
Statistics 581, Final Exam Solutions

Wellner; 12/12/2018

1. (40 points) Define any four of the following eight terms. In each case, provide an
appropriate (brief) context for your definition.
(a) Differentiability in quadratic mean (or Hellinger differentiability) of a family of

densities {pθ : θ ∈ Θ ⊂ Rd}.
(b) LAN (Local Asymptotic Normality) of the local log-likelihood ratios.
(c) A locally regular estimator of a parameter ν(Pθ) = q(θ) in a parametric model
P = {Pθ : θ ∈ Θ}.

(d) An asymptotically linear estimator.
(e) A uniformly integrable sequence of random variables.
(f) A Brownian bridge process on [0, 1].
(g) A Brownian motion process on [0,∞).
(h) Convergence in distribution, Xn →d X, in a (separable) metric space (M,d).

Solution: See Course Notes, Chapters 1-4.

2. (40 points) State four of the following eight results, providing an appropriate (brief)
context for your statements:
(a) The Lindeberg - Feller central limit theorem.
(b) The Glivenko-Cantelli theorem for X1, . . . , Xn i.i.d. F on R.
(c) Donsker’s theorem for X1, . . . , Xn i.i.d. F on R.
(d) Hájek’s convolution theorem.
(e) Scheffé’s theorem.
(f) A Glivenko-Cantelli theorem for the empirical measure Pn of X1, . . . , Xn i.i.d.
P on (X ,A) indexed by a family F of measurable functions f from X to R.

(g) A result connecting a Brownian motion process to a Brownian bridge process.
(h) A formula connecting q̇, the inverse of the Fisher information matrix, and the

vector of score functions in a regular parametric model.

Solution: See Course Notes, Chapters 1-4.
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Do either problem 3 or problem 4:

3. (48 points).
Suppose that X1, . . . , Xn are independent and identically distributed real-valued
random variables with distribution function F and density f .
(a) Consider the sample median F−1n (1/2) and the sample mean Xn. Give conditions
under which the sample median F−1n (1/2) is an asymptotically linear estimator of the
population median F−1(1/2). Identify the influence function ψ(x) and the limiting
distribution of

√
n(F−1n (1/2)− F−1(1/2)).

(b) Give conditions under which the sample median F−1n (1/2) and the sample mean
Xn have a joint limiting distribution; i.e. conditions which imply that the random
vector ( √

n(F−1n (1/2)− F−1(1/2))√
n(Xn − µ)

)
converges in distribution where µ = µF = EF (X1). Find the limiting distribution
explicitly.
(c) A simple test for asymmetry of a distribution function is based on the difference
of the mean and median: γ(F ) ≡ µF−F−1(1/2). Note that γF = 0 if F is symmetric
about some point, while γ(F ) is positive for F skewed to the right, and negative for
F skewed to the left. Use the results of (b) to find the limiting distribution of

√
n(γ(Fn)− γ(F )) =

√
n(Xn − F−1n (1/2)− (µF − F−1(1/2))).

Compute the limiting variance in terms of expectations of functions of F . Is γ(Fn)
asymptotically linear?

Solution: (a) Assuming that F has a positive density f at F−1(1/2), we know
that with Q(t) ≡ F−1(t), so Q′(t) = 1/f(F−1(t)),
√
n(F−1n (1/2)− F−1(1/2)) →d −Q′(1/2)U(1/2)

= − 1

f(F−1(1/2)
U(1/2) ∼ N(0,

1/4

f 2(F−1(1/2)
).

Moreover,

√
n(F−1n (1/2)− F−1(1/2)) =

1√
n

n∑
i=1

−1

f(F−1(1/2))
(1(−∞,F−1(1/2)](Xi)− 1/2) + op(1)

≡ 1√
n

n∑
i=1

ψ(Xi) + op(1)

where ψ(x) = −(1(−∞,F−1(1/2)](x) − 1/2)/f(F−1(1/2)) has Eψ(X) = 0 and
Eψ2(X) = (1/4)/f 2(F−1(1/2)).
(b) If E(X2

1 ) <∞, then from the asymptotically linear representation of F−1n (1/2)
in (a) together with the multivariate central limit theorem it follows that

√
n

(
F−1n (1/2)− F−1(1/2)

Xn − µF

)
=

1√
n

n∑
i=1

(
ψ(Xi)
Xi − µF

)
+ op(1)

→d V ∼ N2(0,Σ)
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where Σ11 = Eψ2(X1) = (1/4)/f 2(F−1(1/2)), Σ22 = Var(X1), and

Σ12 = Σ21 = Eψ(X1)(X1 − µ) = −
E{1(−∞,F−1(1/2)](X1)(X1 − µ)}

f(F−1(1/2))
.

