
Statistics 581, Midterm Exam, Solutions

Wellner; 11/05/2018

1. (24 points) Define any three of the following six terms.
(a) The total variation distance between two probability measures P and Q.
(b) The Hellinger distance between two probability measures P and Q.
(c) A normal random vector Y = (Y1, . . . , Yn).
(d) A uniformly integrable sequence of random variables {Xn}.
(e) A standard Brownian motion process on [0, 1].
(f) The inverse or quantile function F−1 of a distribution function F .

Solution: See Stat 581 course notes, chapters 1 - 3.

2. (30 points). State any three of the following:
(a) The Liapunov CLT.
(b) The Cramér -Wold device.
(c) The continuous mapping (or Mann-Wald) theorem.
(d) Vitali’s theorem.
(e) A result connecting the uniform quantile process Vn to the uniform empirical

process Un.
(f) Two inequalities relating total variation metric dTV (P,Q) to the Hellinger metric

H(P,Q).
(g) The Helly-Bray theorem.

Solution: See Stat 581 course notes, chapters 1 - 3.

Do either problem 3 or problem 4.

3. (36 points)
(a) Suppose that X ∼ N(µ, 1). What is the distribution of X2 when µ = 0? What

is the distribution of X2 when µ 6= 0?
(b) Suppose that X ∼ Nd(µ, I) for some vector µ ∈ Rd. What is the distribution of

Yd ≡
∑d

i=1X
2
j = ‖X‖2?

(c) For Yk as in (b), compute E(Yk) and V ar(Yk).

Solution: (a) When X ∼ N(µ, 1), X2 ∼ χ2
1(δ), the non-central chi-square dis-

tribution with 1 degree of freedom and non-centrality parameter δ = µ2. This
distribution can also be described conditionally: given K ∼ Poiss(δ/2), the condi-
tional distribution is (X2|K) ∼ χ2

1+2K .
(b) When X ∼ Nn(µ, I), then Yn = ‖X‖2 ∼ χ2

n(δ), the non-central chi-square dis-
tribution with n degrees of freedom and noncentrality parameter δ = ‖µ‖2. Equiv-
alently, given K ∼ Poiss(δ/2), the conditional distribution is (Y 2

n |K) ∼ χ2
n+2K .

(c) The mean is E(Yn) = E{E(Yn|K)} = E{n + 2K} = n + 2(δ/2) = n + δ. The
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variance is

V ar(Yn) = E{V ar(Yn|K)}+ V ar{E(Yn|K)}
= E{2(n+ 2K)}+ V ar{n+ 2K} = 2n+ 4(δ/2) + 4(δ/2)

= 2n+ 4δ.

4. (30 points) Use the Cramér-Chernoff method to find an (exponential) bound for
P (Z ≥ z) where Z ∼ N(0, 1).

Solution: For any r > 0 we have

P (Z ≥ z) = P (rZ ≥ rz) = P (exp(rZ) ≥ exp(rz))

≤ E exp(rZ)

erz
= exp(r2/2− rz).

This bound holds for all r > 0, so we can minimize it with respect to r. Choosing
r = z yields P (Z ≥ z) ≤ exp(−z2/2).

5. (36 points)
(a) Define the Hellinger distance H(P,Q) between two probability measures on a
common measurable space (X ,A).
(b) Show that H2(P,Q) = 1−ρ(P,Q) where ρ(P,Q) ≡

∫ √
pqdµ for densities p and

q of P and Q with respect to some common dominating measure µ.
(c) Now suppose that P is the N(µ, 1) distribution and Q is the N(ν, 1) distribution
for some µ, ν ∈ R. Compute ρ(P,Q) in terms of µ and ν.
(d) Suppose that P is the normal N(0, σ2) distribution and Q is the normal N(0, τ 2)
distribution. Show that

ρ(P,Q) =

(
(σ2τ 2)1/2

(σ2 + τ 2)/2

)1/2

≤ 1.

Solution: (a) H2(P,Q) = (1/2)
∫
{√p−√q}2dµ for any measure µ dominating P

and Q.
(b) It follows from the definition of H that

H2(P,Q) = (1/2)

∫
{p− 2

√
pq + q}dµ = 1−

∫
√
pqdµ = 1− ρ(P,Q).

(c) When P = N(µ, 1) and Q = N(ν, 1) we have, since

φ(x− µ)

φ(x)
= exp(µx− (1/2)µ2),
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ρ(P,Q) =

∫ √
φ(x− µ) · φ(x− ν)dx =

∫ √
φ(x− µ)

φ(x)
·

√
φ(x− ν)

φ(x)
φ(x)dx

=

∫
exp(µx/2− µ2/4 + νx/2− ν2/4)φ(x)dx

= exp

(
−µ

2 + ν2

4

)
E exp

(
µ+ ν

2
Z

)
= exp

(
−µ

2 + ν2

4

)
· exp

(
(µ+ ν)2

4
· 1

2

)
= exp

(
−1

8
(µ− ν)2

)
.

(d) When P is the N(0, σ2) distribution and Q is the N(0, τ 2) distribution,

ρ(P,Q) =

√
1

σ
φ(x/σ) · 1

τ
φ(x/τ)dx

=
1√
στ

∫
φ

(
x

γ

)
dx where

1

γ2
=

1

2

(
1

σ2
+

1

τ 2

)
=

γ√
στ

∫
1

γ
φ

(
x

γ

)
dx

=
γ√
στ

=

(
(σ2τ 2)1/2

(σ2 + τ 2)/2

)1/2

after some easy algebra. Note that this is the square root of the ratio of the geometric
mean of σ2 and τ 2 to the arithmetic mean, and hence it is ≤ 1 by the Geometric
Mean - Arithmetic mean inequality.

