Statistics 581, Problem Set 7

Wellner; 11/7/2018

Reading: Chapter 3, Sections 2-4;

Ferguson, ACILST, Chapters 19-20, pages 126-139;

vdV, Asymp. Statist., pages 108 - 119; Sections 8.1 - 8.7.

Due: Wednesday, November 14, 2018.

1. Suppose that $X \sim \text{Beta}(\alpha, \beta)$; i.e. X has density p_{θ} given by

$$p_{\theta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbf{1}_{(0,1)}(x), \quad \theta = (\alpha, \beta) \in (0, \infty) \times (0, \infty) \equiv \Theta.$$

Consider estimation of:

A. $q_A(\theta) \equiv E_{\theta}X$. B. $q_B(\theta) \equiv F_{\theta}(x_0)$ for a fixed x_0 ; here $F_{\theta}(x) \equiv P_{\theta}(X \leq x)$. (i) Compute $I(\theta) = I(\alpha, \beta)$; compare Lehmann & Casella page 127, Table 6.1

(ii) Compute $q_A(\theta)$, $q_B(\theta)$, $\dot{q}_A(\theta)$, and $\dot{q}_B(\theta)$.

(iii) Find the efficient influence functions for estimation of q_A and q_B .

(iv) Compare the efficient influence functions you find in (iii) with the influence functions ψ_A and ψ_B of the natural nonparametric estimators \overline{X}_n and $\mathbb{F}_n(x_0)$ respectively. Does $\psi_A \in \dot{\mathcal{P}}$? Does $\psi_B \in \dot{\mathcal{P}}$ hold?

- 2. Suppose that $X \sim F_{\theta} = \text{exponential}(\theta)$ with density $f_{\theta}(x) = \theta e^{-\theta x} \mathbf{1}_{(0,\infty)}(x)$ and $Y \sim G_{\eta}$ independent of X with densities $\{g_{\eta} : \eta \in R^+\}$, a regular parametric model on $(0, \infty)$. Consider the following three scenarios for observation of X or functions of X:
 - (a) Uncensored: we observe X and Y.
 - (b) Right-censored: we observe

$$T(X,Y) = (X \land Y, 1\{X \le Y\} \equiv (\min\{X,Y\}, 1\{X \le Y\}) \equiv (Z,\Delta).$$

- (c) Interval-censored (case 1): we observe $S(X, Y) = (Y, 1\{X \le Y\}) \equiv (Y, \Delta)$.
- (i) Find the joint density of (X, Y) and joint distributions of T(X, Y) and S(X, Y). (ii) Find the scores for θ and η in each of the three scenarios (a), (b), and (c). (Let $(\partial/\partial\eta) \log g_n(y) \equiv a(y)$ with $a \in L^0_2(G_n)$.)

(iii) Compute and compare $I_{X,Y}(\theta)$, $I_{T(X,Y)}(\theta)$, and $I_{S(X,Y)}(\theta)$. Make the comparisons in general and then explicitly by making one or more choices of the family $\{g_{\eta}\}$.

3. Suppose that we want to model the survival of twins with a common genetic defect, but with one of the two twins receiving some treatment. Let X represent the survival time of the untreated twin and let Y represent the survival time of the treated twin. One (overly simple) preliminary model might be to assume that X and Y are independent with Exponential(η) and Exponential($\theta\eta$) distributions, respectively:

$$f_{\theta,\eta}(x,y) = \eta e^{-\eta x} \eta \theta e^{-\eta \theta y} \mathbf{1}_{(0,\infty)}(x) \mathbf{1}_{(0,\infty)}(y)$$

Compute the Cramér-Rao lower bound for unbiased estimates of θ based on Z = X/Y, the maximal invariant for the group of scale changes g(x, y) = (cx, cy) with c > 0. Compared this bound to the information bounds for estimation of θ based on observation of (X, Y) when η is known and unknown.

