Statistics 581, Final Exam Solutions
Wellner; 12/12/2018

1. (40 points) Define any four of the following eight terms. In each case, provide an
appropriate (brief) context for your definition.
(a) Differentiability in quadratic mean (or Hellinger differentiability) of a family of
densities {py: 0 € © C R4}
(b) LAN (Local Asymptotic Normality) of the local log-likelihood ratios.
(c) A locally regular estimator of a parameter v(Fy) = ¢(f) in a parametric model
P = {P p . 0 € @}
(d) An asymptotically linear estimator.
(e) A uniformly integrable sequence of random variables.
(f) A Brownian bridge process on [0, 1].
(g) A Brownian motion process on [0, 00).
(h) Convergence in distribution, X,, —4 X, in a (separable) metric space (M, d).
Solution: See Course Notes, Chapters 1-4.

2. (40 points) State four of the following eight results, providing an appropriate (brief)
context for your statements:

a) The Lindeberg - Feller central limit theorem.

b) The Glivenko-Cantelli theorem for Xi,..., X, i.i.d. F on R.

c¢) Donsker’s theorem for X3,..., X, i.i.d. F on R.

d) Héjek’s convolution theorem.

) Scheffé’s theorem.

) A Glivenko-Cantelli theorem for the empirical measure P, of X, ..., X, i.i.d.

P on (X, A) indexed by a family F of measurable functions f from & to R.

(g) A result connecting a Brownian motion process to a Brownian bridge process.

(h) A formula connecting ¢, the inverse of the Fisher information matrix, and the
vector of score functions in a regular parametric model.

Solution: See Course Notes, Chapters 1-4.



Do either problem 3 or problem 4:

3. (48 points).
Suppose that Xi,..., X, are independent and identically distributed real-valued
random variables with distribution function F' and density f.
(a) Consider the sample median F;!(1/2) and the sample mean X,,. Give conditions
under which the sample median F;*(1/2) is an asymptotically linear estimator of the
population median F~!(1/2). Identify the influence function () and the limiting
distribution of /n(F;*(1/2) — F~1(1/2)).
(b) Give conditions under which the sample median F;*(1/2) and the sample mean
X, have a joint limiting distribution; i.e. conditions which imply that the random
vector

( V(FH(1/2) = F71(1/2)) )

V(X — 1)
converges in distribution where p = pup = Fr(X;). Find the limiting distribution
explicitly.
(c¢) A simple test for asymmetry of a distribution function is based on the difference
of the mean and median: y(F) = ur—F~'(1/2). Note that vz = 0 if F is symmetric

about some point, while v(F') is positive for F' skewed to the right, and negative for
F skewed to the left. Use the results of (b) to find the limiting distribution of

V(v (Fa) = y(F) = Vn(X, = F 1 (1/2) = (ur — F71(1/2))).
Compute the limiting variance in terms of expectations of functions of F'. Is v(F,)
asymptotically linear?
Solution: (a) Assuming that F has a positive density f at F'~1(1/2), we know
that with Q(t) = F~1(t), so Q'(t) = 1/ f(F~(t)),

V(FH(1/2) = F7H(1/2)) —a —Q'(1/2)U(1/2)
1 1/4

=~ 2 ~ NO mtay

FF1/2) )

Moreover,

VAR (1/2) - F(1/2) = IZ e Lm0 (X0 = 1/2) +0,(1)

—Zw )+ o,(1

where ¥(z) = —(loor-101y2)(x) — 1/2)/f(F'(1/2)) has E¢(X) = 0 and
Bu?(X) = (1/4)/fA(F(1/2)).

