Statistics 581, Midterm Exam, Solutions

Wellner; 11/05/2018

1. (24 points) Define any three of the following six terms.
(a) The total variation distance between two probability measures P and Q.
(b) The Hellinger distance between two probability measures P and Q.
(c) A normal random vector $Y=\left(Y_{1}, \ldots, Y_{n}\right)$.
(d) A uniformly integrable sequence of random variables $\left\{X_{n}\right\}$.
(e) A standard Brownian motion process on $[0,1]$.
(f) The inverse or quantile function F^{-1} of a distribution function F.

Solution: See Stat 581 course notes, chapters 1-3.
2. (30 points). State any three of the following:
(a) The Liapunov CLT.
(b) The Cramér -Wold device.
(c) The continuous mapping (or Mann-Wald) theorem.
(d) Vitali's theorem.
(e) A result connecting the uniform quantile process \mathbb{V}_{n} to the uniform empirical process \mathbb{U}_{n}.
(f) Two inequalities relating total variation metric $d_{T V}(P, Q)$ to the Hellinger metric $H(P, Q)$.
(g) The Helly-Bray theorem.

Solution: See Stat 581 course notes, chapters 1-3.
Do either problem 3 or problem 4.
3. (36 points)
(a) Suppose that $X \sim N(\mu, 1)$. What is the distribution of X^{2} when $\mu=0$? What is the distribution of X^{2} when $\mu \neq 0$?
(b) Suppose that $\underline{X} \sim N_{d}(\underline{\mu}, I)$ for some vector $\underline{\mu} \in \mathbb{R}^{d}$. What is the distribution of $Y_{d} \equiv \sum_{i=1}^{d} X_{j}^{2}=\|\underline{X}\|^{2} ?$
(c) For Y_{k} as in (b), compute $E\left(Y_{k}\right)$ and $\operatorname{Var}\left(Y_{k}\right)$.

Solution: (a) When $X \sim N(\mu, 1), X^{2} \sim \chi_{1}^{2}(\delta)$, the non-central chi-square distribution with 1 degree of freedom and non-centrality parameter $\delta=\mu^{2}$. This distribution can also be described conditionally: given $K \sim \operatorname{Poiss}(\delta / 2)$, the conditional distribution is $\left(X^{2} \mid K\right) \sim \chi_{1+2 K}^{2}$.
(b) When $\underline{X} \sim N_{n}(\underline{\mu}, I)$, then $Y_{n}=\|\underline{X}\|^{2} \sim \chi_{n}^{2}(\delta)$, the non-central chi-square distribution with n degrees of freedom and noncentrality parameter $\delta=\|\underline{\mu}\|^{2}$. Equivalently, given $K \sim \operatorname{Poiss}(\delta / 2)$, the conditional distribution is $\left(Y_{n}^{2} \mid K\right) \sim \chi_{n+2 K}^{2}$.
(c) The mean is $E\left(Y_{n}\right)=E\left\{E\left(Y_{n} \mid K\right)\right\}=E\{n+2 K\}=n+2(\delta / 2)=n+\delta$. The
variance is

$$
\begin{aligned}
\operatorname{Var}\left(Y_{n}\right) & =E\left\{\operatorname{Var}\left(Y_{n} \mid K\right)\right\}+\operatorname{Var}\left\{E\left(Y_{n} \mid K\right)\right\} \\
& =E\{2(n+2 K)\}+\operatorname{Var}\{n+2 K\}=2 n+4(\delta / 2)+4(\delta / 2) \\
& =2 n+4 \delta .
\end{aligned}
$$

4. (30 points) Use the Cramér-Chernoff method to find an (exponential) bound for $P(Z \geq z)$ where $Z \sim N(0,1)$.