(c) From the joint convergence result in (b) it follows by the continuous mapping
theorem that

√
n(γ(Fn)− γ(F )) =

√
n(Xn − F−1n (1/2)− (µF − F−1(1/2)))

=
√
n(Xn − µF )−

√
n(F−1n (1/2)− F−1(1/2))

→d V2 − V1 ∼ N(0, τ 2)

where

τ 2 ≡ τ 2(F ) (0.1)

=
1/4

f 2(F−1(1/2))
+ V arF (X)

+ 2EF
{

(X − µF )(1(−∞,F−1(1/2)](X)− 1/2)
}
/f(F−1(1/2))

= V arF (X) +
1/4

f 2(F−1(1/2))

+ 2EF
{

(X − µF )1(−∞,F−1(1/2)](X)
}
/f(F−1(1/2))

= V arF (X) +
1/4

f 2(F−1(1/2))

+ 2(EF
{
X1(−∞,F−1(1/2)](X)

}
− µF )/f(F−1(1/2)) . (0.2)

Indeed, γ(Fn) is asymptotically linear as well: from the asymptotic linearity of
F−1n (1/2) given in (a) and (b)

√
n(γ(Fn)− γ(F )) =

1√
n

n∑
i=1

{Xi − µF − ψ(Xi)}+ op(1)

where ψ(x) = −(1(−∞,F−1(1/2)](x)− 1/2)/f(F−1(1/2)) as in (a)

Remarks: This statistic for testing symmetry was suggested by Edgeworth (1887).
See the discussion on pages 105 and 106 of Stigler (1999), which also indicates that
the joint asymptotic distribution of the mean and median was known to Laplace in
the early 1800’s.
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4. (48 points) Suppose that X1, . . . , Xn are i.i.d. Uniform(0, θ). Let X(1) =
min1≤i≤nXi and X(n) = max1≤i≤nXi.
(a) Show that (nX(1), n(θ −X(n)))→d θ(U, V ) where U and V are independent

exponential(1) random variables. Hint: begin by computing
P (X(1) > x, X(n) ≤ y); then use this to study the limit of
P (nX(1)/θ > x, n(1−X(n)/θ) ≥ y).

(b) Show that Sn ≡ (n+1)X(n)/n and Tn ≡ X(1)+X(n) are both unbiased estimators
of θ.

(c) Find the joint limiting distribution of (n(Sn − θ), n(Tn − θ)).
(d) Which of the two estimators would you prefer?

[Hint: compute limnE{[n(Sn − θ)]2} and limnE{[n(Tn − θ)]2}.]
(e) Does the joint density of (Un, Vn) ≡

(
nX(1)/θ, n(1−X(n)/θ

)
converge pointwise

to a limit density? If so what does this imply about convergence in TV distance?

Solution: (a) First note that X1/θ, . . . , Xn/θ are i.i.d. Uniform(0, 1). Thus we
compute, for 0 ≤ x ≤ y ≤ 1

P (X(1) > x,X(n) ≤ y) = P (X(1)/θ > x/θ, X(n)/θ ≤ y/θ)

= P (x/θ < Xi/θ ≤ y/θ for all 1 ≤ i ≤ n)

= P (x/θ < X1/θ ≤ y/θ)n = (y − x)n/θn.

This implies that for all x, y > 0 we have, for n so large that (x+ y)/n ≤ 1,

P
(
nX(1)/θ > x, n(1−X(n)/θ) ≥ y

)
= P

(
X(1) > xθ/n, X(n) ≤ 1− yθ/n

)
=

(
1− y

n
− x

n

)n
→ exp(−(x+ y)) (0.3)

= exp(−x) exp(−y).