Note: A very recent paper, The total variation distance between high-dimensional
Gaussians, by Luc Devroye, A. Mehrabian, and T. Reddad, arXiv:1810.08693v1,
gives bounds on the total variation distance dTV (Nd(µ1,Σ1), Nd(µ2,Σ2)) in terms of
µ1, µ2,Σ1,Σ2. Along the way in the proof of their Theorem 1.2 (page 3), they give
bounds on the TV distance between N1(µ, σ

2) and N1(ν, τ
2) when both the means

and variances differ.
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Do either problem 6 or problem 7.

6. (36 points).
Suppose that X,X1, . . . , Xn are i.i.d. with distribution function F given by
P (X > x) = 1− F (x) = 1/x4, x ≥ 1, F (x) = 0, x ≤ 1.
(a) For what values of r > 0 is E|X|r <∞? If they are finite compute µ = E(X)

and σ2 = V ar(X).
(b) Compute F−1(t) = Q(t), the quantile function corresponding to F .
(c) Which of the following are true? (Briefly indicate why or why not.)

(i)
∑n

i=1Xi = Op(n
1/2).

(ii)
∑n

i=1Xi = Op(n).

(iii) n1/4(Xn − µ) = op(1).

(iv) n2/3(Xn − µ) = Op(1).

(v) g(n1/4(Xn − µ)) →p 1/2 where g(x) = Φ(x), the standard normal distribution
function.

(vi) h(n1/2(Xn − µ)) = Op(1) with h(x) = 1/|x|.

√
n

(
F−1n (1/4)− F−1(1/4)
F−1n (3/4)− F−1(3/4)

)
→d N2(0,Σ)

where

Σ =
1

16

(
3Q′(1/4)2 Q′(1/4)Q′(3/4)
Q′(1/4)Q′(3/4) 3Q′(3/4)2

)
.

Solution: (a) We find that

E|X|r = EXr since X ≥ 1 a.s.

=

∫ ∞
0

rxr−1(1− F (x))dx =

∫ 1

0

rxr−1dx+

∫ ∞
1

rxr−1(1− F (x))dx

= 1 + r

∫ ∞
1

xr−1x−4 = 1 + r

∫ ∞
1

xr−5dx

= 1 +
r

4− r
<∞

if r < 4. Taking r = 1 yields µ = E(X) = 1 + (1/3) = 4/3, and taking r = 2 yields
E(X2) = 1 + 1 = 2, so V ar(X) = 2− (4/3)2 = (18− 16)/9 = 2/9.
(b) The quantile function Q(u) is found by solving F (Q(u)) = u, or 1− F (Q(u)) =
1− u, or 1/Q(u)4 = 1− u), and hence Q(u) = (1− u)−1/4.
(c)
(i) is false: since E(X1) = 4/3 > 0, the left side is of order n.
(ii) is true by the WLLN or the SLLN: note that n−1

∑n
i=1Xi →p,a.s. E(X1) = 4/3
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and hence n−1
∑n

i=1Xi = Op(1).
(iii) is true:

√
n(Xn−µ)→d N(0, σ2) by the central limit theorem, so n1/4(Xn−µ) =

n−1/4
√
n(Xn − µ) = o(1)Op(1) = op(1).

(iv) is false: n2/3(Xn−µ) = n1/6
√
n(Xn−µ) = n1/6Op(1) is unbounded in probability

(and a.s. by the Law of the Iterated Logarithm).
(v) is true: n1/4(Xn−µ) = op(1) as in (iii). Then g(n1/4(Xn−µ))→p g(0) = Φ(0) =
1/2 by the continuous mapping theorem (since g = Φ is continuous everywhere.
(vi) is true: since Ynn

1/2(Xn − µ)) →d Y ∼ N(0, σ2) and h is continuous a.s. PY ,
h(Yn)→d h(Y ) = 1/|Y | by the continuous mapping theorem.
(vii) is true: this follows from our theorem about the finite-dimensional distributions
of the quantile process upon noting that Q(u) = (1 − u)−1/4 is differentiable at
u = 1/4 and at u = 3/4.

7. (36 points; from problem set #4)
Suppose that X1, X2, . . . are i.i.d. positive random variables, and define Xn ≡
n−1

∑n
i=1Xi, Hn ≡ 1/(n−1

∑n
i=1(1/Xi)), and Gn ≡ {

∏n
i=1Xi}1/n to be the arith-

metic, harmonic, and geometric means respectively. We know thatXn →a.s. E(X1) =
µ if and only if E|X1| <∞.
(a) Use the SLLN together with appropriate additional hypotheses to show that
Hn →a.s. 1/{E(1/X1)} ≡ h, and Gn →a.s. exp(E{logX1}) ≡ g.
(b) Use the multivariate CLT and the delta method to find the joint limiting distri-
bution of

√
n(Xn−µ,Hn − h,Gn − g). You will need to impose or assume additional

moment conditions to be able to prove this. Specify these additional assumptions
carefully.

Solution: See the solution to HW 4, problem 3.
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