Solution: For any $r>0$ we have

$$
\begin{aligned}
P(Z \geq z) & =P(r Z \geq r z)=P(\exp (r Z) \geq \exp (r z)) \\
& \leq \frac{E \exp (r Z)}{e^{r z}}=\exp \left(r^{2} / 2-r z\right)
\end{aligned}
$$

This bound holds for all $r>0$, so we can minimize it with respect to r. Choosing $r=z$ yields $P(Z \geq z) \leq \exp \left(-z^{2} / 2\right)$.
5. (36 points)
(a) Define the Hellinger distance $H(P, Q)$ between two probability measures on a common measurable space $(\mathcal{X}, \mathcal{A})$.
(b) Show that $H^{2}(P, Q)=1-\rho(P, Q)$ where $\rho(P, Q) \equiv \int \sqrt{p q} d \mu$ for densities p and q of P and Q with respect to some common dominating measure μ.
(c) Now suppose that P is the $N(\mu, 1)$ distribution and Q is the $N(\nu, 1)$ distribution for some $\mu, \nu \in \mathbb{R}$. Compute $\rho(P, Q)$ in terms of μ and ν.
(d) Suppose that P is the normal $N\left(0, \sigma^{2}\right)$ distribution and Q is the normal $N\left(0, \tau^{2}\right)$ distribution. Show that

$$
\rho(P, Q)=\left(\frac{\left(\sigma^{2} \tau^{2}\right)^{1 / 2}}{\left(\sigma^{2}+\tau^{2}\right) / 2}\right)^{1 / 2} \leq 1
$$

Solution: (a) $H^{2}(P, Q)=(1 / 2) \int\{\sqrt{p}-\sqrt{q}\}^{2} d \mu$ for any measure μ dominating P and Q.
(b) It follows from the definition of H that

$$
H^{2}(P, Q)=(1 / 2) \int\{p-2 \sqrt{p q}+q\} d \mu=1-\int \sqrt{p q} d \mu=1-\rho(P, Q)
$$

(c) When $P=N(\mu, 1)$ and $Q=N(\nu, 1)$ we have, since

$$
\frac{\phi(x-\mu)}{\phi(x)}=\exp \left(\mu x-(1 / 2) \mu^{2}\right)
$$

$$
\begin{aligned}
\rho(P, Q) & =\int \sqrt{\phi(x-\mu) \cdot \phi(x-\nu)} d x=\int \sqrt{\frac{\phi(x-\mu)}{\phi(x)}} \cdot \sqrt{\frac{\phi(x-\nu)}{\phi(x)}} \phi(x) d x \\
& =\int \exp \left(\mu x / 2-\mu^{2} / 4+\nu x / 2-\nu^{2} / 4\right) \phi(x) d x \\
& =\exp \left(-\frac{\mu^{2}+\nu^{2}}{4}\right) E \exp \left(\frac{\mu+\nu}{2} Z\right) \\
& =\exp \left(-\frac{\mu^{2}+\nu^{2}}{4}\right) \cdot \exp \left(\frac{(\mu+\nu)^{2}}{4} \cdot \frac{1}{2}\right) \\
& =\exp \left(-\frac{1}{8}(\mu-\nu)^{2}\right) .
\end{aligned}
$$

(d) When P is the $N\left(0, \sigma^{2}\right)$ distribution and Q is the $N\left(0, \tau^{2}\right)$ distribution,

$$
\begin{aligned}
\rho(P, Q) & =\sqrt{\frac{1}{\sigma} \phi(x / \sigma) \cdot \frac{1}{\tau} \phi(x / \tau)} d x \\
& =\frac{1}{\sqrt{\sigma \tau}} \int \phi\left(\frac{x}{\gamma}\right) d x \text { where } \frac{1}{\gamma^{2}}=\frac{1}{2}\left(\frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}\right) \\
& =\frac{\gamma}{\sqrt{\sigma \tau}} \int \frac{1}{\gamma} \phi\left(\frac{x}{\gamma}\right) d x \\
& =\frac{\gamma}{\sqrt{\sigma \tau}} \\
& =\left(\frac{\left(\sigma^{2} \tau^{2}\right)^{1 / 2}}{\left(\sigma^{2}+\tau^{2}\right) / 2}\right)^{1 / 2}
\end{aligned}
$$

after some easy algebra. Note that this is the square root of the ratio of the geometric mean of σ^{2} and τ^{2} to the arithmetic mean, and hence it is ≤ 1 by the Geometric Mean - Arithmetic mean inequality.

