$
P(X \geq x)=\exp (-\lambda x), \quad x>0
$$

(a) Show that the r-th moment of $X, \mu_{r} \equiv \mu_{r}(\lambda)$ is given by

$$
\mu_{r}(\lambda)=E X^{r}=\frac{\Gamma(r+1)}{\lambda^{r}} .
$$

(b) Use the moment calculation in (a) to show that

$$
\frac{\mu_{r}(\lambda)}{\mu_{r+1}(\lambda)}=\frac{\lambda}{r+1}
$$

and hence that the family of estimators $\left\{\hat{\lambda}_{n}^{(k)}\right\}_{k \geq 0}$ given by

$$
\hat{\lambda}_{n}^{(k)} \equiv(k+1) \frac{\overline{X_{n}^{k}}}{\overline{X^{k+1}}} \equiv(k+1) \frac{n^{-1} \sum_{1}^{n} X_{i}^{k}}{n^{-1} \sum_{1}^{n} X_{i}^{k+1}}
$$

are all consistent estimators of $\lambda: \hat{\lambda}_{n}^{(k)} \rightarrow_{p} \lambda$ for each $k=0,1,2, \ldots$.
(c) Show that

$$
\sqrt{n}\left(\hat{\lambda}_{n}^{(k)}-\lambda\right) \rightarrow_{d} N\left(0, \sigma_{k}^{2}(\lambda)\right) \text { as } n \rightarrow \infty
$$

and compute $\sigma_{k}^{2}(\lambda)$ explicitly as a function of k and λ.
(d) What is the asymptotic relative efficiency of $\hat{\lambda}_{n}^{(k)}$ to $\hat{\lambda}_{n} \equiv \hat{\lambda}_{n}^{(0)}=1 / \bar{X}_{n}$ for $k>1$?
(e) Now suppose that X, X_{1}, \ldots, X_{n} are i.i.d. with distribution function F on $(0, \infty)$ where F is not an exponential distribution function. Specify hypotheses on F (or X) which guarantee that $\hat{\lambda}_{n}^{(k)} \rightarrow_{p}$ some natural parameter, say $\lambda_{k}(F)$ defined in terms of F. What hypothesis will be needed to guarantee that $\sqrt{n}\left(\hat{\lambda}_{n}^{(k)}-\lambda_{k}(F)\right) \rightarrow_{d} N\left(0, V^{2}\right)$ for some V^{2} ?
4. Optional bonus problem 1: Ferguson, ACILST, problem 6, page 93, plus the following:
(d) Construct a family of estimators $\tilde{\theta}_{n}$ of θ based on the sample quantile function $\mathbb{F}_{n}^{-1}(t)$. Show that your estimators are consistent and asymptotically normal. Give a formula for the asymptotic variance of your estimators.
5. Optional bonus problem 2: Consider a function $T: \mathcal{F} \rightarrow \mathbb{R}$ where \mathcal{F} is some (sub) class of distribution functions F (examples include the mean, $T(F)=\mu(F)=$ $\int x d F(x)$, the variance $T(F)=\sigma^{2}(F)=\int\left(x-\int y d F(y)\right)^{2} d F(x)$, the median $T(F)=F^{-1}(1 / 2)$, linear combinations of order statistics $T(F)=\int_{0}^{1} F^{-1}(u) w(u) d u$, the mean residual life function at $x>0 T(F) \equiv e(x, F) \equiv \int_{(x, \infty)}(1-F(u)) d u /(1-$ $F(x))=E(X-x \mid X>x)$, and so forth). [The mean residual life function gives the mean life conditional on surviving beyond x.] The "principle of substitution" says that $T(F)$ can be estimated by $T\left(\widehat{F}_{n}\right)$ for some estimator \widehat{F}_{n} of F. If T is sufficiently "smooth", then frequently the empirical distribution function \mathbb{F}_{n} can be taken as the estimator \hat{F}_{n} of F.
Give a treatment of consistency and asymptotic normality of the estimator $e\left(x, \mathbb{F}_{n}\right)$ of $e(x, F)$ based on our results from Sections 2.4 and 2.6. You may assume that with $X \sim F$ on $(0, \infty)$ we have $E_{F} X<\infty, E_{F} X^{2}<\infty$, and $1-F(x)>0$ (as well as any other additional assumptions you need). What is the joint limiting distribution of $\sqrt{n}\left(e\left(x, \mathbb{F}_{n}\right)-e(x, F), e\left(y, \mathbb{F}_{n}\right)-e(y, F)\right)$ for $0<x<y<\infty$?