(b) If E(X?) < oo, then from the asymptotically linear representation of F,1(1/2)
in (a) together with the multivariate central limit theorem it follows that

- ( F.(1/2) - F1(1/2) ) _ \%Z ( b )+op<1>
— g n 4 i T HF
g —y Zwljz\fz(o,z)

>



where Xy, = Ev?(Xy) = (1/4)/f2(F~1(1/2)), 3g9 = Var(X;), and

E{1(oo,p-1(12) (X1) (X1 — 1)}
JFFH(1/2))

(c) From the joint convergence result in (b) it follows by the continuous mapping
theorem that

Vi(y([Fn) = y(F) = Vn(Xn =TF, (1/2) = (up — F7H(1/2)))
= Vn(X, —pr) — Vn(F,'(1/2) — F7'(1/2))
—a Vo — Vi~ N(0,7%)

Yig =Yg = EY(X1) (X, —p) = —

\]
Il

2 (F) (0.1)
= pEay) e
+ 2Bp {(X — pip) (L(—oo,r11/2(X) = 1/2) } / f(F71(1/2))
. 1/4
= VerO pe)
+ 2Er {(X — pr) L oo r101y2)(X) } /F(F7H(1/2))
1/4
[AEH(1/2))
+ 2(Br { X1 (oo r1ay2(X) } — pr) [ F(F7(1/2)). (0.2)

= Varp(X)+

Indeed, ~(F,) is asymptotically linear as well: from the asymptotic linearity of
F.1(1/2) given in (a) and (b)

VA(EL) = 1(F) = <= 30 (X, = = DX} + 0,(1)

where (x) = —(1( s 112 () — 1/2)/ F(F1(1/2)) as in (a)

Remarks: This statistic for testing symmetry was suggested by Edgeworth (1887).
See the discussion on pages 105 and 106 of Stigler (1999), which also indicates that
the joint asymptotic distribution of the mean and median was known to Laplace in
the early 1800’s.



4. (48 points) Suppose that Xi,...,X, are iid. Uniform(0,6). Let X4y =

minlgign Xz and X(n) = Inaxj<i<n Xz

(a) Show that (nXq),n(0 — X)) —q (U, V) where U and V are independent
exponential(1) random variables. Hint: begin by computing
P(Xa) > x, Xy <y); then use this to study the limit of
P(nXm)/0 >z, n(l - Xw/0) = y).

(b) Show that S, = (n+1)X(,)/n and T}, = X(1)+ X, are both unbiased estimators
of 6.

(¢) Find the joint limiting distribution of (n(S, — @), n(T,, — 0)).

(d) Which of the two estimators would you prefer?
[Hint: compute lim,, E{[n(S, — 0)]*} and lim,, E{[n(T,, — 0)]*}.]

(e) Does the joint density of (U,,V,) = (nX()/0,n(1 — X(»)/8) converge pointwise
to a limit density? If so what does this imply about convergence in TV distance?

Solution: (a) First note that X/0,...,X,/0 are i.i.d. Uniform(0,1). Thus we
compute, for 0 <z <y <1

P(Xa) >z, X <y) = P(X/0>2/0, X/0 <y/0)
= P(z/0 < X;/0 <y/0 forall 1 <i<n)
= P(x/0<X,/0 <y/0)" = (y—x)"/0".

This implies that for all 2,y > 0 we have, for n so large that (z +y)/n <1,

P (nXw/0 >z, n(l—X4,)/0) >y) = P(Xaq)>a0/n, Xp <1—yd/n)
= (1-2-2)" 5 exp(~(z + 1)) (03)

= exp(—xz) exp(—y).

It follows that (nX,n(0 — X)) —a4 6(U,V) where U,V are independent
exponential(1) random variables.
(b) First, Ey(X1)/0) =1/(n+1) and Ey(X,)/0) =n/(n+1). Thus it follows that

n n n+1
and ]
n
Ey(T,) = Eg (X + X)) = 0 =40
o(Tn) = By (Xony + X)) = =0+ —
(c) We see from (a) that
1 1
n(Se—0) = (X —0)+ (1 n—n>9
n n

= n(X(n) - 8) + 60+ Op(l)
—q =0V +60= (9(1 — V),

while
n(Tn — 8) = n(X(n) - 9) + nX(l) — —9‘/ + 9U == 9(U — V)



Since n(T,,—6) and n(S,—0) are both linear transformations of n.X 1y and n(6—X,))
up to 0,(1), the joint convergence follows from Slutsky’s theorem and the continuous
mapping theorem (or Mann-Wald theorem) with g(u,v) = (—v + 0, u — v).