It follows that (nX(1), n(θ − X(n))) →d θ(U, V ) where U, V are independent
exponential(1) random variables.
(b) First, Eθ(X(1)/θ) = 1/(n+ 1) and Eθ(X(n)/θ) = n/(n+ 1). Thus it follows that

Eθ(Sn) = Eθ

(
n+ 1

n
X(n)

)
=
n+ 1

n

n

n+ 1
θ = θ,

and

Eθ(Tn) = Eθ
(
X(n) +X(1)

)
=

n

n+ 1
θ +

1

n+ 1
θ = θ.

(c) We see from (a) that

n(Sn − θ) =
n+ 1

n
n(X(n) − θ) +

(
n+ 1

n
n− n

)
θ

= n(X(n) − θ) + θ + op(1)

→d −θV + θ = θ(1− V ),

while
n(Tn − θ) = n(X(n) − θ) + nX(1) → −θV + θU = θ(U − V ).
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Since n(Tn−θ) and n(Sn−θ) are both linear transformations of nX(1) and n(θ−X(n))
up to op(1), the joint convergence follows from Slutsky’s theorem and the continuous
mapping theorem (or Mann-Wald theorem) with g(u, v) = (−v + θ, u− v).
(d) Now from (c) together with uniform square integrability of {n(Sn − θ)} and
{n(Tn − θ)} we see that since V ar(U) = V ar(V ) = 1

Eθ{n2(Sn − θ)2} → E{θ2(1− V )2} = θ2 · 1

while
Eθ{n2(Tn − θ)2} → E{θ2(U − V )2} = θ2 · 2.

Thus the asymptotic mean square error of Tn is twice that of Sn; hence I would
prefer Sn.
(e) It follows by differentiating (twice) the joint survival function of (Un, Vn) given
in (0.3) that the joint density of (Un, Vn) is given by

fUn,Vn(x, y) =
n− 1

n

(
1− x+ y

n

)n−2
1[0,n]×[0,n](x, y).

This yields

fUn,Vn(u, v)→ exp(−(u+ v)) = fU,V (u, v) = fU(u)fV (v) for each (u, v) ∈ [0,∞)2,

the density of two independent exp(1) random variables. It follows from Scheffé’s
theorem that

dTV (PUn,Vn , PU,V | =
1

2

∫
R2

|fUn,Vn(u, v)− fU,V (u, v)|dudv → 0.
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Do either problem 5 or problem 6:

5. (48 points; based on problem 2 of HW # 10:) Suppose that (X1, Y1), . . . , (Xn, Yn) are
i.i.d. as (X, Y ) where X ∼ exponential(µ) and Y ∼ exponential(ν) are independent
Thus the joint density of each (Xi, Y) is

pθ(x, y) = µe−µxνe−νy1(0,∞)×(0,∞)(x, y)

where θ = (µ, ν) ∈ (0,∞), (0,∞) ≡ Θ. (a) Find the score functions l̇µ(x, y) and
l̇ν(x, y) for θ = (µ, ν) for a sample of size n = 1. Find the information matrix I(θ)
and the inverse information matrix I−1(θ) for θ = (µ, ν) for a sample of size n = 1.
(b) Find the score equations and MLE’s θ̂n = (µ̂n, ν̂n) based on all the data.
(c) What is the limiting distribution of

√
n(θ̂n − θ)?

(d) What is the information bound for estimation of

q(θ) = q(µ, ν) = 1/µ− 1/ν = Eθ(X)− Eθ(Y )?

Suggest an estimator that achieves the information bound asymptotically.
(e) What is the information bound for estimation of q(θ) = ν/µ? Suggest an
estimator that achieves the information bound asymptotically.
(f) Now consider testing H : ν/µ = c versus K : ν/µ 6= c where c is a known
positive constant. [In problem 2 of HW # 10 we reparametrized this problem and
considered a likelihood ratio test.] First, draw a picture showing the subset Θ0 of Θ
which defines H. Then propose a Wald type test statistic Wn for testing H versus
K by noting that the function q in (e) is constant on Θ0: q(θ) = ν/µ = c for θ ∈ Θ0.
What is the limiting distribution of your test statistic under H? What is the limiting
behavior of n−1Wn under a fixed θ ∈ K? What can you say about the limiting
behavior of Wn under local alternatives θn of the form q(θn) = νn/µn = c+n−1/2t?

