Statistics 581, Problem Set 8

Wellner; 11/14/2018

Reading: Chapter 3, Sections 3-5; start reading Chapter 4 (to be handed out on Monday, November 20);
Ferguson, ACILST, Chapter 20, pages 133-139; Chapter 22, pages 144-150;
vdV, Asymp. Statist., pages 85-107; Sections 6.1-6.2; 7.1-7.6.
Due: Wednesday, November 21, 2018.

1. (a) Show that if $\theta_{n}=c n^{-1 / 2}$ and T_{n} is the Hodges super-efficient estimator discussed in class, then the sequence $\left\{\sqrt{n}\left(T_{n}-\theta_{n}\right)\right\}$ is uniformly square-integrable.
(b) Let $R_{n}(\theta) \equiv n E_{\theta}\left(T_{n}-\theta\right)^{2}$ where T_{n} is the Hodges superefficient estimator as in Example 3.3.1 (so $T_{n}=\delta_{n}$ of Example 2.5, Lehmann and Casella pages 440-443). Show that $R_{n}\left(n^{-1 / 4}\right) \rightarrow \infty$ as $n \rightarrow \infty$.
2. (Super-efficiency at two parameter values) Suppose that X_{1}, \ldots, X_{n} are i.i.d. $N(\theta, 1)$ where $\theta \in \mathbb{R})$ Let $a, b \in[0,1)$ and define the estimator T_{n} as follows:

$$
T_{n}= \begin{cases}\bar{X}_{n} & \text { if }\left|\bar{X}_{n}-1\right|>n^{-1 / 4} \text { and }\left|\bar{X}_{n}+1\right|>n^{-1 / 4}, \\ a \bar{X}_{n}+(1-a) & \text { if }\left|\bar{X}_{n}-1\right| \leq n^{-1 / 4}, \\ b \bar{X}_{n}+(1-b)(-1) & \text { if }\left|\bar{X}_{n}+1\right| \leq n^{-1 / 4}\end{cases}
$$

(a) Find the limiting distribution of $\sqrt{n}\left(T_{n}-\theta\right)$ when:
(i) $\theta \neq 1$ and $\theta \neq-1$; (ii) $\theta=1$; (iii) $\theta=-1$.
(b) Find the limiting distribution of $\sqrt{n}\left(T_{n}-\theta_{n}\right)$ when:
(i) $\theta_{n}=1+c n^{-1 / 2}$; (ii) $\theta_{n}=-1+c n^{-1 / 2}$.
(c) Could we have super-efficiency at a countable collection of parameter values?
3. Suppose that X_{1}, \ldots, X_{n} are i.i.d. with distribution function F having a continuous density function f. Let \mathbb{F}_{n} be the empirical distribution function of the X_{i} 's, suppose that b_{n} is a sequence of positive numbers, and let

$$
\hat{f}_{n}(x)=\frac{\mathbb{F}_{n}\left(x+b_{n}\right)-\mathbb{F}_{n}\left(x-b_{n}\right)}{2 b_{n}}
$$

(a) Compute $E\left\{\hat{f}_{n}(x)\right\}$ and $\operatorname{Var}\left(\hat{f}_{n}(x)\right)$.
(b) Show that $E \hat{f}_{n}(x) \rightarrow f(x)$ if $b_{n} \rightarrow 0$.
(c) Show that $\operatorname{Var}\left(\hat{f}_{n}(x)\right) \rightarrow 0$ if $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$.
(d) Use some appropriate central limit theorem to show that (perhaps under some suitable further conditions that you might need to specify)

$$
\sqrt{2 n b_{n}}\left(\hat{f}_{n}(x)-E \hat{f}_{n}(x)\right) \rightarrow_{d} N(0, f(x))
$$

Hint: Write $\hat{f}_{n}(x)$ in terms of some Bernoulli random variables and identify $p=p_{n}$.
4. Suppose that $(T \mid Z) \sim \operatorname{Weibull}\left(\lambda^{-1} e^{-\gamma Z}, \beta\right)$, and $Z \sim G_{\eta}$ on R with density g_{η} with respect to some dominating measure μ. Thus the conditional cumulative hazard function $\Lambda(t \mid z)$ is given by

$$
\Lambda_{\gamma, \lambda, \beta}(t \mid z)=\left(\lambda e^{\gamma Z} t\right)^{\beta}=\lambda^{\beta} e^{\beta \gamma Z} t^{\beta}
$$

and hence

$$
\lambda_{\gamma, \lambda, \beta}(t \mid z)=\lambda^{\beta} e^{\beta \gamma Z} \beta t^{\beta-1}
$$

(Recall that $\lambda(t)=f(t) /(1-F(t))$ and

$$
\Lambda(t) \equiv \int_{0}^{t} \lambda(s) d s=\int_{0}^{t}(1-F(s))^{-1} d F(s)=-\log (1-F(t))
$$

if F is continuous.) Thus it makes sense to re-parametrize by defining $\theta_{1} \equiv \beta \gamma$ (this is the parameter of interest since it reflects the effect of the covariate $Z), \theta_{2} \equiv \lambda^{\beta}$, and $\theta_{3} \equiv \beta$. This yields

$$
\lambda_{\theta}(t \mid z)=\theta_{3} \theta_{2} \exp \left(\theta_{1} z\right) t^{\theta_{3}-1}
$$