(d) Now from (c) together with uniform square integrability of {n(S, — #)} and
{n(T,, — 0)} we see that since Var(U) = Var(V) =1

Eg{nz(Sn — «9)2} — E{92(1 — V)Z} =6%.1
while
Eg{n2(Tn — 9)2} — E{02(U — V)z} =6%.2.

Thus the asymptotic mean square error of T, is twice that of S,; hence I would
prefer .S,,.

(e) It follows by differentiating (twice) the joint survival function of (U,,V,,) given
in (0.3) that the joint density of (U,, V) is given by

r+y
n

n— 1 n—2

fu.v.(x,y) = - (1 — > Lo [0, (Z, ).

This yields

fUn,Vn(U,U) — exp(—(u+v)) = fU,v(U,U) = fu(u)fy(v) for each (u,v) e [0, 00)2,

the density of two independent exp(1) random variables. It follows from Scheffé’s
theorem that

1
rv (P, Pol =5 [ [foaaau:0) = fuyu,0)ldudo = 0.
R2



Do either problem 5 or problem 6:

5. (48 points; based on problem 2 of HW # 10:) Suppose that (Xi,Y7),...,(X,,Y,) are
i.i.d. as (X,Y) where X ~ exponential(;) and Y ~ exponential(v) are independent
Thus the joint density of each (X;,Y) is

po(x,y) = pe " ve”"1(0,00)x (0,00) (T, ¥)

where 0 = (u,v) € (0,00),(0,00) = O. (a) Find the score functions 1,(x,y) and
1,(z,y) for = (u,v) for a sample of size n = 1. Find the information matrix I(6)
and the inverse information matrix I=1(6) for § = (u,v) for a sample of size n = 1.
(b) Find the score equations and MLE’s 6, = (ji,,, 0,) based on all the data.

(¢) What is the limiting distribution of \/n(6, — 6)?

(d) What is the information bound for estimation of

q(0) = q(p,v) = 1/n—1/v = Ey(X) — Ep(Y)?

Suggest an estimator that achieves the information bound asymptotically.

(e) What is the information bound for estimation of ¢(f) = v/u? Suggest an
estimator that achieves the information bound asymptotically.

(f) Now consider testing H : v/p = ¢ versus K : v/u # ¢ where ¢ is a known
positive constant. [In problem 2 of HW # 10 we reparametrized this problem and
considered a likelihood ratio test.|] First, draw a picture showing the subset ©¢ of ©
which defines H. Then propose a Wald type test statistic W, for testing H versus
K by noting that the function ¢ in (e) is constant on O¢: ¢(f) = v/u = c for 6 € .
What is the limiting distribution of your test statistic under H? What is the limiting
behavior of n=1W,, under a fixed # € K? What can you say about the limiting
behavior of W, under local alternatives 6,, of the form ¢(,,) = v/, = c+n~"1/2¢?

Solution: (a) The log of the joint density of each pair (X;,Y;) is given by
log po(z,y) = log u +logv — pz — vy,

and hence the score functions iu and 1, and the second derivatives, are given by

. 1 - 1
1M<$7y) :;_CB7 luuz_ﬁa

Thus



(b) The score equations are simply

0 = znziu(Xi):ﬁ—zn:Xi:n(%—yn>, and
i=1 1

I
0 = Ziy(Yi)zg—ZYéznG—@n),
i=1 1

so it follows that fi, = 1/X, and 0, = 1/Y,,.
(¢) From our general theory, the limiting distribution of the MLE’s is

Va6 = ﬁ(’i‘"‘“)

Uy, —V

—q D~ No(0,17(0)).