Solution: (a) The log of the joint density of each pair (Xi, Yi) is given by

log pθ(x, y) = log µ+ log ν − µx− νy,

and hence the score functions l̇µ and l̇ν and the second derivatives, are given by

l̇µ(x, y) =
1

µ
− x, l̈µµ = − 1

µ2
,

l̇ν(x, y) =
1

ν
− y, l̈νν = − 1

ν2
.

These lead to the information matrix I(θ for θ = (µ, ν) being given by

I(θ) =

(
µ−2 0
0 ν−2

)
.

Thus

I−1(θ) =

(
µ2 0
0 ν2

)
.
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(b) The score equations are simply

0 =
n∑
i=1

l̇µ(Xi) =
n

µ
−

n∑
1

Xi = n

(
1

µ
−Xn

)
, and

0 =
n∑
i=1

l̇ν(Yi) =
n

ν
−

n∑
1

Yi = n

(
1

ν
− yn

)
,

so it follows that µ̂n = 1/Xn and ν̂n = 1/Y n.
(c) From our general theory, the limiting distribution of the MLE’s is

√
n(θ̂n − θ) =

√
n

(
µ̂n − µ
ν̂n − ν

)
→d D ∼ N2(0, I

−1(θ)).

(d) For estimation of q(θ) = µ−1 − ν−1 = EθX − EθY , the information bound is
given by q̇(θ)T I−1(θ)q̇(θ). We calculate q̇(θ) = (−1/µ2, 1/ν2)T , and hence

q̇(µ, ν)T I−1(θ)q̇(µ, ν) =
1

µ2
+

1

ν2
.

It follows from our general theory that the plug-in estimator q(θ̂n) = 1/µ̂n− 1/ν̂n =
Xn − Y n satisfies

√
n(q(θ̂n)− q(θ))T =

√
n(Xn − µ−1, Y n − ν−1)T →d N(0, µ−2 + ν−2).

Thus it is asymptotically efficient.
(e) The information bound for q(θ) = ν/µ is completely similar: we first calculate
q̇(θ) = (−ν/µ2, 1/µ)T = µ−1(−ν/µ, 1)T , and the information bound becomes

I−1q ≡ q̇T I−1(θ)q̇ = 2ν2/µ2.

Here we have

√
n(q(θ̂n)− q(θ)) =

√
n

(
ν̂n
µ̂n
− ν

µ

)
=
√
n

(
Xn

Y n

− ν

µ

)
→d N(0, 2ν2/µ2).

(f) The null hypothesis H is given by Θ0 = {(µ, cµ) : µ > 0}; this is just the line
with slope c in the upper right orthant of the plane. For the function q(θ) = ν/µ
we see that q(θ0) = c for all θ0 ∈ Θ0. Thus a natural Wald-type statistic for testing
H versus K is given by

Wn ≡
√
n(q(θ̂n)− q(θ0))Îq

√
n(q(θ̂n)− q(θ0))

where Î−1q is an estimator of the information bound we found in (e). One reasonable

choice for Î−1q is just 1/(2X
2

n/Y
2

n) which converges in probability to 2ν2/µ2 = 2c2

under the null hypothesis. Thus we see that under the null hypothesis we have

Wn →d N(0, 2ν2/µ2)2/(2ν2/µ2)
d
= Z2 d

= χ2
1.
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Under θ = (µ, ν) ∈ Θc
0 fixed, we have ν/µ 6= c, and we have

n−1Wn = (q(θ̂n)− q(θ0))2Î−1q

→p (q(θ)− q(θ0))2/(2ν2/µ2) =

(
ν
µ
− c
)2

2ν2/µ2
.

Under local alternatives of the form q(θn) = c+ tn−1/2

Wn →d N(t, 2ν2/µ2)2(µ2/(2ν2) ∼ χ2
1(δ)

where δ = t2µ2/(2ν2).
Remark: It is instructive to consider the Rao type test statistic for H versus K.
To implement this we first need to find the MLE of (µ, ν) = (µ, cµ) ∈ Θ0; i.e. for
the smaller model P0 specified by the null hypothesis. Note that the log-density for
one (X, Y ) pair is

log pθ0(x, y) = log µ+ log(cµ)− µ(x+ cy).

