Statistics 581, Problem Set 7

Wellner; 11/7/2018

Reading: Chapter 3, Sections 2-4;
Ferguson, ACILST, Chapters 19-20, pages 126-139;
vdV, Asymp. Statist., pages 108-119; Sections 8.1-8.7.
Due: Wednesday, November 14, 2018.

1. Suppose that $X \sim \operatorname{Beta}(\alpha, \beta)$; i.e. X has density p_{θ} given by

$$
p_{\theta}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} 1_{(0,1)}(x), \quad \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty) \equiv \Theta .
$$

Consider estimation of:
A. $q_{A}(\theta) \equiv E_{\theta} X$. B. $q_{B}(\theta) \equiv F_{\theta}\left(x_{0}\right)$ for a fixed x_{0}; here $F_{\theta}(x) \equiv P_{\theta}(X \leq x)$.
(i) Compute $I(\theta)=I(\alpha, \beta)$; compare Lehmann \& Casella page 127, Table 6.1
(ii) Compute $q_{A}(\theta), q_{B}(\theta), \dot{q}_{A}(\theta)$, and $\dot{q}_{B}(\theta)$.
(iii) Find the efficient influence functions for estimation of q_{A} and q_{B}.
(iv) Compare the efficient influence functions you find in (iii) with the influence functions ψ_{A} and ψ_{B} of the natural nonparametric estimators \bar{X}_{n} and $\mathbb{F}_{n}\left(x_{0}\right)$ respectively. Does $\psi_{A} \in \dot{\mathcal{P}}$? Does $\psi_{B} \in \dot{\mathcal{P}}$ hold?
2. Suppose that $X \sim F_{\theta}=\operatorname{exponential}(\theta)$ with density $f_{\theta}(x)=\theta e^{-\theta x} 1_{(0, \infty)}(x)$ and $Y \sim G_{\eta}$ independent of X with densities $\left\{g_{\eta}: \eta \in R^{+}\right\}$, a regular parametric model on $(0, \infty)$. Consider the following three scenarios for observation of X or functions of X :
(a) Uncensored: we observe X and Y.
(b) Right-censored: we observe

$$
T(X, Y)=(X \wedge Y, 1\{X \leq Y\} \equiv(\min \{X, Y\}, 1\{X \leq Y\}) \equiv(Z, \Delta)
$$

(c) Interval-censored (case 1): we observe $S(X, Y)=(Y, 1\{X \leq Y\}) \equiv(Y, \Delta)$.
(i) Find the joint density of (X, Y) and joint distributions of $T(X, Y)$ and $S(X, Y)$.
(ii) Find the scores for θ and η in each of the three scenarios (a), (b), and (c). (Let $(\partial / \partial \eta) \log g_{\eta}(y) \equiv a(y)$ with $a \in L_{2}^{0}\left(G_{\eta}\right)$.)
(iii) Compute and compare $I_{X, Y}(\theta), I_{T(X, Y)}(\theta)$, and $I_{S(X, Y)}(\theta)$. Make the comparisons in general and then explicitly by making one or more choices of the family $\left\{g_{\eta}\right\}$.
3. Suppose that we want to model the survival of twins with a common genetic defect, but with one of the two twins receiving some treatment. Let X represent the survival time of the untreated twin and let Y represent the survival time of the treated twin. One (overly simple) preliminary model might be to assume that X and Y are independent with $\operatorname{Exponential}(\eta)$ and $\operatorname{Exponential}(\theta \eta)$ distributions, respectively:

$$
f_{\theta, \eta}(x, y)=\eta e^{-\eta x} \eta \theta e^{-\eta \theta y} 1_{(0, \infty)}(x) 1_{(0, \infty)}(y)
$$

Compute the Cramér-Rao lower bound for unbiased estimates of θ based on $Z=$ X / Y, the maximal invariant for the group of scale changes $g(x, y)=(c x, c y)$ with $c>0$. Compared this bound to the information bounds for estimation of θ based on observation of (X, Y) when η is known and unknown.
4. Suppose that $\theta=\left(\theta_{1}, \theta_{2}\right) \in \Theta \subset R^{k}$ where $\theta_{1} \in R$ and $\theta_{2} \in R^{k-1}$. Show that:
A. $\mathbf{l}_{1}^{*}=\dot{\mathbf{l}}_{1}-I_{12} I_{22}^{-1} \dot{\mathbf{l}}_{2}$ is orthogonal to $\left[\dot{\mathbf{l}}_{2}\right] \equiv\left\{a^{\prime} \dot{\mathbf{l}}_{2}: a \in R^{k-1}\right\}$ in $L_{2}\left(P_{\theta}\right)$.
B. $I_{11 \cdot 2}=\inf _{c \in R^{k-1}} E_{\theta}\left(\mathrm{i}_{1}-c^{\prime} \mathbf{1}_{2}\right)^{2}$ and that the infimum is achieved when $c^{\prime}=I_{12} I_{22}^{-1}$. Thus