(d) For estimation of q(f) = = — v=! = EpX — EyY, the information bound is
given by ¢(6)T171(0)¢(0). We calculate ¢(6) = (—1/u%,1/v*)T, and hence
1 1
. T -1 . o
G, v) I (0)q(p, v) = R

-~

It follows from our general theory that the plug-in estimator q(0n) = 1/fin — 1/, =
X, — Y, satisfies

V(g(6,) — q(0)T = vn(X, — Y, — v )T 5y N0, w2+ v72).

Thus it is asymptotically efficient.

(e) The information bound for ¢(f) = v/u is completely similar: we first calculate
q(0) = (—v/p*, 1 /)" = =Y (—v/p,1)T, and the information bound becomes

It =¢"T710)q = 207/ ii®.

q

Here we have

Vala@h) - a(8) = ﬁ(’?“—ﬂ)

Hn

X, v
= Vn|==—=) =4 N(0,20%/12).
Vit (5= 1) e N020% )

(f) The null hypothesis H is given by ©¢ = {(u, cp) : > 0}; this is just the line
with slope ¢ in the upper right orthant of the plane. For the function ¢(0) = v/u
we see that ¢(fy) = ¢ for all §y € ©¢. Thus a natural Wald-type statistic for testing
H versus K is given by

Wi = v/n(q(8,) — a(60)) Lov/n(a(Bn) — a(6o))

where [ . lis an estimator of the information bound we found in (e). One reasonable

choice for I is just 1/ (2X/Y~) which converges in probability to 2v2/p2 = 2¢2
under the null hypothesis. Thus we see that under the null hypothesis we have

Wi —a N(0,202/1%)2 ) (207 ) pi2) £ 72 £ \2,

7



Under 0 = (u, v) € ©f fixed, we have v/u # ¢, and we have
nTWa o= (a(0a) = a(60);
(=)
S (a0) — 00 (2 ) = e
Under local alternatives of the form ¢(6,,) = ¢ 4 tn~'/2
Wa —ra N(t,20° /i) (1 / (20°) ~ X3(9)

where 0 = 212 /(2v?).

Remark: It is instructive to consider the Rao type test statistic for H versus K.
To implement this we first need to find the MLE of (u,v) = (u,cu) € O; ie. for
the smaller model Py specified by the null hypothesis. Note that the log-density for
one (X,Y) pair is

log pgo (2, y) = log pu + log(cp) — p(x + cy).

This yields the score function for g in the model Py,
: 2
L(,y;Po) = 0 (z + cy).
Thus the likelihood equation for the MLE 62 in P, is

0_21 (1] X)) ———(nX +enY,),

and hence 20 = 2/(X, + cY,), which yields, in turn, (22, ci’). Now the Rao
statistic is based on

4 - 1//1 i
0y _ ,,-1/2 0 L —1)2 n
20 = Zl Keifw) = Z(l/(w) )

_ (Xn+cYn)/2— n
= Vn ( (X + ¥V,)/(20) — Y,
N
2\ —(cY -=X)/e )
Thus the Rao statistic R, for testing H versus K is
Ry = Zy(00)I71(07)Z,(6)).
After a bit of algebra this becomes

A 2 27721 212 2/(02N2>
n(q(0, —c)* - m —a N(0,2¢%)%- m

L ON(0,1)% ~ ¥

under 6 € ©g. Note that the Wald and Rao statistics are equal up to an estimator
of the information matrix.



6. (48 points) Suppose that Xi,..., X, are i.i.d. N(0,cl) where § € (0,00) = © and

¢ > 0 is a known positive constant.

(a) What is the density py(x) of each X7

(b) Find the score function for a sample of size n = 1 and compute the information
for A. Check to make sure that your score function satisfies Egig(X 1) =0.

(¢) Find the MLE 6, of 6 and show that it is consistent.

(d) Show that the sequence of MLE’s is asymptotically normal and find the
asymptotic variance.

(e) Suggest two alternative inefficient estimators of 6 based on the usual N(u, o?)
model and compare their asymptotic variances to the variance of the MLE you
computed in (e).