Note: A very recent paper, The total variation distance between high-dimensional Gaussians, by Luc Devroye, A. Mehrabian, and T. Reddad, arXiv:1810.08693v1, gives bounds on the total variation distance $d_{T V}\left(N_{d}\left(\mu_{1}, \Sigma_{1}\right), N_{d}\left(\mu_{2}, \Sigma_{2}\right)\right)$ in terms of $\mu_{1}, \mu_{2}, \Sigma_{1}, \Sigma_{2}$. Along the way in the proof of their Theorem 1.2 (page 3), they give bounds on the TV distance between $N_{1}\left(\mu, \sigma^{2}\right)$ and $N_{1}\left(\nu, \tau^{2}\right)$ when both the means and variances differ.

Do either problem 6 or problem 7 .
6. (36 points).

Suppose that X, X_{1}, \ldots, X_{n} are i.i.d. with distribution function F given by $P(X>x)=1-F(x)=1 / x^{4}, x \geq 1, F(x)=0, x \leq 1$.
(a) For what values of $r>0$ is $E|X|^{r}<\infty$? If they are finite compute $\mu=E(X)$ and $\sigma^{2}=\operatorname{Var}(X)$.
(b) Compute $F^{-1}(t)=Q(t)$, the quantile function corresponding to F.
(c) Which of the following are true? (Briefly indicate why or why not.)
(i) $\sum_{i=1}^{n} X_{i}=O_{p}\left(n^{1 / 2}\right)$.
(ii) $\sum_{i=1}^{n} X_{i}=O_{p}(n)$.
(iii) $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)=o_{p}(1)$.
(iv) $n^{2 / 3}\left(\bar{X}_{n}-\mu\right)=O_{p}(1)$.
(v) $g\left(n^{1 / 4}\left(\bar{X}_{n}-\mu\right)\right) \rightarrow_{p} 1 / 2$ where $g(x)=\Phi(x)$, the standard normal distribution function.
(vi) $h\left(n^{1 / 2}\left(\bar{X}_{n}-\mu\right)\right)=O_{p}(1)$ with $h(x)=1 /|x|$.

$$
\sqrt{n}\binom{\mathbb{F}_{n}^{-1}(1 / 4)-F^{-1}(1 / 4)}{\mathbb{F}_{n}^{-1}(3 / 4)-F^{-1}(3 / 4)} \rightarrow_{d} N_{2}(0, \Sigma)
$$

where

$$
\Sigma=\frac{1}{16}\left(\begin{array}{ll}
3 Q^{\prime}(1 / 4)^{2} & Q^{\prime}(1 / 4) Q^{\prime}(3 / 4) \\
Q^{\prime}(1 / 4) Q^{\prime}(3 / 4) & 3 Q^{\prime}(3 / 4)^{2}
\end{array}\right) .
$$

Solution: (a) We find that

$$
\begin{aligned}
E|X|^{r} & =E X^{r} \text { since } X \geq 1 \text { a.s. } \\
& =\int_{0}^{\infty} r x^{r-1}(1-F(x)) d x=\int_{0}^{1} r x^{r-1} d x+\int_{1}^{\infty} r x^{r-1}(1-F(x)) d x \\
& =1+r \int_{1}^{\infty} x^{r-1} x^{-4}=1+r \int_{1}^{\infty} x^{r-5} d x \\
& =1+\frac{r}{4-r}<\infty
\end{aligned}
$$