$$
I_{11 \cdot 2}=E_{\theta}\left(\dot{\mathbf{l}}_{1}-I_{12} I_{22}^{-1} \dot{\mathbf{l}}_{2}\right)^{2}=E_{\theta}\left[\left(\mathbf{l}_{\theta}^{*}\right)^{2}\right]
$$

C. Prove the formulas (15) and (16) on page 21 of the Chapter 3 notes and interpret these formulas geometrically.
5. Optional bonus problem 1: Suppose that $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}, \Theta \subset R^{k}$ is a parametric model satisfying the hypotheses of the multiparameter Cramér - Rao inequality. Partition θ as $\theta=(\nu, \eta)$ where $\nu \in R^{m}$ and $\eta \in R^{k-m}$ and $1 \leq m<k$. Let $i=\dot{l}_{\theta}=\left(\dot{l}_{1}, \dot{l}_{2}\right)$ be the corresponding partition of the (vector of) scores \dot{l}, and, with $\widetilde{l} \equiv I^{-1}(\theta) i$, the efficient influence function for θ, let $\widetilde{l}=\left(\widetilde{l}_{1}, \widetilde{l}_{2}\right)$ be the corresponding partition of \widetilde{l}. In both cases, $\dot{l}_{1}, \widetilde{l}_{1}$ are m-vectors of functions, and $\dot{l}_{2}, \widetilde{l}_{2}$ are $k-m$ vectors. Partition $I(\theta)$ and $I^{-1}(\theta)$ correspondingly as

$$
I(\theta)=\left(\begin{array}{ll}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right)
$$

where I_{11} is $m \times m, I_{12}$ is $m \times(k-m), I_{21}$ is $(k-m) \times m, I_{22}$ is $(k-m) \times(k-m)$. Also write

$$
I^{-1}(\theta)=\left[I^{i j}\right]_{i, j=1,2}
$$

Verify that:
A. $I^{11}=I_{11 \cdot 2}^{-1}$ where $I_{11 \cdot 2} \equiv I_{11}-I_{12} I_{22}^{-1} I_{21}$,
$I^{22}=I_{22 \cdot 1}^{-1}$ where $I_{22 \cdot 1} \equiv I_{22}-I_{21} I_{11}^{-1} I_{12}$,
$I^{12}=-I_{11 \cdot 2}^{-1} I_{12} I_{22}^{-1}$,
$I^{21}=-I_{22 \cdot 1}^{-1} I_{21} I_{11}^{-1}$,
This amounts to formulas (4) and (5) of section 3.2, page 14.
$\underset{\sim}{B}$. Verify that
$\widetilde{l}_{1}=I^{11} \dot{l}_{1}+I^{12} \dot{l}_{2}=I_{11 \cdot 2}^{-1}\left(\dot{l}_{1}-I_{12} I_{22}^{-1} \dot{l}_{2}\right)$, and
$\widetilde{l}_{2}=I^{21} \dot{l}_{1}+I^{22} \dot{l}_{2}=I_{22 \cdot 1}^{-1}\left(\dot{l}_{2}-I_{21} I_{11}^{-1} i_{1}\right)$. Compare these formulas with those in part C of problem \#4 above.
6. Optional bonus problem 2: Consider the two parameter location-scale model

$$
\mathcal{P}=\left\{P_{\theta}: \frac{d P_{\theta}}{d \lambda}=p_{\theta}: \theta \in \Theta\right\}
$$

where $\Theta=\mathbb{R} \times \mathbb{R}^{+}$,

$$
p_{\theta}(x)=\frac{1}{\theta_{2}} f\left(\frac{x-\theta_{1}}{\theta_{2}}\right),
$$

and the (known) density f has a derivative f^{\prime} almost everywhere with respect to Lebesgue measure λ.
(a) Calculate the information matrix $I(\theta)$ for θ.
(b) For which of the densities in (a)-(e) of problem set \#6, problem 1, is $I_{12}(\theta)$ not zero?