Solution: (a) the density py is given by

po(z) = \/;ﬁeXp (—@2_099)2)-

(b) Now
B (x—6) 1 (2
log pe(z) = —(1/2) log(2mch) 58 = (1/2)log6 5\ g 2040 ),
and hence
. 1 1 (2
() = ——+ (L 1
o) 20 " 2 (92 ) ’
1 x?
w0 = o
and it follows that
- FEyX? 1
1 = —Fplp(X) = - —
() olas (X) ch3 262

cl + 62 I 20 + ¢
c03 202 2¢62
Note that

. 1 ch+0?—6? 1 1
Eolo(X0) = =55+ =5 gr— = 5 T35

(¢) The score equation for 6 is

. D¢
0= 1y(0]X) = "6+ — (Zl i —n) ,

2 2c 62

or, equivalently,

02 +ch, = X2, or (6>+4¢/2)?=X2, + /4

0, =\/2/4+ X2, —c/2 = g(X2,)

9

Thus



where g(v) = \/c2/4 + v — ¢/2 is continuous. Note that X2, —, cf + 62, and hence
by the continuous mapping theorem

9(X2,) = g(ch+0%) = \/2/4+cl + 62 —c/2 = 0.
(d) From our general theory,
V0, —0) =4 N(0,I71(0)) = N(0,2c6%/(20 + ¢)).

(e) One alternative estimator is X,. In this case we know that . VX, —0) =4
N(0,cf). A second alternative estimator is S2/c =n~' > 7(X; — X,,)?/c =, B/c =
6. In this case we have
V(e 12 —0) = /n(S2 —cl)/c —4 ¢ 'N(0,Var(X —6)?)
= N(0,¢ *Var((X —0)*) = N(0,26%).

Note that 6 > 2¢6°/(26 + ¢) and 26> > 2c6?/(20 + ¢), and the asymptotic relative
efficiencies of X,, and S?/c relative to the MLE are

C2e0%/(20+¢) 20

-Ef(X,. MLE = <1
Re (X, )(0) cl 20+c¢ —
and
2c0? /(20 + ) c
- 2 — = <
Rel-Eff(S2 /e, MLE)(9) T TR

Note that the relative efficiency of X, decreases as ¢ increases, while the relative
efficiency of S2/c increases as ¢ increases; and this pattern reverses as a function of

6.

10



Do either problem 7 or problem 8:

7. (40points).
(a) State Jensen’s inequality including conditions under which equality holds.
(b) For two probability measures P, ) on a measurable space (X, .A4), define the
Kullback - Leibler divergence K (P, Q) .
(c) Show that K(P,Q) > 0 for all probability measures P and @ with equality if
and only if P = Q.
(d) Show either K(P,Q) > 2H?*(P, Q) or some refinement thereof.

Solution: (a) Jensen’s inequality says that Eg(X) > g(EX) if ¢ is convex. If ¢
is strictly convex, then equality occurs in Jensen’s inequality if and only if P(X =
E(X)) =1.

(b) K(P,Q) = Ep(log(p/q)) = Eplog(dP/dQ) if P < Q, K(P, Q) = +oc otherwise.
(c¢) Now since — log is strictly convex,

K(P,Q) = —EplogdQ/P)= —Ep{l,>0log(dQ/dP)}
> —log Ep(dQ/dP)1{p > 0} = —logQ(p > 0) >0 since Q(p >0) < 1.

equality occurs if and only if dQ/dP = 1 with P probability 1; i.e. if and only if

O=P.
(d) From bonus problem 3(a) on HW # 10:

1/2
K(P,Q) = —2/log <%> dy = —Q/plog <1 + \/g— 1) dy
—2/p (\/g— 1) dp  since —log(l+x) > —x

= 2 <1 —/\/p_qdu> =2H*(P,Q).

v

8. (40 points).
(a) Define the Hellinger and total variation distances H(PQ) and dry (P, Q) between
two probability measures P and @) on the same measurable space (X, .A).

(b) Show that drv (P, Q) = (1/2) [ |p — qldp.

(c) Define the Hellinger affinity p(P, Q) and the total variation affinity n(P, Q) and
relate them to the distances H(P, Q) and dpy (P, Q) defined in (a).