This yields the score function for µ in the model P0,

l̇µ(x, y;P0) =
2

µ
− (x+ cy).

Thus the likelihood equation for the MLE θ̂0n in P0 is

0 =
n∑
i=1

l̇µ(µ|Xi) =
2n

µ
− (nXn + cnY n),

and hence µ̂0
n = 2/(Xn + cY n), which yields, in turn, (µ̂0

n, cµ̂
0
n). Now the Rao

statistic is based on

Zn(θ̂0n) = n−1/2
n∑
i=1

l̇θ(Xi; θ̂
0
n) = n−1/2

n∑
i=1

(
1/µ̂0

n −Xi

1/(cµ̂0
n)− Yi

)
=
√
n

(
(Xn + cY n)/2−Xn

(Xn + cY n)/(2c)− Y n

)
=

√
n

2

(
cY −X

−(cY −X)/c

)
.

Thus the Rao statistic Rn for testing H versus K is

Rn = ZT
n (θ̂0n)I−1(θ̂0n)Zn(θ̂0n).

After a bit of algebra this becomes

n(q(θ̂n − c)2 ·
2Y

2

n

(X + cY n)2
→d N(0, 2c2)2 · 2/(c2µ2)

(1/µ+ 1/µ)2

d
= N(0, 1)2 ∼ χ2

1

under θ ∈ Θ0. Note that the Wald and Rao statistics are equal up to an estimator
of the information matrix.
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6. (48 points) Suppose that X1, . . . , Xn are i.i.d. N(θ, cθ) where θ ∈ (0,∞) ≡ Θ and
c > 0 is a known positive constant.
(a) What is the density pθ(x) of each Xi?
(b) Find the score function for a sample of size n = 1 and compute the information

for θ. Check to make sure that your score function satisfies Eθ l̇θ(X1) = 0.
(c) Find the MLE θ̂n of θ and show that it is consistent.
(d) Show that the sequence of MLE’s is asymptotically normal and find the

asymptotic variance.
(e) Suggest two alternative inefficient estimators of θ based on the usual N(µ, σ2)

model and compare their asymptotic variances to the variance of the MLE you
computed in (e).

Solution: (a) the density pθ is given by

pθ(x) =
1√

2πcθ
exp

(
−(x− θ)2

2cθ

)
.

(b) Now

log pθ(x) = −(1/2) log(2πcθ)− (x− θ)2

2cθ
= −(1/2) log θ − 1

2c

(
x2

θ
− 2x+ θ

)
,

and hence

l̇θ(x) = − 1

2θ
+

1

2c

(
x2

θ2
− 1

)
,

l̈θθ(x) =
1

2θ2
− x2

cθ3
,

and it follows that

I(θ) = −Eθ l̈θθ(X) =
EθX

2

cθ3
− 1

2θ2

=
cθ + θ2

cθ3
− 1

2θ2
=

2θ + c

2cθ2
.

Note that

Eθ l̇θ(X1) = − 1

2θ
+
cθ + θ2 − θ2

2cθ2
= − 1

2θ
+

1

2θ
= 0.

(c) The score equation for θ is

0 = l̇θ(θ|X) = −n
2
θ +

1

2c

(∑n
1 X

2
i

θ2
− n

)
,

or, equivalently,

θ̂2n + cθ̂n = X2
n, or (θ̂2n + c/2)2 = X2

n + c2/4.

Thus

θ̂n =

√
c2/4 +X2

n − c/2 ≡ g(X2
n)
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where g(v) ≡
√
c2/4 + v− c/2 is continuous. Note that X2

n →p cθ+ θ2, and hence
by the continuous mapping theorem

g(X2
n)→ g(cθ + θ2) =

√
c2/4 + cθ + θ2 − c/2 = θ.

(d) From our general theory,

√
n(θ̂n − θ)→d N(0, I−1(θ)) = N(0, 2cθ2/(2θ + c)).