You may assume that

$$
a(z) \equiv(\partial / \partial \eta) \log g_{\eta}(z)
$$

exists and $E\left\{a^{2}(Z)\right\}<\infty$. Thus Z is a "covariate" or "predictor variable", θ_{1} is a "regression parameter" which affects the intensity of the (conditionally) Weibull variable T, and $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ where $\theta_{4} \equiv \eta$.
(a) Derive the joint density $p_{\theta}(t, z)$ of (T, Z) for the re-parametrized model.
(b) Find the information matrix for θ. What does the structure of this matrix say about the effect of $\eta=\theta_{4}$ being known or unknown about the estimation of $\theta_{1}, \theta_{2}, \theta_{3}$?
(c) Find the information and information bound for θ_{1} if the parameters θ_{2} and θ_{3} are known.
(d) What is the information bound for θ_{1} if just θ_{3} is known to be equal to 1 ?
(e) Find the efficient score function and the efficient influence function for estimation of θ_{1} when θ_{3} is known.
(f) Find the information $I_{11 \cdot(2,3)}$ and information bound for θ_{1} if the parameters θ_{2} and θ_{3} are unknown. (Here both θ_{2} and θ_{3} are in "the second block".)
(g) Find the efficient score function and the efficient influence function for estimation of θ_{1} when θ_{2} and θ_{3} are unknown.
(h) Specialize the calculations in (d) - (g) to the case when $Z \sim \operatorname{Bernoulli}\left(\theta_{4}\right)$ and compare the information bounds.
5. Optional bonus problem 1: Lehmann and Casella, Problem 2.13, page 501.

Let $b_{n}(\theta)=E_{\theta}\left(T_{n}\right)-\theta$ be the bias of Hodges estimator T_{n}.
(a) Show that

$$
b_{n}(\theta)=\frac{-(1-a)}{\sqrt{n}} \int_{-n^{1 / 4}}^{n^{1 / 4}} x \phi(x-\sqrt{n} \theta) d x
$$

(b) Show that $b_{n}^{\prime}(\theta) \rightarrow 0$ for any $\theta \neq 0$ and $b_{n}^{\prime}(0) \rightarrow 1-\alpha$.
(c) Use (b) to explain how the Hodges estimator T_{n} can violate $V^{2}(\theta)$ without violating (Cramér-Rao) information inequality.
6. Optional bonus problem 2: Suppose that X_{1}, \ldots, X_{n} are i.i.d. F on \mathbb{R}, and let \mathbb{F}_{n} denote the empirical d.f. of the X_{i} 's. Let Φ denote the standard normal distribution function, $\Phi(x)=\int_{-\infty}^{x} \phi(y) d y$ where $\phi(y)=(2 \pi)^{-1 / 2} \exp \left(-y^{2} / 2\right)$ is the standard normal density. Let $0<a<1$ and define a new estimator \widetilde{F}_{n} of F by

$$
\widetilde{F}_{n}(x)= \begin{cases}(1-a) \Phi(x)+a \mathbb{F}_{n}(x), & \text { if }\left\|\mathbb{F}_{n}-\Phi\right\|_{\infty} \leq n^{-1 / 4}, \\ \mathbb{F}_{n}(x), & \text { if }\left\|\mathbb{F}_{n}-\Phi\right\|_{\infty}>n^{-1 / 4}\end{cases}
$$

(a) Find the limiting distribution of the process $\left\{\sqrt{n}\left(\widetilde{F}_{n}(x)-F(x)\right): x \in \mathbb{R}\right\}$ when $F=\Phi$.
(b) Find the limiting distribution of the process $\left\{\sqrt{n}\left(\widetilde{F}_{n}(x)-F(x)\right): x \in \mathbb{R}\right\}$ when $F \neq \Phi$.
(c) Show that \widetilde{F}_{n} is not a regular estimator of F at $F=\Phi$ (in an appropriate sense to be defined), but that F is a regular estimator of F at any $F \neq \Phi$.
7. Optional bonus problem 3: This is a continuation of problem 3 above.
(a) Suppose that f is differentiable at x. What further assumptions on f^{\prime} or $f^{\prime \prime}$ and b_{n} do you need to show that $\sqrt{n b_{n}}\left\{E\left(\hat{f}_{n}(x)\right)-f(x)\right\} \rightarrow 0$? (This says that the bias of \hat{f}_{n} for estimating x is $o\left(\left(n b_{n}\right)^{-1 / 2}\right)$.)
(b) Combine the conclusion of (a) with the conclusion of problem 3(d) to find the limiting distribution of $\sqrt{2 n b_{n}}\left(\hat{f}_{n}(x)-f(x)\right)$.
(c) Now suppose that $x, y \in \mathbb{R}$ satisfy $x \neq y, f(x)>0$ and $f(y)>0$. Find the limiting joint distribution of

$$
\sqrt{2 n b_{n}}\binom{\hat{f}_{n}(x)-f(x)}{\hat{f}_{n}(y)-f(y)}
$$

under appropriate further hypotheses on derivatives of f at x and y and the sequence b_{n}.
(d) Compare the result in (c) with the joint limiting distribution of

$$
\sqrt{n}\binom{\mathbb{F}_{n}(x)-F(x)}{\mathbb{F}_{n}(y)-F(y)}
$$

obtained in Chapter 2 (what is it explicitly?).
(e) Let k be a (bounded) density on \mathbb{R} with mean 0 and finite variance. A kernel density estimator \hat{f}_{n} with kernel k and bandwidth b_{n} is given by

$$
\hat{f}_{n}(x)=\int_{-\infty}^{\infty} \frac{1}{b_{n}} k\left(\frac{x-y}{b_{n}}\right) d \mathbb{F}_{n}(y)
$$

where k is a (bounded) density on \mathbb{R} with mean 0 and finite variance. The estimator \hat{f}_{n} in (a) - (d) of problem 3 is the special case of this with $k(x)=2^{-1} 1_{[-1,1]}(x)$, the uniform density on $[-1,1]$. How does the conclusion of $3(\mathrm{~d})$ change for a general kernel k ? Explain why.