(d) State two inequalities relating the Hellinger and total variation metrics defined
in (a). Give a proof of at least one of the two inequalities.

Solution: (a) The Hellinger and total variation metrics H (P, Q) and dry (P, Q) are
given by
1
H(P.Q) = 5 [ varin

drv(P,Q) = ZEEUD(A) - Q(A)].

(b) Let r=p—qand B={p>¢q} ={r > 0}. Then

OZ/(p—Q)duz/rdMZ/(T*-T‘)duz/ﬁdu—/r‘du,
11



so [r~dp= [rTdp and

/ b — qld = / rldps = / (41 )y = 2 / .

Then for any measurable set A,

P(A) - Q(4) =

IN

By a symmetric argument

Q(A) - P(4) < /

_ B 1
r dui/'f’ dM:§/|P—Q|dM- (0.5)
A

Combining (0.4) and (0.5) yields

One the other hand,
1
|P(B) — Q(B)| = ‘/(p — q)dp| = /T*du =3 / p — qldp.
B

(c) The Hellinger affinity is p(P,Q) = [ \/pqdp and the total variation affinity is
n(P,Q) = [ p A qdu. We have

HQ(PvQ):l_p(PaQ)7 and dTV(PaQ):l_n(PvQ)

(d) Two basic inequalities are:
H2(Pa Q) < dTV(Pv Q) < \/§H(P7Q)

Let B = 1{p > ¢} as in (b). The first inequality follows from the two connection
formulas in (c) together with

n(PQ) = /p/\qduz/Bp/\qdqu/Ep/\qdu
= /Bqdqu/cpdué/B\/Ex/ﬁdﬂwL/BC\/ﬁx/ﬁdﬂ
= /\/P_qdu:p(P,Q)-

12



Do either problem 9 or problem 10:

9.

10.

(40 points) Let Xi,..., X, be iid. Py = Normal(0, 1).

(a) Give the Hodges superefficient estimator 7,, of § (with superefficiency at 6 = 0).
(b) What is the limiting distribution of v/n(T, ) as a function of 67

(c) What is the limiting distribution of v/n(T,, — 6,,) when sampling from 6 = 0,

when 6,, = en=1/2?

(d) Does the limit distribution in (c¢) depend on ¢? Is T), a locally regular estimator
of # at 6 =07

(e) What is the limit of Ey, {[v/n(T, — 6,)]’} when 6, = cn="/2 as in (c)? For what
values of ¢ does the limiting risk of 7}, exceed the (limiting) risk of X,,?

Solution: See chapter 3 notes.

(40 points)
Suppose that X, X,,..., X, are iid. Multy(1,p), so that N, = >°" X, ~
Multy(n, p). Thus

k k
P(X=1) = Hp?j for x; € {0,1}, sz =1,
=1 1

k

Pon(N, =m) = pr for m; > 0, integers ij =n.
H] p my! j=1 j=1

(a) Compute K (P, P,) = K(

(b) Evaluate K(p,p) where p
log Ln(]_9|ﬂn).

(c) Use the result of (b) to show, without using any calculus, that the MLE of p is
p=N/n.

q,p) for vectors ¢, p with Y p; = > ¢q; = 1.
=n"'N,. Relate this to the log-likelihood

Solution: (a) First,

Thus

(b) From (a) it follows that

k
ij log— == _Plog
j=1
Now
n!
log Ly, (p|N,,) ZN log p; + log (HNj!>

7j=1

13



k
~ n!
= anjlogpj + log <HN

|
|
j=1 J

k k
. Dpj PO n!
= n E p; log (rj) +n E pjlogp; + log (HN")
=1 P =1

j-

= —nK(p,p) + terms constant in p.

Even more neatly, as several of you noted,

L, (pIN,,)

S
0

k
= nY {p;logp; — p;logp;} = nK(p,p).
j=1

(c) Since K(p,p) > 0 with equality if and only if p = p, we see from the identity in
(b) that L, (p|N,,) is maximized by p = p.
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