4. Suppose that $\theta = (\theta_1, \theta_2) \in \Theta \subset \mathbb{R}^k$ where $\theta_1 \in \mathbb{R}$ and $\theta_2 \in \mathbb{R}^{k-1}$. Show that: A. $\mathbf{l}_1^* = \dot{\mathbf{l}}_1 - I_{12}I_{22}^{-1}\dot{\mathbf{l}}_2$ is orthogonal to $[\dot{\mathbf{l}}_2] \equiv \{a'\dot{\mathbf{l}}_2 : a \in \mathbb{R}^{k-1}\}$ in $L_2(P_\theta)$. B. $I_{11\cdot 2} = \inf_{c \in \mathbb{R}^{k-1}} E_{\theta}(\dot{\mathbf{l}}_1 - c'\dot{\mathbf{l}}_2)^2$ and that the infimum is achieved when $c' = I_{12}I_{22}^{-1}$. Thus

$$I_{11\cdot 2} = E_{\theta} (\dot{\mathbf{l}}_1 - I_{12} I_{22}^{-1} \dot{\mathbf{l}}_2)^2 = E_{\theta} [(\mathbf{l}_{\theta}^*)^2].$$

C. Prove the formulas (15) and (16) on page 21 of the Chapter 3 notes and interpret these formulas geometrically.

5. Optional bonus problem 1: Suppose that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}, \Theta \subset \mathbb{R}^k$ is a parametric model satisfying the hypotheses of the multiparameter Cramér - Rao inequality. Partition θ as $\theta = (\nu, \eta)$ where $\nu \in \mathbb{R}^m$ and $\eta \in \mathbb{R}^{k-m}$ and $1 \leq m < k$. Let $\tilde{l} = \tilde{l}_{\theta} = (\tilde{l}_1, \tilde{l}_2)$ be the corresponding partition of the (vector of) scores \tilde{l} , and, with $\tilde{l} \equiv I^{-1}(\theta)\tilde{l}$, the efficient influence function for θ , let $\tilde{l} = (\tilde{l}_1, \tilde{l}_2)$ be the corresponding partition of τ , are m-vectors of functions, and \tilde{l}_2, \tilde{l}_2 are k - m vectors. Partition $I(\theta)$ and $I^{-1}(\theta)$ correspondingly as

$$I(\theta) = \left(\begin{array}{cc} I_{11} & I_{12} \\ I_{21} & I_{22} \end{array}\right)$$

where I_{11} is $m \times m$, I_{12} is $m \times (k-m)$, I_{21} is $(k-m) \times m$, I_{22} is $(k-m) \times (k-m)$. Also write

$$I^{-1}(\theta) = [I^{ij}]_{i,j=1,2}.$$

Verify that: A. $I^{11} = I_{11\cdot 2}^{-1}$ where $I_{11\cdot 2} \equiv I_{11} - I_{12}I_{22}^{-1}I_{21}$, $I^{22} = I_{22\cdot 1}^{-1}$ where $I_{22\cdot 1} \equiv I_{22} - I_{21}I_{11}^{-1}I_{12}$, $I^{12} = -I_{11\cdot 2}^{-1}I_{12}I_{22}^{-1}$, $I^{21} = -I_{22\cdot 1}^{-1}I_{21}I_{11}^{-1}$. This amounts to formulas (4) and (5) of section 3.2, page 14. B. Verify that $\tilde{l}_1 = I^{11}\dot{l}_1 + I^{12}\dot{l}_2 = I_{11\cdot 2}^{-1}(\dot{l}_1 - I_{12}I_{22}^{-1}\dot{l}_2)$, and $\tilde{l}_2 = I^{21}\dot{l}_1 + I^{22}\dot{l}_2 = I_{22\cdot 1}^{-1}(\dot{l}_2 - I_{21}I_{11}^{-1}\dot{l}_1)$. Compare these formulas with those in part C of problem #4 above.

6. Optional bonus problem 2: Consider the two parameter location-scale model

$$\mathcal{P} = \left\{ P_{\theta} : \frac{dP_{\theta}}{d\lambda} = p_{\theta} : \theta \in \Theta \right\}$$

where $\Theta = \mathbb{R} \times \mathbb{R}^+$,

$$p_{\theta}(x) = \frac{1}{\theta_2} f\left(\frac{x-\theta_1}{\theta_2}\right),$$

and the (known) density f has a derivative f' almost everywhere with respect to Lebesgue measure λ .

(a) Calculate the information matrix $I(\theta)$ for θ .

(b) For which of the densities in (a)-(e) of problem set #6, problem 1, is $I_{12}(\theta)$ not zero?