Statistics 581, Problem Set 8
Wellner; 11/14/2018

Reading: Chapter 3, Sections 3-5; start reading Chapter 4 (to be handed out on Monday,
November 20);

Ferguson, ACILST, Chapter 20, pages 133-139; Chapter 22, pages 144-150;

vdV, Asymp. Statist., pages 85 - 107; Sections 6.1 - 6.2; 7.1 - 7.6.

Due: Wednesday, November 21, 2018.

1. (a) Show that if 6, = cn™'/? and T, is the Hodges super-efficient estimator discussed
in class, then the sequence {y/n(T,, — 6,)} is uniformly square-integrable.
(b) Let R,(0) = nEy(T, — 0)* where T, is the Hodges superefficient estimator as in
Example 3.3.1 (so T,, = §,, of Example 2.5, Lehmann and Casella pages 440 - 443).
Show that R, (n~/*) — co as n — oo.

2. (Super-efficiency at two parameter values) Suppose that Xi,..., X, are i.id.
N(6,1) where 6 € R) Let a,b € [0,1) and define the estimator 7;, as follows:

X, if | X, —1]>n"Y* and |X, + 1| >n~ V4,
T,=¢ aX,+(1—a) if | X, — 1| <n Y4
bX, + (1 —=0b)(—1) if | X, +1] <n V4

(a) Find the limiting distribution of v/n(T,, — #) when:
(i) 0 #1 and 6 # —1; (ii) 0 = 1; (111)(9_—1.
(b) Find the limiting distribution of \/n(7,, — 6,,) when:
(i) 0, =1+cn™V2% (ii) 0, = —1 +cn /2,
(c) Could we have super-efficiency at a countable collection of parameter values?

3. Suppose that Xy, ..., X, arei.i.d. with distribution function F' having a continuous
density function f. Let IF,, be the empirical distribution function of the X;’s, suppose
that b, is a sequence of positive numbers, and let

- F, b,) —F.(z — b,
oy = Falo 4 ) “Fulo =)

(a) Compute E{fn( )} and Var(fu(z)).

(b) Show that Efn( c) — f(z) if b, — 0.

(¢) Show that Var(f,(z)) = 0 if b, — 0 and nb, — .

(d) Use some appropriate central limit theorem to show that (perhaps under some
suitable further conditions that you might need to specify)

V20by(ful) = Efa(2)) =4 N(0, f(2)).

Hint: Write f,(z) in terms of some Bernoulli random variables and identify p = p,.



4. Suppose that (T'|Z) ~ Weibull(A~'e™Z, 8), and Z ~ G,, on R with density g, with
respect to some dominating measure p. Thus the conditional cumulative hazard
function A(t|z) is given by

Ayas(t]z) = (A71)P = APePr7 P

and hence
Mog(tlz) = NPz ph—1

(Recall that \(¢t) = f(t)/(1 — F(t)) and

A(t) = /0 A(s)ds = /0 (1— F(s))"'dF(s) = —log(1 — F(t))

if F'is continuous.) Thus it makes sense to re-parametrize by defining 6; = v (this
is the parameter of interest since it reflects the effect of the covariate Z), 0y = N,
and #3 = (. This yields

Mo (t]2) = 050 exp(fy2)t%

You may assume that

a(z) = (9/9n) log gy(2)
exists and E{a*(Z)} < co. Thus Z is a “covariate” or “predictor variable”, 6; is
a “regression parameter” which affects the intensity of the (conditionally) Weibull
variable T, and 0 = (01, 6, 03, 6,) where 6, = 7.
(a) Derive the joint density py(t, z) of (T, Z) for the re-parametrized model.
(b) Find the information matrix for §. What does the structure of this matrix
say about the effect of n = 6, being known or unknown about the estimation of
01,02, 057
(c) Find the information and information bound for #; if the parameters 65 and 63
are known.
(d) What is the information bound for #; if just 63 is known to be equal to 17
(e) Find the efficient score function and the efficient influence function for estimation
of 6; when 65 is known.
(f) Find the information I;.(23) and information bound for ¢, if the parameters ¢,
and 05 are unknown. (Here both 6, and 3 are in “the second block”.)
(g) Find the efficient score function and the efficient influence function for estimation
of #; when 05 and 65 are unknown.
(h) Specialize the calculations in (d) - (g) to the case when Z ~ Bernoulli(6,) and
compare the information bounds.

5. Optional bonus problem 1: Lehmann and Casella, Problem 2.13, page 501.
Let b,(0) = Ey(T,) — 0 be the bias of Hodges estimator T,,.
(a) Show that

1/4

bu(0) = % / n1/4 vd(x — v/nh)dz.

(b) Show that o/, (f) — 0 for any 6 # 0 and b/,(0) — 1 — «a.
(c) Use (b) to explain how the Hodges estimator T, can violate V?(#) without
violating (Cramér-Rao) information inequality.
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6. Optional bonus problem 2: Suppose that X;,..., X, are i.i.d. F on R, and
let F,, denote the empirical d.f. of the X;’s. Let ® denote the standard normal
distribution function, ®(z) = [*_ ¢(y)dy where ¢(y) = (2m) /2 exp(—y?/2) is the

standard normal density. Let 0 < a < 1 and define a new estimator F, of F by

Fy(z) = (1 —a)®(x) + aF,(z), if ||F, — ®|le < n 4,
U EG), it [[E, — @] >t

(a) Find the limiting distribution of the process {y/n(F,(z)— F(z)) : = € R} when
F=9a.

(b) Find the limiting distribution of the process {/n(F,(z)— F(z)) : = € R} when
F#0. B

(c) Show that F), is not a regular estimator of F' at F' = ® (in an appropriate sense
to be defined), but that F' is a regular estimator of F' at any F' # ®.

7. Optional bonus problem 3: This is a continuation of problem 3 above.
(a) Suppose that f is differentiable at . What further assumptions on f’ or f”

and b, do you need to show that /nb, {E(fn(x)) - f(x)} — 0?7 (This says that

the bias of f, for estimating z is o((nb,)~/2).)

(b) Combine the conclusion of (a) with the conclusion of problem 3(d) to find the
limiting distribution of v/2nb, (f,(x) — f(z)).

(¢c) Now suppose that z,y € R satisfy z # y, f(z) > 0 and f(y) > 0. Find the
limiting joint distribution of

Vi (e )

under appropriate further hypotheses on derivatives of f at x and y and the sequence
by,
(d) Compare the result in (c¢) with the joint limiting distribution of

va( e

obtained in Chapter 2 (what is it explicitly?).
(e) Let k be a (bounded) density on R with mean 0 and finite variance. A kernel
density estimator f,, with kernel k£ and bandwidth b, is given by

2 <1 r—y
w(z) = —k dF,
Fo = [k (5 v
where k is a (bounded) density on R with mean 0 and finite variance. The estimator
fn in (a) - (d) of problem 3 is the special case of this with k(z) = 27'1;_; jj(x), the

uniform density on [—1,1]. How does the conclusion of 3(d) change for a general
kernel k? Explain why.