if $r<4$. Taking $r=1$ yields $\mu=E(X)=1+(1 / 3)=4 / 3$, and taking $r=2$ yields $E\left(X^{2}\right)=1+1=2$, so $\operatorname{Var}(X)=2-(4 / 3)^{2}=(18-16) / 9=2 / 9$.
(b) The quantile function $Q(u)$ is found by solving $F(Q(u))=u$, or $1-F(Q(u))=$ $1-u$, or $\left.1 / Q(u)^{4}=1-u\right)$, and hence $Q(u)=(1-u)^{-1 / 4}$.
(c)
(i) is false: since $E\left(X_{1}\right)=4 / 3>0$, the left side is of order n.
(ii) is true by the WLLN or the SLLN: note that $n^{-1} \sum_{i=1}^{n} X_{i} \rightarrow_{p, a . s .} E\left(X_{1}\right)=4 / 3$
and hence $n^{-1} \sum_{i=1}^{n} X_{i}=O_{p}(1)$.
(iii) is true: $\sqrt{n}\left(\bar{X}_{n}-\mu\right) \rightarrow_{d} N\left(0, \sigma^{2}\right)$ by the central limit theorem, so $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)=$ $n^{-1 / 4} \sqrt{n}\left(\bar{X}_{n}-\mu\right)=o(1) O_{p}(1)=o_{p}(1)$.
(iv) is false: $n^{2 / 3}\left(\bar{X}_{n}-\mu\right)=n^{1 / 6} \sqrt{n}\left(\bar{X}_{n}-\mu\right)=n^{1 / 6} O_{p}(1)$ is unbounded in probability (and a.s. by the Law of the Iterated Logarithm).
(v) is true: $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)=o_{p}(1)$ as in (iii). Then $g\left(n^{1 / 4}\left(\bar{X}_{n}-\mu\right)\right) \rightarrow_{p} g(0)=\Phi(0)=$ $1 / 2$ by the continuous mapping theorem (since $g=\Phi$ is continuous everywhere.
(vi) is true: since $\left.Y_{n} n^{1 / 2}\left(\bar{X}_{n}-\mu\right)\right) \rightarrow_{d} Y \sim N\left(0, \sigma^{2}\right)$ and h is continuous a.s. P_{Y}, $h\left(Y_{n}\right) \rightarrow_{d} h(Y)=1 /|Y|$ by the continuous mapping theorem.
(vii) is true: this follows from our theorem about the finite-dimensional distributions of the quantile process upon noting that $Q(u)=(1-u)^{-1 / 4}$ is differentiable at $u=1 / 4$ and at $u=3 / 4$.
7. (36 points; from problem set \#4)

Suppose that X_{1}, X_{2}, \ldots are i.i.d. positive random variables, and define $\bar{X}_{n} \equiv$ $n^{-1} \sum_{i=1}^{n} X_{i}, H_{n} \equiv 1 /\left(n^{-1} \sum_{i=1}^{n}\left(1 / X_{i}\right)\right)$, and $G_{n} \equiv\left\{\prod_{i=1}^{n} X_{i}\right\}^{1 / n}$ to be the arithmetic, harmonic, and geometric means respectively. We know that $\bar{X}_{n} \rightarrow_{\text {a.s. }} E\left(X_{1}\right)=$ μ if and only if $E\left|X_{1}\right|<\infty$.
(a) Use the SLLN together with appropriate additional hypotheses to show that $H_{n} \rightarrow_{\text {a.s. }} 1 /\left\{E\left(1 / X_{1}\right)\right\} \equiv h$, and $G_{n} \rightarrow_{\text {a.s. }} \exp \left(E\left\{\log X_{1}\right\}\right) \equiv g$.
(b) Use the multivariate CLT and the delta method to find the joint limiting distribution of $\sqrt{n}\left(\bar{X}_{n}-\mu, H_{n}-h, G_{n}-g\right)$. You will need to impose or assume additional moment conditions to be able to prove this. Specify these additional assumptions carefully.

Solution: See the solution to HW 4, problem 3.