(e) One alternative estimator is Xn. In this case we know that
√
n(Xn − θ) →d

N(0, cθ). A second alternative estimator is S2
n/c = n−1

∑n
1 (Xi−Xn)2/c→p cθ/c =

θ. In this case we have

√
n(c−1S2

n − θ) =
√
n(S2

n − cθ)/c →d c−1N(0, V ar(X − θ)2)
= N(0, c−2V ar((X − θ)2) = N(0, 2θ2).

Note that θ > 2cθ2/(2θ + c) and 2θ2 > 2cθ2/(2θ + c), and the asymptotic relative
efficiencies of Xn and S2

n/c relative to the MLE are

Rel-Eff(Xn,MLE)(θ) =
2cθ2/(2θ + c)

cθ
=

2θ

2θ + c
≤ 1,

and

Rel-Eff(S2
n/c,MLE)(θ) =

2cθ2/(2θ + c)

2θ2
=

c

2θ + c
≤ 1.

Note that the relative efficiency of Xn decreases as c increases, while the relative
efficiency of S2

n/c increases as c increases; and this pattern reverses as a function of
θ.
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Do either problem 7 or problem 8:

7. (40points).
(a) State Jensen’s inequality including conditions under which equality holds.
(b) For two probability measures P,Q on a measurable space (X ,A), define the

Kullback - Leibler divergence K(P,Q) .
(c) Show that K(P,Q) ≥ 0 for all probability measures P and Q with equality if

and only if P = Q.
(d) Show either K(P,Q) ≥ 2H2(P,Q) or some refinement thereof.

Solution: (a) Jensen’s inequality says that Eg(X) ≥ g(EX) if g is convex. If g
is strictly convex, then equality occurs in Jensen’s inequality if and only if P (X =
E(X)) = 1.
(b) K(P,Q) = EP (log(p/q)) = EP log(dP/dQ) if P ≺ Q, K(P,Q) = +∞ otherwise.
(c) Now since − log is strictly convex,

K(P,Q) = −EP log dQ/P ) = −EP{1p>0 log(dQ/dP )}
≥ − logEP (dQ/dP )1{p > 0} = − logQ(p > 0) ≥ 0 since Q(p > 0) ≤ 1.

equality occurs if and only if dQ/dP = 1 with P probability 1; i.e. if and only if
Q = P .
(d) From bonus problem 3(a) on HW # 10:

K(P,Q) = −2

∫
log

(
q

p

)1/2

dµ = −2

∫
p log

(
1 +

√
p

q
− 1

)
dµ

≥ −2

∫
p

(√
q

p
− 1

)
dµ since − log(1 + x) ≥ −x

= 2

(
1−

∫
√
pqdµ

)
= 2H2(P,Q).

8. (40 points).
(a) Define the Hellinger and total variation distances H(PQ) and dTV (P,Q) between
two probability measures P and Q on the same measurable space (X ,A).
(b) Show that dTV (P,Q) = (1/2)

∫
|p− q|dµ.

(c) Define the Hellinger affinity ρ(P,Q) and the total variation affinity η(P,Q) and
relate them to the distances H(P,Q) and dTV (P,Q) defined in (a).
(d) State two inequalities relating the Hellinger and total variation metrics defined
in (a). Give a proof of at least one of the two inequalities.

Solution: (a) The Hellinger and total variation metrics H(P,Q) and dTV (P,Q) are
given by

H2(P,Q) =
1

2

∫
(
√
p−√q)2 dµ,

dTV (P,Q) = sup
A∈A
|P (A)−Q(A)|.

(b) Let r ≡ p− q and B = {p ≥ q} = {r ≥ 0}. Then

0 =

∫
(p− q)dµ =

∫
rdµ =

∫
(r+ − r−)dµ =

∫
r+dµ−

∫
r−dµ,

11



so
∫
r−dµ =

∫
r+dµ and∫
|p− q|dµ =

∫
|r|dµ =

∫
(r+ + r−)dµ = 2

∫
r+dµ.

Then for any measurable set A,

P (A)−Q(A) =

∫
A

pdµ−
∫
A

qdµ =

∫
A

(p− q)dµ

=

∫
A∩B

(p− q)dµ+

∫
A∩Bc

(p− q)dµ

≤
∫
r+dµ ≤

∫ +

r

dµ =
1

2

∫
|p− q|dµ. (0.4)

By a symmetric argument

Q(A)− P (A) ≤
∫
A

r−dµ ≤
∫
r−dµ =

1

2

∫
|p− q|dµ. (0.5)

Combining (0.4) and (0.5) yields

|P (A)−Q(A)| ≤ 1

2

∫
|p− q|dµ.

One the other hand,

|P (B)−Q(B)| =
∣∣∣ ∫

B

(p− q)dµ| =
∫
r+dµ =

1

2

∫
|p− q|dµ.

(c) The Hellinger affinity is ρ(P,Q) =
∫ √

pqdµ and the total variation affinity is
η(P,Q) ≡

∫
p ∧ qdµ. We have

H2(P,Q) = 1− ρ(P,Q), and dTV (P,Q) = 1− η(P,Q).

(d) Two basic inequalities are:

H2(P,Q) ≤ dTV (P,Q) ≤
√

2H(P,Q).

Let B ≡ 1{p ≥ q} as in (b). The first inequality follows from the two connection
formulas in (c) together with

η(P,Q) =

∫
p ∧ qdµ =

∫
B

p ∧ qdµ+

∫
Bc

p ∧ qdµ

=

∫
B

qdµ+

∫
Bc

pdµ ≤
∫
B

√
q
√
pdµ+

∫
Bc

√
p
√
qdµ

=

∫
√
pqdµ = ρ(P,Q).
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Do either problem 9 or problem 10:

9. (40 points) Let X1, . . . , Xn be i.i.d. Pθ = Normal(θ, 1).
(a) Give the Hodges superefficient estimator Tn of θ (with superefficiency at θ = 0).
(b) What is the limiting distribution of

√
n(Tn − θ) as a function of θ?

(c) What is the limiting distribution of
√
n(Tn − θn) when sampling from θ = θn

when θn = cn−1/2?
(d) Does the limit distribution in (c) depend on c? Is Tn a locally regular estimator

of θ at θ = 0?
(e) What is the limit of Eθn{[

√
n(Tn − θn)]

2} when θn = cn−1/2 as in (c)? For what
values of c does the limiting risk of Tn exceed the (limiting) risk of Xn?

Solution: See chapter 3 notes.

10. (40 points)
Suppose that X,X1, . . . , Xn are i.i.d. Multk(1, p), so that Nn ≡

∑n
i=1X i ∼

Multk(n, p). Thus

Pp(X = x) =
k∏
j=1

p
xj
j for xi ∈ {0, 1},

k∑
1

xi = 1 ,

Pp,n(Nn = m) =
n!∏k

j=1mj!

k∏
j=1

p
mj

j for mi ≥ 0, integers
k∑
j=1

mj = n .

(a) Compute K(Pq, Pp) ≡ K(q, p) for vectors q, p with
∑
pj =

∑
qj = 1.

(b) Evaluate K(p̂, p) where p̂ = n−1Nn. Relate this to the log-likelihood
logLn(p|Nn).

(c) Use the result of (b) to show, without using any calculus, that the MLE of p is
p̂ = N/n.

Solution: (a) First,

log
pq(x)

pp(x)
= log

k∏
j=1

q
xj
j

p
xj
j

=
k∑
j=1

xj log(
qj
pj

) .

Thus

K(q, p) =
k∑
j=1

qj log
qj
pj
.

(b) From (a) it follows that

K(p̂, p) =
k∑
j=1

p̂j log
p̂j
pj

= −
k∑
j=1

p̂j log
pj
p̂j
.

Now

logLn(p|Nn) =
k∑
j=1

Nj log pj + log

(
n!∏
Nj!

)
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= n

k∑
j=1

p̂j log pj + log

(
n!∏
Nj!

)

= n
k∑
j=1

p̂j log

(
pj
p̂j

)
+ n

k∑
j=1

p̂j log p̂j + log

(
n!∏
Nj!

)
= −nK(p̂, p) + terms constant in p .

Even more neatly, as several of you noted,

log
Ln(p̂|Nn)

Ln(p|Nn)
= n

k∑
j=1

{p̂j log p̂j − p̂j log pj} = nK(p̂, p) .

(c) Since K(p̂, p) ≥ 0 with equality if and only if p = p̂, we see from the identity in
(b) that Ln(p|Nn) is maximized by p = p̂.
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